
2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

International Journal of Cooperative Information Systems
Vol. 23, No. 4 (2014) 1450007 (50 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0218843014500075

Formal Specification of the Assurance Point
Web Service Composition Model

Le Gao∗

Department of Computer Science, Texas Tech University
Lubbock, TX 79409, USA

legao82@gmail.com

Susan D. Urban

Department of Industrial Engineering, Texas Tech University
Lubbock, TX 79409, USA

Jonathan Rodriguez and Abhijit Warkhade

Department of Computer Science, Texas Tech University
Lubbock, TX 79409, USA

Received 28 February 2014
Accepted 4 August 2014

Published 10 September 2014

This paper presents a formal specification of the Assurance Point (AP) web service
composition model. The AP model provides a flexible way of checking constraints and
responding to execution errors in service composition. An AP is a combined logical
and physical checkpoint, providing an execution milestone that stores critical data and
interacts with integration rules (IRs) to alter program flow and to invoke different forms
of recovery depending on the execution status. In this paper, the execution and recovery
semantics of assurance points have been fully defined in the context of if-else, parallel,
and loop control structures. The activities and complex control structures of the AP
model have been formalized and tested in the Yet Another Workflow Language (YAWL)
engine. By doing so, the correctness of the execution and recovery semantics in the AP
model has been verified, demonstrating that YAWL nets of the AP model satisfy the
soundness property. Different from existing web service composition models, the AP
model presented by this research provides multiple levels of protection against service
execution failure with a combination of forward and backward recovery techniques.

Keywords: Service composition; exception handling; formalization.

1. Introduction

A service in a service-oriented architecture1 (SOA) is a unit of work executed by a
service provider to achieve desired results for a service consumer. In an SOA, a web
service composition must be flexible enough to respond to individual service errors,

∗Corresponding author.

1450007-1

http://dx.doi.org/10.1142/S0218843014500075


2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

exceptions, and interruptions. To respond such events, backward and forward recov-
ery techniques2,3 can be adopted. For example, compensation is a backward recov-
ery mechanism that performs a logical undo operation. Contingency is a forward
recovery mechanism that provides an alternative execution path to keep a pro-
cess running. However, adequate combined use of compensation and contingency
to keep a process continuously executing as much as possible is still a challeng-
ing problem. To achieve this goal, the use of rule-based techniques has also been
introduced into web service composition to validate the correctness of execution,
especially considering that most processes executing in an SOA do not support
traditional transaction processing with guarantees for correctness and consistency
of data.

From the software engineering point of view, web service composition is also
an architecture of software development. As a result, verification of the execution
semantics of the web service composition is another research challenge. These inter-
esting issues include whether the web service composition can successfully terminate
and whether each process can perform correctly. Ideally a composition should be
simulated and verified at design time to detect and correct errors before imple-
mentation. In the past decade, prevalent techniques such as the Unified Modeling
Language (UML),4 the Business Process Modeling Notation,5 and Event-Driven
Process Chains (EPC)5 have been widely adopted for process modeling, with exe-
cution engines based on standards such as the Business Process Execution Language
(BPEL)6 providing a framework for execution of conceptual process designs. Ser-
vice composition for business integration, however, creates challenges for traditional
process modeling techniques.

Our own research in this area has defined a hierarchical service composition and
recovery model7 that combines the use of compensation and contingency operations
to maximize the forward recovery of the process when failure occurs. To enhance
flexibility in process execution, the concept of Assurance Points (APs) were intro-
duced into the execution of a process.8 An AP is a combined logical and physical
checkpoint, providing a milestone that stores critical data and invokes integration
rules (IRs). IRs check pre and post conditions that can alter program flow and
invoke different forms of recovery. An AP is also used as a rollback point in the
recovery of a process. Three different forms of backward recovery are defined as
actions triggered by IRs, where rule actions are capable of either full backward
recovery or a combination of backward and forward recovery.

A limitation of this initial work with APs is that APs were only defined in
the context of sequential control flow.8,9 This paper extends the AP model for use
with if-else, parallel, and loop control structures, thus defining the use of APs in a
more computationally complete context. In addition, the semantics of AP recovery
actions invoked from within the complex control structures are defined.

To precisely describe and verify the execution and recovery semantics of the AP
model, Petri Nets10 were initially used to formalize a subset of the AP model.8,11

Petri Nets provide graphical and formal representations of the execution and

1450007-2



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

recovery semantics of the AP model. However, an obvious deficiency of Petri Nets
is state explosion. Because there are many conditions and resources in the model,
many places are needed to precisely define the semantics, which makes the specifi-
cation difficult to develop and understand. In addition, verification of the semantics
of a Petri Net with too many places is complex. Yet Another Workflow Language
(YAWL)12 is a business process modeling system inspired by Petri Nets, provid-
ing better support for the business workflow modeling. Compared to Petri Nets,
YAWL has several merits. First, YAWL does not have the rule that a place must
exist between two transitions, which avoids state explosion. Second, YAWL provides
a powerful analytical function to verify soundness property of a model defined in
YAWL. Compared to BPMN, UML and EPCs, YAWL introduces more meaningful
control constructs for modeling complex control-flows in a business process. In addi-
tion, YAWL models are executable. Compared to BPEL, YAWL has a graphical
and formal representation which is easy to understand and verify.

The primary contribution of this research is the complete definition and formal
specification of the AP model with full support for all primary programming lan-
guage control structures. Different from existing web service composition models,
the AP model provide multiple forms of protection against service execution failure.
APs provide referenceable points that store critical execution status. APs also sup-
port user-defined constraints by checking pre and post conditions that are specified
as IRs, with recovery actions that help to minimize backward recovery and maxi-
mize forward recovery. This research fully defines the use of these concepts for all
primary programming language control structures with a mapping to YAWL nets
that provides a clear specification of the semantics of the AP model and its recovery
actions together with a demonstration of the soundness of the model. A prototype
of the AP model has been developed as part of this research and is reported in
another paper.13 The evaluation results show that the AP model is scalable and
feasible for a large number of concurrently running processes.

In the remainder of this paper, Sec. 2 presents related work. An overview of the
initial definition of the AP model is given in Sec. 3. The extension of the AP model
with complex control structures is presented in Sec. 4. Section 5 then formalizes
the execution and recovery semantics of the AP model by using YAWL. This paper
concludes in Sec. 6, outlining contributions and future research directions.

2. Related Work

From a historical point of view, our work is founded on past work with Advanced
Transaction Models (ATMs). ATMs provide better support for Long Running
Transactions (LRTs) that need relaxed atomicity and isolation properties.14 Sagas15

were defined as a mechanism to structure long running processes, with each sub-
transaction having a compensating procedure to reverse the affects of the saga when
it fails. Other advanced transaction models have also made use of compensation for
hierarchically structured transactions.16

1450007-3



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

The term transactional workflow was introduced to recognize the relevance of
transactions to workflow activity that does not fully support ACID properties.
The ConTract Model provides a classic example of work with transactional work-
flows,17 supporting the correct execution of non-atomic, long-lived applications
with application-dependent consistency constraints. Other examples of transac-
tional workflow models include the Workflow Activity Model,18 the Crew Project,19

and METEOR.2 Workflow management systems have been studied in the context
of transactional workflows. Workflow Management Systems typically provide excep-
tion handlers to support backward and forward recovery,20–22 but do not fully sup-
port constraint checking and lack flexibility in the recovery process. The standard
compensation mechanism used in web services has been discussed in work by Yang
and Liu.23 In addition, the authors have proposed a multiple-compensation mech-
anism to enrich the standard compensation mechanism. In work by Schafer, Dolog
and Nejdl, the authors24 proposed a contract-based approach to support flexible
compensation operations in web services, which allows the specification of permit-
ted compensations at runtime. Grefen, Vonk and Apers define another approach25

that extends the standard compensation approach for web services to deal with
arbitrary process structures to allow cycles in processes. Their work also defines
safepoints to allow partial compensation of processes. The concept of AP presented
in this paper extends the safepoints by checking pre/post conditions during the
normal workflow execution, and before forward recovery, which further guaran-
tees the correctness of the execution. A high-level, compensation based transaction
model has also been presented by Vonk and Grefenr,26 which provides flexibility
in rollback semantics by combining rollback modes and rollback scopes. To deal
with the problem of atomicity and isolation in the context of processes, a unified
model27 for concurrency control and recovery of processes has been proposed. In
the unified model, the authors proposed a dynamic scheduling protocol to achieve
correctness for the concurrent execution of processes. Certain process locking mech-
anisms, however, are still adopted in the model that may be too restrictive for use
with service-oriented computing.

WS-BPEL provides fault, compensation and termination handlers to handle
execution exceptions. All three handlers are associated with scopes. A fault han-
dler aims to correct the error in a scope such that a process can continue running
or invoke an alternative process. A compensation handler is used to compensate
a completed scope. A termination handler aborts a running scope. When an error
occurs, all running activities in the scope in which the error occurs will be first
terminated. If the activity is a non-scope activity, it is simply aborted. If the activ-
ity is a scope, the associated termination handler is activated. When all running
activities have been terminated, the fault handler of the scope in which the error
occurs is invoked. The fault handler will invoke compensation handlers to compen-
sate all its nested completed scopes. In WS-BPEL, the compensation procedure
in a scope follows the reverse order of enclosed scope completion. However, the
dependency between enclosed scopes will potentially complicate the compensation

1450007-4



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

order. Because the default exception handling mechanism in WS-BPEL may acti-
vate handlers at different levels when scopes at different levels are being recovered,
the “Zigzag” compensation behavior in WS-BPEL is difficult to understand.28

More recently, events and rules have been used to dynamically specify control
flow and data flow in a process by using Event Condition Action (ECA) rules.29

ECA rules have also been successfully implemented for exception handling.30,31

Other work31 uses ECA rules to generate reliable and fault-tolerant BPEL processes
to overcome the limited fault handling capability of BPEL. Our work with APs also
supports the use of rules that separate fault handling from normal business logic.
Combined with APs, IRs are used to integrate user-defined consistency constraints
with the recovery process.

Several efforts have been made to enhance the BPEL fault and exception
handling capabilities. BPEL4Job32 addresses fault-handling design for job flow
management with the ability to migrate flow instances. Modafferi and Conforti33

propose mechanisms like external variable setting, future alternative behavior, roll-
back and conditional re-execution of the flow, timeout, and redo mechanisms for
enabling recovery actions using BPEL. Modafferi et al.34 present the architecture
of the SH-BPEL engine, a Self-Healing plug-in for WS-BPEL engines that aug-
ments the fault recovery capabilities in WS-BPEL with mechanisms such as anno-
tation, pre-processing, and extended recovery. The Dynamo35 framework for the
dynamic monitoring of WS-BPEL processes weaves rules such as pre/post condi-
tions and invariants into the BPEL process. Most of these projects do not fully
integrate constraint checking with a variety of recovery actions as in our work to
support more dynamic and flexible ways of reacting to failures. Our research demon-
strates the viability of variegated recovery approaches within a BPEL-like execution
environment.

In checkpointing systems, consistent execution states are saved during the pro-
cess flow. During failures and exceptions, the activity can be rolled back to the
closest consistent checkpoint to move the execution to an alternative platform.36,37

The AP concept presented in this paper also stores critical execution data, but
uses the data as parameters to rules that perform constraint checking and invoke
different types of recovery actions.

All or nothing (atomicity) is a key property to prevent inconsistency in service
execution. One technique38 has proposed a process algebraic framework to publish
atomicity-equivalent public views from the backend processes. This method enables
service consumers to achieve atomicity of a service composition by choosing suitable
services before the service composition.

In another technique39 based on Petri Nets, the authors proposed a Self-
Adapting Recovery Net (SARN) model for specifying exceptional handling in busi-
ness processes at design time. The authors also presented a set of high-level recovery
policies of both single task and recovery region. However, the proposed recovery
policies did not cover the recovery semantics in complex control structures of a
hierarchical service composition.

1450007-5



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

Aspect-oriented programming (AOP) is another way of modularizing and adding
flexibility to service composition through dynamic and autonomic composition and
runtime recovery. In AOP, aspects are weaved into the execution of a program
using join points to provide alternative execution paths.40 The work in Ref. 41 illus-
trates the application of aspect-oriented software development concepts to workflow
languages to provide flexible and adaptable workflows. AO4BPEL40 is an aspect-
oriented extension to BPEL that uses AspectJ to provide control flow adaptations.42

Business rules can also be used to provide more flexibility during service composi-
tion. APs as described in this paper are similar to join points, with a novel focus
on using APs to access process history data in support of constraint checking as
well as flexible and dynamic recovery techniques.

Due to the distributed nature of services, service composition is often inflexible
and highly vulnerable to errors. Even BPEL, the de-facto standard for composing
Web services, still lacks sophistication with respect to handling faults and events.
Our research is different than related work by providing comprehensive support
with a cascaded compensation policy for user-defined constraints with the use of
pre, post, and conditional rules. In addition, the AP model integrates the rules with
different recovery actions as well as user-defined compensation and contingency.
Thus, the concept of APs provides flexibility for process recovery. With the recovery
actions provided by APs, a process can be forward recovered even if an execution
error or an event interruption occurs, which is a combination of features that are
not available in current or past research.

3. Overview of the AP Model and Recovery Actions

The AP model is an extension of a service composition model originally defined by
Xiao and Urban,7 where a process is hierarchically composed of several execution
entities. A process is denoted as pi, where p represents a process and the subscript
i represents a unique identifier of the process. An operation represents a service
invocation, denoted as opi,j , such that op is an operation, i identifies the enclosing
process pi, and j represents the unique identifier of the operation within pi. Compen-
sation (copi,j) is an operation intended for backward recovery, while contingency
(topi,j) is an operation used for forward recovery. Atomic groups and composite
groups are logical execution units that enable the specification of processes with
complex control structure, facilitating service execution failure recovery by adding
scopes within the context of a process execution. An atomic group (denoted agi,j)
contains an operation, an optional compensation, and an optional contingency. A
composite group (denoted cgi,k) may contain multiple atomic groups, and/or mul-
tiple composite groups that execute sequentially. A composite group can have its
own compensation and contingency as optional elements. A process is essentially a
top-level composite group. Contingency is always tried first upon the failure of a
group. The compensation process will only be invoked if there is no contingency or
if the contingency fails.

1450007-6



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

Fig. 1. Generic process: Scenario 1 (APRollback).43

As an example of the service composition model, Fig. 1 shows an abstract
view of a sample process definition, where the boxes represent different compo-
nents of the process composition. Ovals represent APs, while the broad, curved
arrows denote recovery actions. APs and recovery actions will be addressed in the
following paragraphs.

The main process in Fig. 1 is the top-level composite group cg0. This composite
group is composed of three composite groups cg01, cg02 and cg03 followed by two
atomic groups ag04 and ag05. Similarly, cg01, cg02 and cg03 are composite groups
that contain atomic groups. Each atomic and composite group can have an optional
compensation plan and/or contingency plan. Some operations, such as ag05, can also
be marked as non-critical, meaning that the failure of the operation does not invoke
any recovery activity and that the process can proceed even if the operation fails.

Contingency is always tried first upon the failure of a group. The compensation
process will only be invoked if there is no contingency or if the contingency fails.
For example in Fig. 1, if ag021 fails, ag021.top will be executed.

Compensation is a recovery activity that is only applied to completed atomic
and composite groups. Shallow compensation involves the execution of a compen-
sating procedure attached to an entire composite group, while deep compensation
involves the execution of compensating procedures for each group within a compos-
ite group. As an example in Fig. 1, if the contingent procedure ag021.top fails, the
recovery process will first try to compensate cg01 using the associated compensating
procedure, cg01.cop. If the shallow compensation fails, deep compensation will be
invoked by executing ag011.cop. Note that ag012 is non-critical and does not require
compensation. After compensating cg01, the contingent procedure for the top-most
composite group (i.e. cg0.top) will be executed.

The service composition model was extended by introducing APs in the execu-
tion of a process,8 providing the capability of checking pre and post conditions

1450007-7



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

Fig. 2. IR structure.

through the use of IRs. An AP is defined with a unique identifier, a set of
parameters that list the critical data items to be stored and checked, and a
set of pre and post conditions defined as IRs.44 An IR as shown in Fig. 2, is
triggered by a process reaching a specific AP during execution. Upon reaching
an AP, the condition of an IR is evaluated. If the condition evaluates to true,
the action specification is executed to invoke a recovery action. As part of the
recovery process, there is a possibility for the process to execute through the
same pre or post condition a second time, where action 2 is invoked rather than
action 1.

Figure 3 shows a portion of an online shopping process. In Fig. 3, compos-
ite group cg2 contains two atomic groups, shown as the solid line rectangles.
The optional compensations and contingencies are shown in dashed line rectan-
gles, denoted as cop and top. The two APs, which are OrderPlaced(orderId) and
CreditCardCharged(orderId, cardnumber, amount), are placed before and after cg2.
The OrderPlaced AP has a pre-condition IR that guarantees that the store must
have enough goods in stock. Otherwise, the process invokes the backOrderPurchase

process. The CreditCardCharged AP has a post-condition IR that further guaran-
tees the in-stock quantity must be in a reasonable status after the decInventory

operation.

OrderPlaced (orderId)

Charge credit card

Dec inventory

cg2
ag21

ag22

CreditCardCharged (orderId, cardNumber, amount)

ag21.cop(creditBack)

ag22.cop(incInventory)

ag21.top(eCheckPay)

PRE CONDITION:
create rule QuantityCheck::pre
event:OrderPlaced (orderId)
condition: exists(select L.itemId from Inventory I, 
LineItem L where L.orderId=orderId and 
L.itemId=I.itemId and L.quantity>I.quantity)
action: backOrderPurchase(orderId)

POST CONDITION:
create rule QuantityCheck::post
event: CreditCardCharged (orderId, cardNumber, 
amount)
condition: exists(select L.itemId from Inventory I, 
LineItem L where L.orderId=orderId and 
L.itemId=I.itemId and I.quantity<0)
action1: APRetry
action2: APRollback

Fig. 3. APs in online shopping process.8

1450007-8



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

The condition defined in an IR represents a user-defined constraint. If the con-
straint is violated, the action is executed to trigger a recovery action. In its most
basic form, a recovery action simply invokes an alternative process. Recovery actions
can also be one of the following actions.

• APRollback. APRollback is used to logically reverse the current state of the
entire process using shallow or deep compensation.

Scenario 1 (APRollback): Assume that the post-condition fails at AP4 in
Fig. 1 and that the IR action is APRollback. Since APRollback is invoked, the
process compensates all completed atomic and/or composite groups. The APRo-
llback execution sequence is numbered in Fig. 1. First the process invokes ag04.cop

to compensate ag04. Second, the APRollback process will deep compensate ag031

by invoking ag031.cop since 1) there is no shallow compensation for cg03 and 2)
ag032 is non-critical and therefore has no compensating procedure. Finally, APRo-
llback invokes shallow compensation cg02.cop and cg01.cop.

The APRollback procedure is a standard way of using compensation in past
work. The originality of the rollback process in our work is the way in which it is
used together with APs in the retry and cascaded contingency recover actions.

• APRetry. APRetry is used to recover to a specific AP and then retry the recov-
ered atomic and/or composite groups. If the AP has an IR that is a pre-condition,
then the pre-condition will be re-examined. If the pre-condition fails, the action of
the rule is executed, which either invokes an alternate execution path for forward
recovery or a recovery procedure for backward recovery. By default, APRetry will
go to the most recent AP. APRetry can also include a parameter to indicate the
AP that is the target of the recovery process.

Scenario 2 (APRetry-default): Assume that the post-condition of an IR
fails at AP4 in Fig. 4 and that the action of the IR is APRetry. This action

Fig. 4. Scenario 2 (APRetry-default).43

1450007-9



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

compensates to the most recent AP within the same scope by default. In Fig. 4,
APRetry first invokes ag04.cop to compensate ag04 at step 1. The process then
deep compensates cg03 by executing ag031.cop at step 2. At this point, AP2
is reached and the pre-condition of the IR is re-evaluated shown as step 3.
If the pre-condition fails, the process executes the recovery action of IR. If
the pre-condition is satisfied or if there is no IR, then execution will resume
again from cg03. In this case, the process will reach AP4 a second time through
steps 4–6, where the post-condition is checked once more. If failure occurs for
the second time, the second action defined on the rule is executed rather than
the first action (IRs can specify multiple actions for the case when a retry fails).
If a second action is not specified, the default action will be APRollback as
steps 7–10.

• APCascadedContingency (APCC ). The APCC process provides a way of
searching for contingent procedures in a nested composition structure, searching
backwards through the hierarchical process structure. When a pre or post con-
dition fails in a nested composite group, APCC will compensate its way to the
next outer layer of the nested structure. If the compensated composite group has
a contingent procedure, it will be executed. Furthermore, if there is an AP with
a pre-condition before the composite group, the pre-condition will be evaluated
before executing the contingency. If the pre-condition fails, the recovery action
of the IR will be executed instead of executing the contingency. If there is no
contingency or if the contingency fails, APCC continues by compensating the
current composite group back to the next outer layer of the nested structure and
repeating the process described above.

Scenario 3 (APCC): Assume that the post-condition fails at AP4 in Fig. 1
and that the IR action is APCC. The process starts compensating until it reaches
the parent layer. In this case, the process will reach the beginning of cg0 after
compensating the entire process through deep or shallow compensation through
the same steps as shown in Fig. 1. Since there is no AP before cg0, cg03.top is
invoked.

Scenario 4 (APCC): Assume that the post-condition fails at AP3 in Fig. 5
and that the IR action is APCC. Since AP3 is in cg03, which is nested in cg0,
the APCC process will compensate back to the beginning of cg03, executing
ag031.cop at step 1. The APCC process finds AP2 with an IR pre-condition for
cg03 at step 2. As a result, the pre-condition will be evaluated before trying
the contingency for cg03. If there is no pre-condition or if the pre-condition is
satisfied, then cg03.top is executed at step 3 and the process continues shown as
step 4. Otherwise, the recovery action of the IR pre-condition for AP2 will be
executed and the process quits APCC mode. If cg03.top fails at step 3, then the
process will still be under APCC mode, where the process will keep compensating
through steps 5 and 6 until it reaches the cg0 layer, where cg0.top is executed at
step 7.

1450007-10



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

Fig. 5. Scenario 4 (APCC).43

4. Extending the AP Model with Complex Control Structures

The AP model was originally defined in the context of sequential control flow for
the purpose of defining AP functionality and recovery concepts. Sequential control
flow obviously has limitations with respect to computational completeness. This
research has extended the AP model for use with if-else, parallel, and loop control
structures. In addition, the semantics of AP recovery actions invoked in the context
of these complex control structures have also been defined. Section 4.1 informally
introduces the parallel control structure, known as a flow group. The execution and
recovery semantics in the if-else and loop control structures are given in Secs. 4.2
and 4.3, respectively. Section 4.4 then introduces a course enrollment case study to
illustrate the use of the AP model in the context of these control structures. Formal
specification of the complete AP model will be addressed in Sec. 5.

4.1. The parallel control structure and recovery semantics

In BPEL, parallel execution is supported through the use of the flow activity. The
flow activity specifies multiple threads that can execute in parallel. The flow activity
completes when all threads have completed. For example, a loan application process
can contain a flow activity that sends the loan requests to two different banks
simultaneously. In a flow activity, all threads are running independently and do not
need to wait for others to complete.

In this section, a new group, known as a flow group, is introduced to the AP
model, in addition to the atomic and composite groups that have already been
defined. The flow group is similar to the flow activity in BPEL. Section 4.1.1
presents the concept of a flow group, while Sec. 4.1.2 presents the recovery semantics
of a flow group in the AP model.

1450007-11



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

4.1.1. The flow group control structure and recovery semantics

A flow group is a parallel control structure that involves multiple concurrently
running threads. In a single process, concurrently running paths are normally
data-independent. Therefore, in this research, data-independence among concur-
rent paths is assumed in parallel activity.

A flow group can contain multiple composite groups executed in parallel and
independently. Figure 6 shows an example of a flow group that contains three
composite groups. A flow group succeeds only when all groups have succeeded. A
flow group can also have optional shallow compensation (fg1.cop) and contingency
(fg1.top). A shallow compensation will compensate the effects done by all threads
involved in the flow group. A contingency will be used as an alternative execution
path to the entire flow group. Similar to a composite group, shallow compensation
of a flow group involves the execution of a compensating procedure attached to an
entire flow group, while deep compensation involves the execution of compensating
procedures for each group within a flow group. APs can be inserted in any points
in a thread as needed. In addition, an AP is required at the end of a thread. There
are two benefits of placing an AP at the end of a thread. First, an AP at the
end of a thread will further guarantee the thread is in a good state and is ready
for synchronization. Second, the AP can provide better support of cross-cutting
concerns, such as synchronization of multiple threads.

4.1.2. Recovery semantics in a flow group

In the execution of concurrent composite groups, it is important to define the
course of action to take when one of the threads of execution fails. In some cases,

g

Fig. 6. An example of a flow group.

1450007-12



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

the other concurrently executing groups may also need to be halted and recovered
using some form of backward recovery to the outer scope of the flow group. In
other cases, it may be possible to recover only the failed thread of execution and to
continue with a form of forward recovery for the failed thread. In this case, the other
concurrently executing threads are not affected by the failure. All three recovery
actions, APRollback, APRetry and APCC, can be performed in a flow group.

APRollback. If APRollback is invoked in a thread, the thread will be backward
recovered. In this case, the flow group will notify all other threads to stop execution
and start recovery. For example, if the APRollback action is invoked in any point
in cg11 in Fig. 6, the cg11 will first be recovered and then cg12 and cg13 will be
notified and recovered as well. Similarly, if the APRollback action is initiated by
AP1, then cg11 will be recovered and cg12 and cg13 will then be recovered.

APRetry. In a flow group, APRetry is used to recover to a specific AP and then
retry the recovered atomic and/or composite groups in a thread. Since the data
used by each thread is completely independent from that of the others, APRetry
performed in a thread will not affect other threads in a flow group. As a special
AP, APRetry initiated by the ending AP in a thread will retry the entire thread.
For example, in Fig. 6, APRetry initiated by AP1 will retry the entire cg11.

APCC. In a flow group, if APCC is invoked in a thread, a contingent procedure
must be executed instead of the failed thread. For example, if APCC is invoked
in cg11 in Fig. 6, cg11.top will be executed after compensation of cg11. However,
compensation of other threads may be needed if the immediate contingency fails
or does not exist. For instance, if cg11.top fails, cg12 and cg13 will need to be
compensated. Then, fg1.top will be executed as a contingent procedure. APCC
initiated by the ending AP in a thread, will cause compensation of all threads in a
flow group. A contingent procedure of the entire flow group will be executed. For
example, APCC initiated by AP1 in Fig. 6, will first compensate cg11. Then cg12

and cg13 will be notified and compensated. Finally, fg1.top will be executed.

4.2. The if-else control structure and recovery semantics

The if-else control structure defines two execution paths. Depending on the selection
condition, only one path will be executed. This naturally makes the if-else control
structure easy to address for the recovery process. APs can be inserted in any
position in a path as needed. In the case of compensation, the process should only
need to recover completed atomic, composite, or flow groups on the path which has
been executed.

APRollback. APRollback invoked in a path in a if-else control structure will
recover all completed groups in the process. For example, if APRollback is invoked
at AP2 in Fig. 7, all completed groups before AP2 on the “Y” path will be recovered.
Then groups before the if-else control structure will be recovered.

1450007-13



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

Fig. 7. An example of APs in an if-else control structure.

APRetry. In an if-else control structure, APRetry will recover the groups that
are on the selected path and groups before the if-else control structure as needed.
For example, if APRetry to AP1 is invoked at AP2 in Fig. 7, all completed groups
before AP2 on the “Y” path will be recovered. Then groups that are before the if-
else control structure and after AP1 will be recovered. The process resumes forward
execution from AP1. The if-else control structure will be re-examed when the process
reaches it.

APCC. If APCC is activated on a path in a control structure, a contingent proce-
dure must be executed instead of the failed group. If a contingent procedure exists
on the selected path and has been executed successfully, the process resumes for-
ward execution. Otherwise, all completed groups on the selected path need to be
recovered in order to search for another contingent procedure at the outer level.
For example, if APCC is invoked at AP3 in Fig. 7, all completed groups before AP3

on the “N” path will be recovered. Then all groups in cgm before the if-else control
structure will be recovered. Finally, cgm.top will be executed.

4.3. The loop control structure and recovery semantics

The loop control structure involves iterative execution. In BPEL, a scope associated
with a compensation handler can be enclosed in a loop structure, such as a while
activity. To compensate the completed while loop structure, ideally the number of
times that the associated compensation handler is invoked must be the same as
the number of times of successfully completed scopes in the repeatable structure.
However, if the execution of a loop control structure fails in a specific iteration,
a question is raised as to whether the previous completed iterations need to be
compensated or not before the loop control structure quits. In BPEL, if a fault
is thrown inside a while loop activity, the compensation handler associated with
the while loop may only execute once and then the while loop activity quits.45

1450007-14



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

From the application point of view, if the iterations in a loop control structure have
strong connections, the entire loop activity must have an all or nothing property;
Otherwise if the iterations in a loop control structure are highly independent with
each other, the failure of an iteration does not necessarily trigger the compensation
of the previous completed iterations.

Because the recovery procedure in the AP model is based on the presence of
APs in a process, APs inside a loop control structure can potentially complicate the
recovery process. For example, in Fig. 8, APRetry is invoked at AP2 to backward
recover the process to AP1 which is inside a loop control structure. Since AP1 inside
the loop control structure might have be executed multiple times, it is unclear
how many times the completed groups in the loop control structure need to be
compensated. Furthermore, in an extreme case, AP1 in Fig. 8 may never be reached
if the testing of the condition of the loop returns false directly. As a result, the
APRetry action from an AP outside a loop to an AP inside a loop will unnecessarily
complicate the recovery execution.

To prevent any inconsistent recovery in a loop control structure, all repeatable
groups and APs in a loop must be embedded in the scope of a single composite
group. As shown in Fig. 9, all repeatable groups and APs are embedded in cgmn.

As discussed earlier in this section, if an iteration fails in the loop control struc-
ture, whether the previous completed iterations need to be compensated or not
before the loop control structure quits depends on the application requirements. In
the AP model, both scenarios are supported based on the logic of the contingency
of the composite group in the loop control structure. For example, depending on
the application requirements of Fig. 9, different logic can be set in the contingent
procedure cgmn.top.

Fig. 8. Inconsistent APRetry in a loop control structure with APs.

1450007-15



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

Fig. 9. A loop control structure with APs.

4.3.1. Exiting a loop with previous iterations compensated

As a default, if the composite group in the loop control structure has no contingent
procedure, the scenario that the loop control structure quits with the previous
iterations compensated is performed. To support this scenario, a normal contingency
of the composite group, which is an alternative of the original composite group, is
used. Different AP actions can be invoked in this first scenario:

APRollback. If APRollback is invoked in a loop, all groups that have finished in
the current iteration will be compensated first. Second, the composite group in the
loop will compensate itself the same number of times as it has been iterated. Then
the APRollback will start recovery of all groups finished before the loop control
structure. For example, in Fig. 9, if APRollback is invoked at AP2 in the third
iteration, all finished groups before AP2 in the third iteration will be compensated
first. After that, the shallow compensation cgmn.cop will run twice to compensate
the first two iterations. Then all groups before the loop control structure will be
recovered.

APRetry. In the AP model, since APRetry can only recover to an earlier AP at
the same hierarchical level, the APRetry invoked in a loop control structure may
only recover to an earlier AP which is also inside the loop. In addition, APRetry
can only be performed in the current iteration. For example, if APRetry to AP1

1450007-16



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

is invoked at AP2 in Fig. 9, only agmnj completed in the current iteration will be
compensated. Then the current iteration will resume from AP1.

APCC. If APCC is invoked in a loop control structure, two situations may hap-
pen. One situation is that a contingent procedure is executed successfully in the
current iteration. In this case, the loop control structure continues. For example, if
agmnj fails in the second iteration in Fig. 9, APCC is invoked. After compensating
completed groups before agmnj in the second iteration, the normal contingent pro-
cedure cgmn.top will be executed. After successfully executing cgmn.top, the second
iteration ends and the loop control structure continues. The other situation is that
all possible contingent procedures in the current iteration fail or no contingent pro-
cedure in the current iteration is available. In this case, the loop control structure
fails and the APCC will be propagated to the group at outer level. For example,
if agmnj fails in the second iteration in Fig. 9, APCC is invoked. After compensat-
ing completed groups before agmnj in the second iteration, the normal contingent
procedure cgmn.top will be executed. However, suppose cgmn.top fails also. Then
the shallow compensation cgmn.cop needs to execute once to compensate the first
iteration. After that, the APCC is propagated to the composite group cgm.

4.3.2. Exiting a loop without previous iterations compensated

A second scenario is that the loop control structure quits without the previous
iterations compensated. In this case, a break contingency of the composite group
is used, which simply breaks the loop control structure. A break contingency is
assumed to be always successful since a break contingency only performs the break
of the loop control structure. Different AP actions can also be invoked in the second
scenario:

APRollback. APRollback performs the same as in the first scenario.

APRetry. APRetry performs the same as in the first scenario.

APCC. If APCC is invoked in a loop control structure, the break contingency of
the composite group will be invoked to break the loop control structure without
compensating the previous completed iterations. For example, if agmnj fails in the
second iteration in Fig. 9, APCC is invoked. After compensating completed groups
before agmnj in the second iteration, the break contingent procedure cgmn.top will
be executed to break the loop control structure without compensating the previous
completed iterations. After that, the APCC mode quits and the composite group
cgm continues.

4.4. Case study

This section introduces a course enrollment case study to illustrate the use of the
AP model to define processes. The course enrollment application, conducted by
the students, the university and the financial institutes, contains typical business

1450007-17



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

processes that describe the activities to register for a single course. Figures 10(a)–
10(d) presents a graphical view of the course enrollment process.

The process starts when a student selects a course and applies the enrollment.
These two atomic groups constitute the composite group cg1 in Fig. 10(a). The cg1

has a compensation to abort the application. The process then reaches the first AP
which is “Application Submitted”. At this AP, the application is submitted to the
university and the process stores the StudentID and the CourseID into the database.

The composite group cg2 consists of a loop control structure where a list of pre-
requisites for the selected course is checked. To continue the application, one pre-
requisite must be satisfied. If none of the pre-requisites are satisfied, the application
is rejected. The loop control structure in the cg2 presents the scenario that the loop
control structure quits without compensating the previous iterations as only one
pre-requisite is enough to accept the application. A break contingency cg2.3.top is
defined to assign a high value to the iterating variable. To quit the loop when a
pre-requisite is passed, the cg2.3.top is invoked so that the loop quits at the next
iteration since the iterating variable has been set with a high value. The cg2 also
has a compensation that aborts the application. If a pre-requisite is satisfied, the
second AP, which is “Course Pre-requisites Passed” is reached. A pre-condition
is checked at this AP to ensure that the number of available seats of the selected
course is greater than 0.

If the seats for the selected course are available, a flow group fg4 in Fig. 10(b)
is then executed to register the student into the university system. Two threads
are executing in parallel in fg4. One thread cg4.1 accepts the application, decreases
the seat count and updates the transcript. An AP, “Records Updated”, is reached
after the cg4.1. At this AP, the process stores the StudentID, the CourseID and the
SeatCount in the database. The other thread cg4.2 adds the student to video access
list and calculates the tuition amount. After execution of the cg4.2, the process
reaches the AP which is “Course Fees Calculated”Ȧt this AP, the process stores
the calculated Amount to the database. If any operations fail in any of these two
threads, they both perform compensation for the completed operations and then
execute the contingency fg4.top to register the student for an alternative distance
class. After execution of the fg4, the process reaches the AP which is “Student
Registered”. Before execution proceeds further, the process checks if the records
have been updated using a Post condition.

The composite group cg5 in Fig. 10(c) consists of an if-else control structure.
In this group, the process checks if any financial assist is available to the student
account. If the scholarship is available, the composite group cg5.1 applies the schol-
arship to the student account to calculate new amount, update the account, sends
bill and requests payment. If scholarship is not applicable, the process checks if the
student has departmental funding. If yes, the composite group cg5.2 is executed
to apply the departmental funding through operations: calculated, the account is
updated, a bill is sent and payment is requested. If the student has no funding then
the process directly sends the bill to the student by executing the composite group

1450007-18



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

(a)

Fig. 10. Course enrollment process.

1450007-19



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

(b)

Fig. 10. (Continued)

1450007-20



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

(c)

Fig. 10. (Continued)

1450007-21



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

(d)

Fig. 10. (Continued)

cg5.3. Finally, after the if-else control structure, the atomic group ag5.4 is executed
to request payment for the remaining balance in the student account. This compos-
ite group cg5 has a compensation cg5.cop to undo updates performed in the group.
A “Funding Check Complete” is reached after executing this group. At this point,

1450007-22



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

the financial assist, if available, is applied to the student account and calculation
of new tuition amount is completed.

The process then starts the execution of the composite group cg6 in Fig. 10(d)
to apply for a loan. After operations Apply for Loan, Submit Application, and Review

Application, a list of the pre-requisites of the application must be checked. A loan
is approved for the student only if the student passes all of the loan conditions. A
loop control strucure that quits with previous iterations compensated is used to test
the scenario. The loop control structure iterates the composite group cg6.5 to check
each pre-requisite. If a single pre-requisite is not met, the contingency cg6.5.top is
invoked to maunally re-check the pre-requisite again. If a singal pre-requisite fails
after trying the contingency cg6.5.top, the loop control structure here compensates.
If the pre-requisites have passed, an AP which is “Loan Pre-requisites Passed” is
reached. The process continues to finish the loan application through the atomic
groups ag6.6 to ag6.9. If any step in the group cg6 fails, the APCC mode is activated.
After compensating the cg6, the contingency cg6.top is invoked to try apply the loan
from another bank. If all the operations execute successfully, the process reaches the
last AP in the workflow i.e. “Application Complete”. At this point the process ends.

5. Formal Specification and Verification of the AP Model

The execution and recovery semantics of the AP model for sequential control flow
have been formalized using Petri Nets.9,46 In this research, YAWL12 has been used
to precisely describe and verify the execution and recovery semantics of the complete
AP model. A set of mapping rules that are used to transform the AP model to
YAWL nets have been defined. The soundness property of the execution recovery
semantics of the AP model is also verified in the YAWL engine. By mapping the
AP model to the YAWL model, the execution and recovery semantics can be tested
and verified. In general, YAWL provides stronger and more formal representations
for workflow patterns, especially for complex control-flow and the use of resources.

5.1. Overview of YAWL

YAWL is inspired by Petri Nets, but it is not a simple extension of Petri Nets. YAWL
has its own symbols and independent semantics. The symbols used in a YAWL net
are shown in Table 1. Each YAWL net has one unique input and output condition.
Similar to the AP model, a task is either an atomic task or a composite task. In a
YAWL net, six join and split control constructs may be associated with each task:

• AND-join — A task is invoked when all of the incoming arcs have been enabled.
• OR-join — A task is invoked when either (1) all of the incoming arcs have been

enabled or (2) any incoming arcs that have not been enabled will not be enabled
at any future time with the current marking continuing to be fired.

• XOR-join — A task is invoked when only one of the incoming arcs has been
enabled.

1450007-23



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

Table 1. Symbols used in YAWL.

Symbol Type

Condition

Input condition

Output condition

Atomic task

Composite task

Multiple instances of an atomic task

Multiple instances of a composite task

AND-join task

XOR-join task

OR-join task

AND-split task

XOR-split task

OR-split task

Cancellation region

• AND-split — When a task completes, the thread of control is passed to all of the
outgoing arcs.

• OR-split — When a task completes, the thread of control is passed to one or more
of the outgoing arcs depending on the evaluations of the conditions associated
with each arcs.

• XOR-split — When a task completes, the thread of control is passed to exactly
one outgoing arc depending on the evaluations of the conditions associated with
each arcs.

1450007-24



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

5.2. General approach

Several general rules of mapping the AP model to the YAWL model are as follows:

• Since each YAWL net has one unique input and output condition, each activity
mapped to a YAWL net starts with an Initialize task and ends with a Finalize

task.
• Since YAWL introduces six join and split control constructs, no other conditions

except the input and output are needed in the mapping.
• In the mapping, each YAWL net has a net variable which stores a list of impor-

tant parameters. If a YAWL net includes decompositions, for each decomposition,
the YAWL net creates a net variable that matches the net variable in the decom-
position.

• If a task has more than one outgoing arc, each arc must have a predicate. The
selection of the outgoing arc is determined by examining of the predicate of
each arc.

The verification of a YAWL net mapped from an activity of the AP model
focuses on the examination of the soundness property. A YAWL net is sound if and
only if the following requirements are met:

(1) All instances of the net must eventually terminate.
(2) There must be exactly one token at the end place when an instance terminates.
(3) Any tasks in the net may be executed in some instances.

5.3. Mapping basic activities of the AP model to YAWL

There are two basic activities in the AP model: atomic group and AP. Sections 5.3.1
and 5.3.2 present the generic mappings of these two activities to YAWL nets.

5.3.1. Generic YAWL net of an atomic group

The atomic group is the basic executable entity in the AP model. A net variable ag

is defined with an atomic group in YAWL. Seven parameters are stored in the ag:

• Succeed(boolean): True if the atomic group succeeds, otherwise false.
• Top(boolean): True if the contingency of the atomic group exists, otherwise false.
• TopSucceed(boolean): True if contingency of the atomic group succeeds, other-

wise false.
• Cop(boolean): True if the compensation of the atomic group exists, otherwise

false.
• CopSucceed(boolean): True if the compensation of the atomic group succeeds,

otherwise false.
• Critical(boolean): True if the atomic group is critical, otherwise false.
• Status(String): A string indicates the status of the atomic group.

1450007-25



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

Figure 11 shows the YAWL net of the atomic group in the AP model. After
finishing task Initialize, the atomic group fires task Running to execute. Depending
on the examination of the predicate on each outgoing arc of task Running, the
thread of control may be passed to different branches. If task Running succeeds,
the token is passed to task Successful. If task Running fails and the contingency
exists, task T-Running fires to execute the contingency. If task Running fails and no
contingency exists, task US APCC fires. Similarly, if task T-Running fires, depending
on the execution result, either task Successful or US APCC fires. The atomic group
finishes by firing task Finalize.

The compensation of an atomic group in YAWL is shown in Fig. 12. After
initialization of the compensation by task Initialize, different execution paths may
be invoked depending on the evaluation of the predicates. If the atomic group is
non-critical, the YAWL net finishes by firing task Finalize directly. If the atomic
group is critical and compensation exists, the task Cop Running fires to execute the
compensation. If the atomic group is critical and no compensation exists, the task
Human Activity fires to manually compensate the group. The task Cop Running

also has two possible outgoing arcs. If the compensation succeeds, task Final-

ize is enabled. If the compensation fails, task Human Activity fires. Since task
Human Activity guarantees to compensate the atomic group successfully, task Final-

ize will be enabled after completing task Human Activity.
The atomic group in YAWL satisfies the soundness property as shown at the

bottom in both Figs. 11 and 12.
When an atomic group is executing in the YAWL engine, the net variable ag

will be updated once after finishing a task. A predicate on an arc is evaluated based
on the values of the parameters in the net variable. For example, Fig. 13 shows the
predicates on outgoing arcs of task Running. The target task Successful is enabled if
the parameter Succeed is true. If the parameter Succeed is false and the parameter
Top is true, the predicate of the target task T-Running evaluates to true. In the
YAWL net, for XOR-split, the predicates are evaluated in a specified sequence
and once a predicate evaluates to true, then the thread of control is passed to the
corresponding arc without any further evaluations of the remaining un-evaluated
predicates. Therefore, in Fig. 13, if the evaluations of the first two predicates return
false, the task US APCC is enabled by default. Figure 14 presents an example of
executing an atomic group in the YAWL engine when task Running is enabled. If
task Running completes with the values of the parameters as shown in Fig. 14, task
Successful will be enabled next since the parameter Succeed is true.

5.3.2. Generic YAWL net of an AP

An AP is also a basic activity in the AP model. A net variable ap is defined with
an atomic group in YAWL. Seven parameters are stored in the ap:

• Post(boolean): True if the post-condition exists, otherwise false.
• Pre(boolean): True if the pre-condition exists, otherwise false.

1450007-26



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

F
ig

.
1
1
.

A
to

m
ic

g
ro

u
p

in
Y

A
W

L
.

1450007-27



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

F
ig

.
1
2
.

C
o
m

p
en

sa
ti

o
n

o
f
a
n

a
to

m
ic

g
ro

u
p

in
Y

A
W

L
.

1450007-28



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

Fig. 13. Predicates on outgoing arcs of task running.

Fig. 14. Task Running in enabled in the YAWL engine.

• Post Fail(boolean): True if the evaluation of the post condition returns a viola-
tion, otherwise false.

• Pre Fail(boolean): True if the evaluation of the pre condition returns a violation,
otherwise false.

• Post Fail F(boolean): True if the evaluation of the post condition has returned a
violation once, otherwise false.

• Pre Fail F(boolean): True if the evaluation of the pre condition has returned a
violation once, otherwise false.

• RecoveryAction(String): A string indicates the AP action that is invoked in the
AP.

• Status(String): A string indicates the status of the AP.

1450007-29



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

Figure 15 represents a generic AP in YAWL. All execution semantics in an AP
are supported in Fig. 15. After finishing task Initialize, the following cases can occur:

• Post and pre conditions both exist:

— Post and pre conditions are both satisfied : Tasks Post-Checking and Pre-

Checking pass successively, indicating both post and pre condition have
passed. Task AP Pass is then enabled.

— Post condition violated : Task Post-Checking returns a violation. Depending
on whether it is the first time violation or not, either task Post Fail F or
Post Fail S is enabled. After checking the IR, one of the tasks AP RB, AP Retry

and AP CC is enabled.
— Post condition passed and pre condition violated: Task Post-Checking passes.

Tasks Pre-Checking then returns a violation. Depending on whether it is the
first time violation or not, either task Pre Fail F or Pre Fail S is enabled. After
checking the IR, one of the tasks AP RB, AP Retry and AP CC is enabled.

• Only post condition exists:

— Post condition is satisfied : Task Post-Checking passes. Task AP Pass is then
enabled.

— Post condition is violated : Task Post-Checking returns a violation. Depending
on whether it is the first time violation or not, either task Post Fail F or
Post Fail S is enabled. After checking the IR, one of the tasks AP RB, AP Retry

and AP CC is enabled.

• Only pre condition exists:

— Pre condition is satisfied : Task Pre-Checking passes. Task AP Pass is then
enabled.

— Pre condition is violated : Task Pre-Checking returns a violation. Depending on
whether it is the first time violation or not, either task Pre Fail F or Pre Fail S

is enabled. After checking the IR, one of the tasks AP RB, AP Retry and
AP CC is enabled.

• Post and pre condition do not exist: Task AP Pass is enabled.

Task Finalize completes the execution of an AP. The AP in YAWL satisfies the
soundness property as shown in Fig. 15.

Figure 16 shows the predicates on outgoing arcs of task Post-Checking. After
completing task Post-Checking, if the parameter Post Fail is false and the parame-
ter Pre is true, task Pre-Checking is enabled. If the parameter Post Fail is true and
parameter Post Fail F is false, task Post Fail F is enabled. If the parameter Post Fail

is true and parameter Post Fail F is true, task Post Fail S is enabled. If none of
the first three predicates evaluate to true, task AP Pass is enabled as default. Fig-
ure 17 presents an example of executing an AP in the YAWL engine when task
Post-Checking is enabled. If task Post-Checking completes with the values of the
parameters as shown in Fig. 17, task Pre-Checking will be enabled next since the
parameter Post Fail is false and the parameter Pre is true.

1450007-30



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

F
ig

.
1
5
.

A
P

in
Y

A
W

L
.

1450007-31



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

Fig. 16. Predicates on outgoing arcs of task Post-Checking.

Fig. 17. Task Post-Checking in enabled in the YAWL engine.

5.4. Mapping composite groups of the AP model to YAWL

This section gives the rules of mapping a composite group to a YAWL net. Similarly
to the AP model, a process in YAWL is also constructed hierarchically. In a YAWL
net, a composite task refers to another YAWL net at a lower level in the hierarchy.
Therefore, the composite groups in the AP model can be mapped hierarchically to
YAWL nets. Since the composite groups do not have any generic structures in the
AP model, the YAWL net presented in this section is modeled by a typical example
that represents the characteristics of the composite groups in the AP model. In
addition, the YAWL net presented in this section satisfies the soundness property.

1450007-32



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

Any specific composite groups in the AP model can be transformed into YAWL
nets by imitating the mapping presented in this section.

A composite group is composed by two or more atomic and/or composite groups
and APs. A composite group can also have optional compensation and contingency
procedures. A typical example of a composite group, shown in Fig. 18, is used to
illustrate the rules of mapping a composite group to a YAWL net.

As shown in Fig. 18, the composite group cg1 contains two composite groups
cg11 and cg11, one atomic group ag13, and two APs AP1 and AP2. If an IR is violated
at AP1, the action APCC will be invoked. If an IR is violated at AP2, either the
action APRetry or APRollback will be invoked.

The complete execution semantics of cg1 is modeled in a YAWL net presented
in Fig. 19. The YAWL net cg1 not only describes the semantics of normal forward
execution, but also represents the semantics of possible backward recoveries. In
the YAWL net cg1, the composite groups cg11 and cg12 are represented as two
composite tasks which refer to two YAWL nets cg11 and cg12 at a lower level. The
YAWL nets cg11 and cg12 at a lower level, which are constructed following the
same rules of mapping a composite group to a YAWL net, represent the execution
semantics in the composite groups cg11 and cg11, respectively. The APs AP1 and
AP2 in the YAWL net cg1 are depicted as two composite tasks AP1 and AP2 which
refer to two YAWL nets AP1 and AP2 at a lower level. Both YAWL nets AP1 and
AP2 at a lower level have the same structure as shown in Fig. 15. Similarly, the
atomic group ag13 in the YAWL net cg1 is also a composite task that refers to a
YAWL net ag13 with the structure in Fig. 11 at a lower level.

A net variable cg1 is created in the YAWL net cg1 with the parameters below:

• Top(boolean): True if the contingency of the composite group exists, otherwise
false.

• TopSucceed(boolean): True if contingency of the composite group succeeds, oth-
erwise false.

• Shallow(boolean): True if the shallow compensation of the composite group exists,
otherwise false.

Fig. 18. An example of a composite group.

1450007-33



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

F
ig

.
1
9
.

T
h
e

ex
a
m

p
le

o
f
a

co
m

p
o
si

te
g
ro

u
p

in
Y

A
W

L
.

1450007-34



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

• CopSucceed(boolean): True if the shallow or deep compensation of the composite
group succeeds, otherwise false.

• Status(String): A string indicates the status of the composite group.

In the YAWL net cg1, other than the net variable cg1, five more net variables
(cg11, AP1, cg12, AP2, ag13) are created associated with the five atomic/composite
groups and APs. For each net variable associated with a composite task, the values
of the parameters in the net variable are passed to the net variable in the YAWL
net at a lower level before executing the task, and duplicated from the net variable
in the YAWL net at a lower level after finishing the task. For example, in the YAWL
net cg1, the values of the parameters in the net variable cg11 are passed to the net
variable cg11 in the YAWL net cg11 at a lower level before executing task cg11, and
duplicated from the net variable cg11 in the YAWL net cg11 at a lower level after
finishing task cg11. In Fig. 19, if a task has more than one outgoing arcs, each arc
is marked with a predicate with respect to the net variables.

The YAWL net cg1 starts with task Initialize and ends with task Finalize. During
the execution, different cases may happen:

• No error occurred during the execution: All composite tasks cg11, AP1, cg12, AP2,
ag13 are finished normally. Task Successful then is enabled.

• Error occurred during the execution:

* Error returned after task cg11:

— APRB(cg11): Task APRB is enabled.
— US APCC(cg11): Since there is no contingency of cg11, task US APCC is

enabled.

* Error returned after task AP1:

— APCC(AP1): Task cop cg11 fires to compensate the (cg11). Then task
US APCC is enabled.

* Error returned after task cg12:

— APRB(cg12): Task cop cg11 fires to compensate the (cg11). Then task APRB

is enabled.
— US APCC(cg12): Since there is an AP1 immediately before cg12, before

trying the contingency of cg12, task AP1 fires to re-check the pre-condition.
If AP1 passes, task top cg12 fires to execute the contingency of cg12. If the
contingency succeeds, task AP2 is enabled. Otherwise, task cop cg11 fires
to compensate (cg11). Then, task US APCC is enabled.

* Error returned after task AP2:

— APRetry(AP2): Task cop cg12 fires to compensate the (cg12). Then task
AP1 is enabled to start the retry.

— APRB(AP2): Tasks cop cg12 and cop cg11 fire successively to compensate
cg11 and cg12. Then task APRB is enabled.

1450007-35



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

* Error returned after task ag13:

— US APCC(AP1): Tasks cop cg12 and cop cg11 fire successively to compen-
sate cg11 and cg12. Then task US APCC is enabled.

Figure 20 shows the YAWL net of the compensation of cg1. If the shallow
compensation of cg1 exists, task Shallow Compensate cg1 fires. If the shallow com-
pensation execute successfully, task Shallow Compensate Successful is enabled. If
the shallow compensation of cg1 fails or does not exist, the deep compensation
executes by firing cop ag13, cop cg12, and cop cg11 in succession. Finally, task Suc-

cessful Compensate cg1 fires to enable task Finalize.

5.5. Mapping complex control structures of the AP model

to YAWL

The AP model supports the executions of atomic/composite groups in parallel,
if-else and loop control structures. For each complex control structure, a YAWL
net can be created to represent the execution semantics in the complex control
structure. In a YAWL net of a complex control structure, similar to the YAWL net
of a composite group, the executable entities are represented by composite tasks
that refer to YAWL nets at a lower level. For each composite task in a YAWL net,
a net variable associated with the composite task is needed.

5.5.1. YAWL net of the parallel control structure

The flow group introduced in Sec. 4.1 presents the execution of the parallel control
structure. In a flow group, two or more threads run concurrently. A flow group
executes successfully if all threads succeed. A YAWL net fg of a flow group with
two threads is presented in Fig. 21.

A net variable fg is defined in the YAWL net fg:

• Top(boolean): True if the contingency of the flow group exists, otherwise false.
• TopSucceed(boolean): True if contingency of the flow group succeeds, otherwise

false.
• Shallow(boolean): True if the shallow compensation of the flow group exists,

otherwise false.
• CopSucceed(boolean): True if the shallow or deep compensation of the flow group

succeeds, otherwise false.
• ErrorFlag(boolean): True if any thread returns an error, otherwise false.
• Status(String): A string indicates the status of the flow group.

In Fig. 21, after finishing task Initialize, tasks cg11 and cg12 are enabled simul-
taneously. Take the upper thread as an example, if tasks cg11 and AP11 both finish
successfully, task Finalize Thread 1 is enabled to wait for other threads to complete.

1450007-36



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

F
ig

.
2
0
.

T
h
e

co
m

p
en

sa
ti

o
n

o
f
th

e
co

m
p
o
si

te
g
ro

u
p

ex
a
m

p
le

in
Y

A
W

L
.

1450007-37



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

F
ig

.
2
1
.

A
fl
ow

g
ro

u
p

w
it

h
tw

o
th

re
a
d
s

in
Y

A
W

L
.

1450007-38



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

If an error occurs in the thread, different cases may happen:

• Error returned after task cg11:

— APRB(cg11): Task ErrorFlag1 fires to update the parameter ErrorFlag to true
and the parameter Status to “ARRollback”. Then task Finalize Thread 1 is
enabled to wait for other threads to complete.

— US APCC(cg11): If the contingency of cg11 is available, task top cg11 fires
to execute the contingency of cg11. If the contingency succeeds, task AP11 is
enabled. Otherwise, task ErrorFlag1 fires to update the parameter ErrorFlag

to true and the parameter Status to “US APCC”. If the contingency of cg11

is unavailable, task ErrorFlag1 fires directly to update the parameter ErrorFlag

to true and the parameter Status to “US APCC”. Finally, task Finalize Thread

1 is enabled to wait for other threads to complete.

• Error returned after task AP11:

— APRB(AP11): Task Cop cg11 fires to compensate cg11. Then task ErrorFlag1

fires to update the parameter ErrorFlag to true and the parameter Status to
“ARRollback”. After that, task Finalize Thread 1 is enabled to wait for other
threads to complete.

— APRetry(AP11): Task Cop cg11 fires to compensate cg11. Then task cg11 is
enable to start re-try.

— US APCC(AP11): Task Cop cg11 fires to compensate cg11. Then task Error-

Flag1 fires to update the parameter ErrorFlag to true and the parameter Status

to “US APCC”. After that, task Finalize Thread 1 is enabled to wait for other
threads to complete.

When both threads in fg have finalized, task Finalize Concurrent Threads is
enabled. If the parameter ErrorFlag is false, task Successful is enabled. If the param-
eter ErrorFlag is true, task Error Compensate fires to compensate the threads that
have executed successfully. Then depending on the parameter Status, either task
APRB or US APCC is enabled. Task Finalize ends the flow group.

Figure 22 presents the YAWL net of task Error Compensate at a lower level.
Depending on the execution status of each thread, an OR-split is used to com-
pensate one or more threads as needed. The YAWL net of the compensation of fg

is shown in Fig. 23. If the shallow compensation of fg exists, task Shallow Com-

pensation fires. If the shallow compensation executes successfully, task Successful is
enabled. If the shallow compensation of fg fails or does not exist, the deep compen-
sation executes by firing the individual compensation for each thread. Finally, task
Finalize is enable to finish the compensation.

5.5.2. YAWL net of the if-else control structure

The if-else control structure selects one path from two to execute based on the eval-
uation of a condition. A YAWL net IfElse of an if-else control structure is presented

1450007-39



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

Fig. 22. Error compensation of the flow group in YAWL.

in Fig. 24. A net variable IfElse is defined in the YAWL net IfElse:

• Condition(boolean): If true, the upper path will be executed, otherwise if false,
the lower path will be executed.

• Status(String): A string indicates the status of the of-else group.

In Fig. 24, after finishing task Initialize, either task cg11 or cg12 is enabled based
on the value of the parameter Condition. If parameter Condition in the net variable
IfElse is true, task cg11 is enabled. If task cg11 finishes successfully, task Successful

is enabled. If an error occurs after task cg11, different cases may happen:

• APRB(cg11): Task ErrorFlag fires to update the parameter Status to “ARRoll-
back”. Then task APRB is enabled.

• US APCC(cg11): If the contingency of cg11 is available, task top cg11 fires to
execute the contingency of cg11. If the contingency succeeds, task Successful

is enabled. If the contingency of cg11 fails or does not exist, task ErrorFlag

fires to update the parameter Status to “US APCC”. Then task US APCC is
enabled.

Finally, task Finalize ends the if-else control structure. The other execution path
of task cg12 in Fig. 24 has the same execution semantics as discussed above.

Figure 25 gives the YAWL net of the compensation of IfElse. Depending on
the value of the parameter Condition, the path that has been executed will be
compensated.

1450007-40



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

F
ig

.
2
3
.

C
o
m

p
en

sa
ti

o
n

o
f
th

e
fl
ow

g
ro

u
p

w
it

h
tw

o
th

re
a
d
s

in
Y

A
W

L
.

1450007-41



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

F
ig

.
2
4
.

T
h
e

if
-e

ls
e

co
n
tr

o
l
st

ru
ct

u
re

in
Y

A
W

L
.

1450007-42



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

Fig. 25. The compensation of the if-else control structure in YAWL.

5.5.3. YAWL net of the loop control structure

The loop control structure repeatedly executes a composite group. In the AP model,
a loop control structure can quit with three scenarios: quit with successful; quit
without previous iterations compensated and quit with previous iterations com-
pensated. A YAWL net looping of a loop control structure is presented in Fig. 26.

A net variable Loop is defined in the YAWL net looping:

• Condition(boolean): Loop continues when Condition is true, otherwise quit when
Condition is false.

• Counter(Int): A number indicates the times of successful iterations, initialized
with 0.

• Status(String): A string indicates the status of the loop group.

In Fig. 26, after finishing task Initialize, if the parameter Condition is false, task
Successful fires to finish the loop without any iteration. If the parameter Condition

is true, task cg11 is enabled to start the first iteration. Different cases may happen
after task cg11:

• Task cg11 succeeds, the parameter Counter increases by 1:

* The parameter Condition is true: task cg11 fires to start the next iteration.
* The parameter Condition is false: task Successful is enabled to quit the loop

with successful.

1450007-43



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

F
ig

.
2
6
.

T
h
e

lo
o
p

co
n
tr

o
l
st

ru
ct

u
re

in
Y

A
W

L
.

1450007-44



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

• Task cg11 fails:

* APRB(cg11): Task ErrorFlag fires. If the parameter Counter is 0, task APRB is
enabled. If the parameter Counter is greater than 0, task Cop cg11 fires and the
parameter Counter decreases by 1. Task Cop cg11 repeatedly fires until Counter

decreases to 0. Then task APRB is enabled. The loop will quit with previous
iterations compensated.

* US APCC(cg11):

— No contingency of cg11 exists: Task ErrorFlag fires. If the parameter Counter

is 0, task US APCC is enabled. If the parameter Counter is greater than 0,
task Cop cg11 fires and the parameter Counter decreases by 1. Task Cop cg11

repeatedly fires until Counter decreases to 0. Then task US APCC is enabled.
The loop will quit with previous iterations compensated.

— Normal contingency of cg11 exists: Task top cg11 fires to try the contin-
gency of cg11. If task top cg11 succeeds, the parameter Counter increases
by 1. After that, if the parameter Condition is true, task cg11 fires to start
next iteration. If the parameter Condition is false, task Successful is enabled
to quit the loop with successful. However, if task top cg11 fails, task Error-

Flag fires. If the parameter Counter is 0, task US APCC is enabled. If the
parameter Counter is greater than 0, task Cop cg11 fires and the param-
eter Counter decreases by 1. Task Cop cg11 repeatedly fires until Counter

decreases to 0. Then task US APCC is enabled. The loop will quit with
previous iterations compensated.

— Break contingency of cg11 exists: Task top cg11 fires to update the parame-
ter Condition in the net variable loop to false and the parameter TopSucceed

in the net variable cg11 to true. Then task Successful is enabled. The loop
will quit without previous iterations compensated.

Figure 27 gives the YAWL net of the compensation of looping. If the parameter
Counter is 0, task Finalize is enabled. If the parameter Counter is greater than 0, task
Cop cg11 fires and the parameter Counter decreases by 1. Task Cop cg11 repeatedly
fires until Counter decreases to 0. Then task Finalize is enabled.

5.6. Summary

This section has provided the formalization of the AP model by using Petri Nets
and YAWL. The execution and recovery semantics of the atomic group, the AP, the
composite group and the flow group have been presented using Petri Nets. Based on
the formalization by Petri Nets, the rules of mapping a process in the AP model to
YAWL nets have been defined. Other than the activities formalized in Petri Nets,
the if-else and loop control structures in the AP model have also been formalized
by YAWL nets.

The Petri Net specifications of the AP model are presented using generic exe-
cution and recovery semantics. The YAWL nets of the AP model, however, are

1450007-45



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

Fig. 27. The compensation of the loop control structure in YAWL.

modeled by some typical examples since the YAWL engine requires a complete
executable process to be analyzed. Compare to the Petri Net specification of the
AP model, using YAWL benefits the formalization of the AP model in three ways:

(1) Activities modeled by YAWL net are easier to read and understand than Petri
Nets.

(2) A process modeled by YAWL nets is executable.
(3) Activities and the complex control structures modeled by YAWL nets satisfy

the soundness property.

With the help of the complete AP model, a new process execution agent (PEXA)
has been developed,46 using a dynamic and intelligent approach to monitor failures,
detect data dependencies, and respond to failures and exceptional events. In par-
ticular, a decentralized data dependency analysis environment has been built by
using the AP process execution engine. A complete set of algorithms to actively
address the data dependency events among currently running processes has been
developed and reported elsewhere.13,46

6. Summary and Future Work

This paper has extended the original AP model with three complex control struc-
tures, providing more comprehensive support for business process modeling. A flow
group has been introduced into the AP model to support parallel control struc-
ture. The discussions of the if-else and looping control structures have focused on
the placement of the APs within each control structure. The rules for mapping a

1450007-46



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

process in the AP model to YAWL nets have been developed. Following the map-
ping rules, all activities and complex control structures in the AP model can be
described and executed by YAWL nets. In addition, by mapping the activities and
complex control structures to YAWL nets, the correctness of the execution and
recovery semantics in the AP model has been verified since all YAWL nets satisfy
the soundness property.

Different from existing web service composition models, the AP model pre-
sented by this research provides multiple levels of protection against service execu-
tion failure. Compared to WS-BPEL which uses a “Zigzag” compensation behavior
to recover a failed process, the AP model uses shallow and deep compensations
for cascaded recovery of a failed process. The “Zigzag” recovery manner in WS-
BPEL may potentially violate the default compensation order when a control link
is present between non-peer scopes.28 In comparison, the AP model strictly com-
pensates from the inner level to the outer level. This hierarchal recovery manner
makes the recovery procedure more understandable and easy to design. Similar to
aspect-oriented extensions to BPEL (AO4BPEL) that use business rules to pro-
vide more flexibility during service composition, the AP model checks pre/post
conditions at each AP to actively monitor and evaluate the status of process exe-
cution. However, in contrast with AO4BPEL which creates business rules at dif-
ferent join points to avoid changing the service composition during runtime, the
AP model embeds the IRs at different levels into the service composition. The AP
model as a whole provides multiple levels of protection against service execution
failure.

One future direction is to extend the functionalities of the AP model to support
more cross-cutting concerns. Other than the functionalities of the AP provided in
the current research, more functionalities can be performed at the assurance point.
In the AP model, the AP is a referenceable point in the process that can create
effects other than the main process flow to enhance the process execution. Thus,
if the AP supports more functionalities, the process designer can easily specify
a process that supports more cross-cutting concerns at the design time without
changing the process execution engine. For example, a timer function can be added
into the AP. By using the timer function in the AP, an AP can cancel the pro-
cess when the set-time expires. Another example is that a parallel control structure
may succeed if the number of successful threads reaches a threshold. In this exam-
ple, the AP may perform as a counter to control the finish of a parallel control
structure.

Acknowledgments

This research is supported by the National Science Foundation under Grant
No. CCF-0820152. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

1450007-47



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

References

1. M. P. Singh and M. N. Huhns, Service-Oriented Computing : Semantics, Processes,
Agents (John Wiley & Sons Inc., Hoboken, New Jersey, USA, 2005).

2. D. Worah and A. Sheth, Transactions in transactional workflows, in Advanced Trans-
action Models and Architectures, eds. S. Jajodia and L. Kerschberg (Kluwer Academic
Publishers, 1997), pp. 3–34.

3. T. Anderson and P. A. Lee, Fault Tolerance: Principles and Practice (Prentice/Hall
International, 1981).

4. G. Booch, J. Rumbaugh and I. Jacobson, Unified Modeling Language User Guide, The
Addison-Wesley Object Technology Series (Addison-Wesley Professional, Reading,
MA, USA, 2005).

5. S. A. White et al., Business process modeling notation (BPMN) Version 1.0, Business
Process Management Initiative, BPMI. Org. (2004).

6. T. Andrews et al., Business process execution language for web services, version 1.1,
Standards Proposal by BEA Systems, International Business Machines Corporation,
and Microsoft Corporation (2003).

7. Y. Xiao and S. D. Urban, The DeltaGrid service composition and recovery model,
International Journal of Web Services Research 6(3) (2009) 35–66.

8. S. D. Urban, L. Gao, R. Shrestha and A. Courter, Achieving recovery in service
composition with assurance points and integration rules, in Proc. 2010 Int. Conf. On
the Move to Meaningful Internet Systems (Springer-Verlag, Berlin-Heidelberg, 2010),
pp. 428–437.

9. S. D. Urban, L. Gao, R. Shrestha, Y. Xiao, Z. Friedman and J. Rodriguez, The assur-
ance point model for consistency and recovery in service composition, in Innovations,
Standards and Practices of Web Services: Emerging Research Topics, IGI Global pub-
lication (2011), pp. 250–287.

10. J. L. Peterson, Petri Net Theory and the Modeling of Systems (Prentice Hall PTR
Upper Saddle River, NJ, USA, 1981).

11. L. Gao, S. D. Urban, Z. Friedman and J. Rodriguez, Extending the assurance point
(ap) approach to process recovery for use with flow groups, in Proc. 26th IEEE Int.
Parallel and Distributed Processing Symposium PhD Forum (IPDPSW ) (Shanghai,
China, 2012), pp. 2201–2210.

12. W. M. P. Van Der Aalst and A. H. M. Ter Hofstede, YAWL: Yet another workflow
language, Information Systems 30(4) (2005) 245–275.

13. L. Gao, S. D. Urban and Z. Friedman, Decentralized data dependency analysis for
concurrent process execution using the assurance point model, International Journal
of Web Services Research (Under Review).

14. A. Cichocki, Workflow and Process Automation: Concepts and Technology (Kluwer
Academic Pub., Norwell, MA, USA, 1998).

15. H. Garcia-Molina and K. Salem, Sagas, ACM SIGMOD Record 16(3) (1987) 249–259.
16. A. Rolf, W. Klas and J. Veijalainen, Transaction Management Support for Cooperative

Applications (Kluwer Academic Pub., Norwell, MA, USA, 1997).
17. H. Wächter and A. Reuter, The contract model, Database Transaction Models for

Advanced Applications 7(4) (1992) 219–263.
18. J. Eder and W. Liebhart, The workflow activity model WAMO, in Proc. 3rd Int.

Conf. Cooperative Information Systems (Vienna, Austria, 1995), pp. 87–98.
19. M. Karnath and K. Ramamritham, Failure handling and coordinated execu-

tion of concurrent workflows, in Proc. 14th Int. Conf. Data Engineering (1998),
pp. 334–341.

1450007-48



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

Formal Specification of the AP Web Service

20. D. K. W. Chiu, Q. Li and K. Karlapalem, Facilitating exception handling with recov-
ery techniques in ADOME workflow management system, J. Appl. Syst. Studies 1(3)
(2000) 467–488.

21. C. Hagen and G. Alonso, Exception handling in workflow management systems, IEEE
Transactions on Software Engineering 26(10) (2002) 943–958.

22. B. Kiepuszewski, R. Muhlberger and M. E. Orlowska, FlowBack: Providing back-
ward recovery for workflow management systems, ACM SIGMOD Record 27(2) (1998)
555–557.

23. Z. Yang and C. Liu, Implementing a flexible compensation mechanism for business
processes in web service environment, in ICWS ’06. Int. Conf. Web Services, 2006,
September 2006, pp. 753–760.

24. M. Schäfer, P. Dolog and W. Nejdl, An environment for flexible advanced compensa-
tions of web service transactions, ACM Transactions on Web 2(2) (2008) 14:1–14:36.

25. P. Grefen, J. Vonk and P. Apers, Global transaction support for workflow management
systems: From formal specification to practical implementation, The VLDB Journal
10(4) (2001) 316–333.

26. J. Vonk and P. Grefen, Cross-organizational transaction support for e-services in
virtual enterprises, Distribution of Parallel Databases 14(2) (2003) 137–172.

27. H. Schuldt, G. Alonso, C. Beeri and H.-J. Schek, Atomicity and isolation for trans-
actional processes, ACM Transactions on Database Systems (TODS) 27(1) (2002)
63–116.

28. R. Khalaf, D. Roller and F. Leymann, Revisiting the behavior of fault and compen-
sation handlers in WS-BPEL, in On the Move to Meaningful Internet Systems 2009
(2009), pp. 286–303.

29. J. Widom and S. Ceri, Active Database Systems: Triggers and Rules for Advanced
Database Processing (Morgan Kaufmann Pub., San Franscisco, CA, USA, 1996).

30. M. Brambilla, S. Ceri, S. Comai and C. Tziviskou, Exception handling in workflow-
driven web applications, in Proc. 14th Int. Conf. World Wide Web (ACM, Chiba,
Japan, 2005), pp. 170–179.

31. A. Liu, Q. Li, L. Huang and M. Xiao, A declarative approach to enhancing the
reliability of BPEL processes, in Proc. 2007 IEEE Int. Conf. Web Services, Salt Lake
City, Utah, USA, 2007, pp. 272–279.

32. W. Tan, L. Fong and N. Bobroff, BPEL4job: A fault-handling design for job flow man-
agement, in Service-Oriented Computing 2007 (Springer-Verlag, Berlin-Heidelberg,
2010), pp. 27–42.

33. S. Modafferi and E. Conforti, Methods for enabling recovery actions in WS-BPEL,
in Proc. 2006 Confederated Int. Conf. On the Move to Meaningful Internet Sys-
tems: Coopis, DOA, GADA and ODBase (Springer-Verlag, Berlin-Heidelberg, 2006),
pp. 219–236.

34. S. Modafferi, E. Mussi and B. Pernici, SH-BPEL: A self-healing plug-in for WS-
BPEL engines, in Proc. 1st Workshop on Middleware for Service Oriented Computing
(Melbourne, Australia, 2006), pp. 48–53.

35. L. Baresi, S. Guinea and L. Pasquale, Self-healing bpel processes with dynamo and the
jboss rule engine, in Int. Workshop on Engineering of Software Services for Pervasive
Environments (Dubrovnik, Croatia, 2007), pp. 11–20.

36. V. Dialani, S. Miles, L. Moreau, D. De Roure and M. Luck, Transparent fault tolerance
for web services based architectures, Euro-Par Parallel Processing (Springer, 2002),
pp. 107–201.

37. Z. W. Luo, Checkpointing for workflow recovery, in Proc. 38th Annual on Southeast
Regional Conf. (Clemson, South Carolina, USA, 2000), pp. 79–80,

1450007-49



2nd Reading

September 8, 2014 13:54 WSPC/S0218-8430 111-IJCIS 1450007

L. Gao et al.

38. C. Ye, S.-C. Cheung, W. K. Chan and C. Xu, Atomicity analysis of service composition
across organizations, IEEE Transactions on Software Engineering 35(1) (2009) 2–28.

39. R. Hamadi, B. Benatallah and B. Medjahed, Self-adapting recovery nets for policy-
driven exception handling in business processes, Distributed and Parallel Databases
23(1) (2008) 1–44.

40. A. Charfi and M. Mezini, AO4BPEL: An aspect-oriented extension to BPEL, World
Wide Web 10(3) (2007) 309–344.

41. A. Charfi and M. Mezini, Aspect-oriented workflow languages, in Proc. 2006 Confed-
erated Int. Conf. On the Move to Meaningful Internet Systems: Coopis, DOA, GADA
and ODBase (Springer-Verlag, Berlin-Heidelberg, 2006), pp. 183–200.

42. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W. Griswold,
An overview of AspectJ, Proc. 15th European Conf. Object-Oriented Programming
(Springer-Verlag, Berlin-Heidelberg, 2001), pp. 327–354.

43. R. Shrestha, Using assurance points and integration rules for recovery in service com-
position, Master’s thesis, Department of Computer Science, Texas Tech University,
Lubbock, TX, USA (2010).

44. S. D. Urban, S. W. Dietrich, Y. Na, Y. Jin, S. A. Saxena, S. D. Urban, S. W. Diet-
rich, Y. Na and Y. Jin, The irules project: Using active rules for the integration of
distributed software components, in Proc. 9th Working Conf. Database Semantics:
Semantic Issues in E-Commerce Systems (Hong Kong, 2001), pp. 265–286.

45. C. Ma, Q. Xu and J. W. Sanders, A survey of business process execution lan-
guage (BPEL), Int. Institute for Software Technology, UNU-IIST Report (425) (2009)
102–108.

46. L. Gao, A robust web service composition model with decentralized data dependency
analysis and rule-based failure recovery capability, Ph.D. thesis, Department of Com-
puter Science, Texas Tech University, Lubbock, TX, USA (2012).

1450007-50



Copyright of International Journal of Cooperative Information Systems is the property of
World Scientific Publishing Company and its content may not be copied or emailed to
multiple sites or posted to a listserv without the copyright holder's express written permission.
However, users may print, download, or email articles for individual use.


