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abStRact: web site navigability refers to the degree to which a visitor can follow a 
web site’s hyperlink structure to successfully find information with efficiency and 
ease. In this study, we take a data-driven approach to measure web site navigability 
using web data readily available in organizations. guided by information foraging 
and information-processing theories, we identify fundamental navigability dimen-
sions that should be emphasized in metric development. Accordingly, we propose 
three data-driven metrics—namely, power, efficiency, and directness—that consider 
web structure, usage, and content data to measure a web site’s navigability. we also 
develop a web mining–based method that processes web data to enable the calculation 
of the proposed metrics. we further implement a prototype system based on the web 
mining–based method and use it to assess the navigability of two sizable, real-world 
web sites with the metrics. To examine the analysis results by the metrics, we perform 
an evaluation study that involves these two sites and 248 voluntary participants. The 
evaluation results show that user performance and assessments are consistent with 
the analysis results revealed by our metrics. Our study demonstrates the viability and 
practical value of data-driven metrics for measuring web site navigability, which can 
be used for evaluative, diagnostic, or predictive purposes.

KeY woRdS and PHRaSeS: data-driven navigability metrics, web metrics, web mining, 
web site navigability, web site navigation.

web Site deSign iS cRucial to tHe SucceSS of virtually all applications for e-commerce, 
digital government, and online learning. A well-designed site can attract visitors and 
help them find target information effectively and quickly [92]. In contrast, poorly 
designed sites hinder visitors’ information seeking and can lead to dissatisfaction and 
lost business revenues [34]. Navigation and search represent two principal means for 
finding information on a web site [87]. This study focuses on navigation, which in 
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general refers to the process of navigating through a web site to find target informa-
tion [59, 84]. According to Palmer [59], navigation is a fundamental and crucial way 
to locate information on web sites.

Essential to navigation is the structure of the hyperlinks that connect different pages 
on a web site [5, 80], which can significantly affect user experience and satisfaction [17, 
57, 68, 76, 84]. However, many people still have difficulty finding information on a 
web site [84], often because of its ineffective hyperlink structure [33, 57, 84], which 
inhibits visitor from finding target information, thereby leading to dissatisfaction [17, 
57, 68, 76, 84].

we examine web site navigability, defined as the degree to which a visitor can follow 
a web site’s hyperlink structure to successfully find information with efficiency and ease 
[19, 51, 59]. People often find information on a web site by sifting through its hyperlinks 
[57]; thus, a well-designed structure helps people locate information more effectively 
and quickly because it provides a mental model of the type and location of information 
that facilitates their path selections through the interconnected pages [84].

Measurement is crucial to navigability. A review of extant information systems 
literature suggests the common use of perceptual measurements that target people’s 
self-reports (e.g., [19, 59]). Although perceptual measurements are valuable for convey-
ing a person’s assessment, we can analyze and measure navigability with a data-driven 
approach that considers readily available web data, including web content, structure 
(i.e., hyperlink structure), and usage data (i.e., web logs). Such a data-driven approach 
reflects visitors’ browsing behaviors and enables development of metrics that can be 
used in combination with perceptual measurements for a fuller depiction of a site’s 
navigability. Toward that end, analyzing web data is promising and has been applied 
to develop navigability metrics (e.g., [9, 93, 94]). However, most previous studies that 
use web data to develop navigability metrics have several limitations. First, choices 
of the focal aspect of navigability they target in metric development seem driven by 
observations or intuitions (e.g., [93, 94]). Thus, the resultant metrics tend to focus on a 
select navigability dimension, providing limited insight into a web site’s navigability. 
Second, most existing metrics consider partial web data, typically web structural data 
(e.g., [9, 93]), and therefore cannot fully convey a site’s navigability. The navigability 
of a web site conceivably involves not only its hyperlink structure depicted by web 
structure data but also visitors’ browsing behaviors informed through web usage and 
content data. In addition, many previous studies tend to concentrate on metric develop-
ment, often placing less attention on evaluations with actual users; consequently, they 
offer limited empirical evidence about the viability or pragmatic value of the proposed 
metrics (e.g., [9, 90]). To address these limitations, we aim to achieve the following 
objectives in this study:

 1. to propose data-driven navigability metrics that consider more comprehensive 
web data, including web content, structure, and usage data;

 2. to develop a viable web mining–based method that enables the computation 
and use of the proposed metrics to measure web site navigability systemati-
cally; and
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 3. to perform a rigorous evaluation study to produce empirical evidence that a 
web site’s navigability (e.g., high versus low), as revealed by our metrics, is 
congruent with actual user performance and assessments.

we propose three metrics: power, which indicates the likelihood that a visitor can 
successfully find target information on a site by traversing its hyperlink structure; 
efficiency, which conveys the extent to which a visitor can quickly find target infor-
mation on a site by navigating its hyperlink structure (e.g., using less time or fewer 
clicks); and directness, which reflects the ease with which a visitor can decide where 
to move from the current page to the target information. Overall, our metric develop-
ment is guided by information foraging theory [62, 64] and information-processing 
theory [52], which together point to several user-centric dimensions fundamental to 
web site navigability: the likelihood of successfully, efficiently, and easily finding 
target information. Our metric formulations, anchored in the law of surfing [33], take 
as inputs a focal site’s hyperlink structure (derived from web structure data) and user 
browsing behaviors (derived from web usage and content data) to measure the site’s 
navigability quantitatively and comprehensively. To measure a site’s navigability, we 
develop a web mining–based method that models the site’s hyperlink structure as a 
directed graph, distinguishes between content and index pages, and incorporates ap-
propriate web mining techniques to discover user visit patterns from web logs. we 
empirically examine the proposed metrics by conducting an evaluation study that 
involves two large, real-world web sites and 248 voluntary participants.

literature Review

inveStigationS oF navigabilitY aPPeaR in SeveRal ReSeaRcH StReaMS. In this section, we 
review prior research on navigation in general and navigability in particular, summarize 
representative studies that develop navigability metrics with web data, and highlight 
the differences between our navigability metrics and existing ones.

web Site Navigation and Navigability

web site design includes multiple key elements that affect user performance and 
experience [35, 87]. Among them, navigation is crucial. People often visit web sites 
to find information, whether their purpose is to buy directly, build knowledge, search, 
or deliberate [54, 75]. Many people attempt to locate target information on a web 
site [45]. As Spink and cole [71] note, people visit web sites to fulfill their informa-
tion needs or interests.

Navigation is crucial because it can significantly affect people’s assessments of a 
web site [68, 79]; it also has substantial effects on user performance or actual use of 
a site [24]. To find information on a web site, many people choose to follow the site’s 
hyperlink structure; therefore, by linking the different pages about various resources, 
products, or services with an effective structure, organizations can make their site 
more “navigable” by better facilitating visitors’ information seeking on the site [55]. 
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According to webster and Ahuja [84], navigation systems provide an important means 
for supporting people’s browsing and path selections to locate target information on 
a web site.

Navigability is closely related to navigation, but with some subtle differences. In gen-
eral, navigation refers to the overall process of browsing a web site to find information, 
whereas navigability, as we define herein, is specific to a web site’s hyperlink structure 
and emphasizes the notion that visitors can follow the structure to find information 
successfully, efficiently, and easily. we note the efforts for measuring navigability 
with perceptual items. For example, de castro et al. [19] measure navigability with 
question items germane to perceived ease of navigation, effectiveness, and efficiency; 
Palmer [59] proposes items that emphasize page sequencing, layout organization, and 
navigation protocol consistency.

A review of previous research examining navigation or navigability converges on 
the importance of hyperlink structure and shows the availability of perceptual mea-
surements for navigability. A web site’s navigability, as we define herein, represents 
the confluence of its hyperlink structure and visitors’ browsing behaviors; therefore, 
navigability measurements may benefit from a data-driven approach that considers 
different, related web data and targets the dimensions critical to visitors’ finding 
information on a web site.

Measuring Navigability with web Data

web data can be classified broadly as content, structure, or usage data [73]. content 
data consist of web page contents, such as texts on web pages; structure data depict the 
hyperlink structure connecting different pages; and usage data are the records gener-
ated by users’ browsing on a web site (i.e., web logs).1 Accordingly, web mining can 
be classified on the basis of the particular web data employed. web content mining 
employs text mining techniques [85] to analyze web content data and can support 
applications such as sentiment analysis, stylometric analysis, fake web site detection, 
and web information retrieval [1, 2, 3, 4, 24, 25, 85]; web structure mining discovers 
patterns from hyperlink structures [13, 41]; and web usage mining reveals visitors’ 
browsing patterns from web usage data [26, 73]. Prior research has applied web 
mining to study different aspects of web sites, such as overall web site success [69] 
and the effectiveness of automatically created index pages [61]. web mining also has 
been used to measure site navigability, toward which we review representative studies 
in the following section.2

Previous research has attempted to mine web data to develop navigability metrics, 
with a common focus on web structure data. Botafogo et al. [9] propose two metrics, 
compactness and stratum, to assess the connectedness and structural organization of a 
hypertext system. Several extensions also have been undertaken for hypertext or hyper-
media systems [18, 50, 89]. For example, to measure the navigation of a hypermedia 
system, Yamada et al. [89] extend the metrics of Botafogo et al. [9] by considering 
interface distance. Zhang et al. [93] measure navigability from a structural complex-
ity perspective and propose several navigability metrics based on the total number of 
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hyperlinks. Yen [90] develops a metric that considers a page more accessible than other 
pages if more hyperlinks point to that page and its source pages are located closer to 
the homepage. Zhou et al. [94] use a web site’s structure data, in combination with 
an emulated surfing model, to calculate its navigability. Efforts have also been taken 
to develop navigability metrics with web usage or content data, perhaps to a lesser 
extent. For example, gupta et al. [30] analyze usage data and propose a click-ratio 
measure (i.e., the ratio of the number of clicks to the number of distinct pages in a 
visit session). Bayesian network models have been developed to measure navigability 
at the site or page level; these models take web content and structure data as inputs 
to calculate the navigability of a web site [48, 82].

Our study differs from previous research on developing navigability metrics with 
web data in several ways. First, our metrics emphasize three fundamental navigability 
dimensions: the likelihood, efficiency, and ease of finding information on a web site. 
In contrast, many existing navigability metrics developed with web data measure a 
select navigability dimension. For example, gupta et al.’s [30] metric focuses only on 
the efficiency of finding information, and Zhou et al.’s [94] metric stresses the likeli-
hood of finding information. Second, our metrics consider more comprehensive web 
data (i.e., structure, usage, and content) than many existing metrics, such as Zhang et 
al. [93] and Zhou et al. [94]. Because navigability sits at the confluence of hyperlink 
structure and user browsing, metrics developed with partial web data may not fully 
reveal a web site’s navigability. Third, the formulations of our metrics are novel. Our 
metric formulations specify how to use the hyperlink structure and web browsing 
behaviors extracted from web structure, usage, and content data to measure a web 
site’s navigability, according to fundamental navigability dimensions.

Theoretical Foundations

concePtuallY, PeoPle’S inFoRMation SeeKing on a web Site can be understood with 
information foraging theory [39, 62, 63, 64]. This theory extends optimal foraging 
theory [47] to explain how people find information in general; it posits that people 
develop strategies that optimize the utility of their information gains in relation to 
the costs they incur. In other words, a person moves through different states toward 
the goal state by choosing the most cost-effective paths and taking advantage of the 
support or cues available [62]. This process manifests a utilitarian consideration, 
grounded in the rational utility model for a spreading activation process that moves 
people through the hyperlink structure to find information on a web site [27, 62]. In 
this connection, visitors likely switch to another “path” if they expect their informa-
tion gains (i.e., toward finding target information) along the current path to be lower 
than those along another path [27].

According to information foraging theory, people are likely to modify their browsing 
strategies to maximize the rate at which they gain information while minimizing the 
associated costs [39, 63, 64]. The selection or modification of a browsing strategy for 
finding information on a web site can be enlightened by the information-processing 
theory [52], which stresses cognitive, mental processing and posits that people process 
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the information they receive rather than merely respond to stimuli, that is, people 
normally process information through different thinking, analysis of stimuli, situ-
ational modifications, and obstacle evaluations, based on the information-processing 
model [78].

Because of the enormous number of traversal paths available on a web site, visitors 
might employ heuristic processing by using a mental model to choose an appropriate 
path to find the information they need [12] instead of engaging in systematic explo-
rations that are tedious and demand stringent time and effort requirements. Taking 
online retail as an example, a vendor usually offers a wide array of products and 
provides voluminous, detailed service information, which makes a “brute force” way 
of finding information on the site impractical for visitors. People often have various 
time constraints (e.g., too many things competing for the finite time available) and are 
limited in their cognitive, mental-processing capacity, which constitutes their bounded 
rationality [67]. with heuristic processing [12], visitors make judgments about their 
traversing paths (e.g., analysis of stimuli, situational modification, obstacle evaluation) 
to mitigate the associated costs, as measured by time, physical efforts, and cognitive 
processing.

These theories jointly imply that when attempting to find information on a web site, 
visitors care about not only the likelihood of locating target information but also the 
efficiency and ease of doing so. The importance of efficiency and ease is consistent 
with a human–task interaction view [49], which suggests that the personal costs of 
performing a task include time and cognitive resources. To find information on a site, 
people must exert cognitive, mental efforts to analyze, estimate, and select appropri-
ate paths to traverse. Their browsing behavior can be further informed by personal 
construct theory [40], which describes the phase-based process of construction people 
experience as they build a worldview by assimilating information on a web site. 
Through this process, which is intricately interwoven with cognitive, mental, and 
physical activities, visitors move toward the target information using sense-making, 
which involves several realms of activity, such as physical actions and cognitive ef-
forts, associated with the process and its phases [43]. The underlying sense-making 
process is congruent with cost–benefit theory [74], which posits that rational actors 
select a path only if the benefits of doing so outweigh the associated costs.

In summary, these theories explicitly highlight the importance of successfully, ef-
ficiently, and easily finding information, which in turn reveals several dimensions to 
be emphasized in our metric development. Efficiency can be evaluated in terms of 
physical effort or time [43, 68], and ease can be assessed with cognitive, mental pro-
cessing [49]. The physical efforts a person spends to find information on a web site 
can be measured as the number of clicks, which is highly correlated with the time a 
person needs to find information on the site [68]. Accordingly, our metric development 
targets the following: how likely a person is to find target information successfully on 
a site, the number of clicks needed to do so, and the ease of choosing among possible 
links from a current page. The navigability dimensions we target reflect a user-centric 
orientation; people, because of their time and cognitive-processing constraints, prefer 
paths that maximize their likelihood of successfully finding information yet still require 
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few clicks and minimal cognitive processing. guided by these theories, we develop 
three data-driven metrics that correspond to the respective navigability dimensions, 
use comprehensive web data, and analyze them in the light of the law of surfing.

Method and Metrics for Measuring Navigability

in tHiS Section, we FiRSt deScRibe a web Mining–baSed MetHod that enables the calcula-
tion of navigability with our metrics and then detail our development of each metric.

A web Mining–Based Method for Measuring Navigability

Measuring a web site’s navigability requires proper representation of its hyperlink 
structure, effective discovery of users’ information-seeking targets, and rigorous assess-
ment of how well the hyperlink structure facilitates their achievement of such targets. 
Because a web site resembles a complex graph [20], we apply graph theory [86] to 
represent a site’s hyperlink structure. web mining offers a viable means for analyzing 
visitors’ browsing behaviors on a site [44, 53, 88]. Thus, we apply appropriate web 
mining techniques to web usage and content data to reveal important regularities in 
users’ browsing—namely, access patterns. we then use access patterns to approxi-
mate users’ information-seeking targets. Finally, we build on the law of surfing [33] 
to develop data-driven metrics for navigability by examining how well a web site’s 
hyperlink structure enables visitors to find target information on the site successfully, 
efficiently, and easily.

As Figure 1 shows, our method first processes web logs to identify visit sessions 
and then parses a focal site to produce parsed pages. we classify each parsed page 
as either a content or an index page; the content pages, together with the identified 
visit sessions, serve as inputs to access pattern mining to discover access patterns. 
Our method constructs a distance matrix that represents the site’s hyperlink structure; 
this matrix, in combination with the identified access patterns, allows for calculation 
of the focal site’s navigability, according to the proposed metrics. In the following, 
we detail each step of the method, except the navigability calculation step, which we 
defer to the next subsection.

web log Preprocessing

Analysis of web logs requires preprocessing, which includes cleaning, session iden-
tification, and session completion [16]. Our method cleans web logs by removing 
accessory log records created in response to objects embedded in a user-requested 
page (e.g., pictures). log records produced by web spiders (i.e., programs launched 
by a search engine to gather web pages) are also removed because they do not reflect 
visitors’ browsing. we analyze the cleaned logs to identify sessions that constitute the 
basic units for access pattern discovery. A session is a sequence of web page accesses 
during a visit to a web site [16]. web log records have no explicit session designations; 
to identify sessions, our method takes a 30-minute time-out approach that has been 
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shown to be effective for session identification [70]. Each session is then completed 
by identifying the pages accessed by the visitor but not recorded in logs (i.e., cached 
pages) 3 and including these pages in the session. To identify accesses to cached pages, 
our method adopts the heuristics of cooley et al. [16].

web Site Parsing

Our method parses the focal site by gathering its pages and extracting their important 
features. It uses a spider program to gather all the pages on the site; each page is then 
parsed for important features, including the number of outgoing links, the number of 
internal outgoing links (i.e., hyperlinks pointing to pages on the same site), the number 
of external outgoing links (i.e., hyperlinks pointing to pages not on the same site), 
the size (measured by the number of bytes), the number of words, and the number of 
anchor text words. we do not include hyperlinks that point to anchors on the same 
page when analyzing the features of a web page.

web Page classification

A page can be classified as a content page or an index page [72]. Index pages help 
people navigate a site and usually have many hyperlinks pointing to other pages but 

Figure 1. web Mining–Based Method for Measuring Navigability
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little content [61], whereas content pages contain specific information (e.g., product 
description) and normally have fewer hyperlinks than index pages. content pages often 
constitute targets of visitors’ information seeking [72], whereas index pages are means 
to such targets; we therefore use sequences of content pages that users frequently 
access to approximate their information-seeking targets.4 The sheer number of pages 
available on a web site makes manual classification of pages tedious and ineffective. 
Thus, our method builds an automatic classifier with a support vector machine [81], 
which is effective in classifying tasks [37].5 The classifier classifies pages as index 
or content pages on the basis of their respective features identified previously. To ap-
ply the classifier to classify pages, we assembled a training sample of 200 randomly 
selected pages from the focal site. Two domain experts highly knowledgeable in web 
site design manually classified each page; they then met to reach an agreement on each 
classification result through face-to-face discussions. The resultant tagged pages were 
used to train the classifier, which was then applied to classify each page of the site.

Access Pattern Mining

Our method uses frequently accessed sequences of content pages (i.e., access patterns) 
as proxies for information-seeking targets. For example, people frequently visit a 
university’s web site to find tuition information and then payment instructions. In this 
case, the information-seeking target can be approximated by the access sequence of 
the two content pages: the tuition information page and the payment instructions page. 
Access patterns can be discovered from web logs. In particular, preprocessed web logs 
are represented as S = {s

i
}, i = 1, 2, ..., k, where s

i
 is a session and k denotes the number 

of sessions. For each session s
i
 in S, index page accesses are removed from s
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that q
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, for l = 1, 2, ..., n. If an access sequence is contained in a session, it 
occurs. we calculate the occurrence rate v(u) of an access sequence u as the ratio of 
the number of sessions that contain the sequence to the total number of sessions. Key 
access sequences have an occurrence rate that exceeds a prespecified threshold; the set 
of all key access sequences entails the access patterns. Extracting all the key access 
sequences from logs is a nontrivial task. The problem space is enormous because of the 
exponential number of candidate sequences attainable by exhausting all plausible per-
mutations of content pages and the sheer volume of records in logs. Major algorithms 
for the efficient discovery of frequent sequences from large amounts of data include 
the AprioriAll [6], SPADE [91], and PrefixSpan [21, 60]. Among them, PrefixSpan 
is generally the most advantageous in terms of running time and memory usage [21, 
60]. we therefore adopt PrefixSpan to discover key access sequences from logs.
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Hyperlink Structure Representation

A site’s hyperlink structure is represented by a distance matrix in which pages are 
indexes and the distance between any two pages is an element. we model the focal site 
as a directed graph (i.e., pages as vertices and hyperlinks as edges) and measure the 
distance between two pages according to the distance definition in graph theory [86]; 
that is, the distance from page A to page B on a site is the length of the shortest path 
from A to B, as measured by the number of hyperlink clicks. The distance is ∞ if no 
path exists from page A to page B. To construct a distance matrix, we define Y(p, y) 
as a set of pages, where the distance from page p to any page in Y(p, y) is y clicks. By 
the definition of Y(p, y), we have

 Y(p, 0) = {p}. (1)

we represent the set of web pages pointed to by the hyperlinks on page p as T(p), 
which can be discovered by parsing page p. The distance from page p to any page in 
T(p) – Y(p, 0) is one click, that is,

 Y(p, 1) = T(p) – Y(p, 0). (2)

generalizing Equation (2), we have
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In Equation (3), ∀k∈Y(p,y–1)
T(k) consists of all pages that are distant from page p by at 

most y clicks, because the distance from page p to any page k in Y(p, y – 1) is y – 1 
clicks and any page in T(k) is one click away from k. Excluding the pages for which 
distance from page p is less than y clicks (i.e., pages in y–1

j=0
Y(p, j)), we find that ∀k∈Y(p,y–1)

T(k) – y–1
j=0

Y(p, j) consists of all pages distant from page p by y clicks. Figure 2 sum-
marizes the procedure for calculating Y(p, y) for all the pages on a site, which also 
identifies the shortest path between any two connected pages. constructing a distance 
matrix from Y(p, y) is straightforward and not described.

Data-Driven Metrics for Measuring Navigability

corresponding to the fundamental dimensions of navigability suggested by the 
guiding theories, we develop three metrics—power, efficiency, and directness—that 
can be formally defined, quantitatively calculated, and empirically examined. As 
mentioned, these navigability metrics, which use the focal site’s hyperlink structure 
and the identified access patterns as inputs, are premised in the law of surfing [33], 
which identifies regularities in web surfing behaviors by characterizing the number of 
hyperlinks clicked during a visit session with a probabilistic distribution. Specifically, 
the law of surfing states that the probability p(k) of surfing k hyperlinks in a session 
can be expressed as
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where the mean of the probability distribution (i.e., average number of hyperlinks surfed 
in a session) is α and the scale parameter β determines the shape of the probability 
distribution. The parameters α and β can be estimated from visit data recorded in web 
logs [33]. The law of surfing offers a robust analysis of web browsing behaviors and 
formally reveals the prominent regularities of web surfing depth [27, 31, 46].

we define G(l ) as the probability of surfing at least l hyperlinks during a session, 
which is the sum of p(k), where k ≥ l,
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Thus, we can obtain the following from Equation (5):
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using Equations (4) and (6), we can derive G(l ) from l = 1, and G(∞) = 0. we can 
now propose the three metrics.

Input: a set of web pages in a web site
Output: Y(p, y) for each web page p in the web site

for each web page p
 find T(p) by parsing web page p
end for
for each web page p
 i = 0
 Y(p, i) = {p}
 while Y(p, i) ≠ Ø
  Y(p, i+1) = Ø
  for each k ∈ Y(p, i) 
   for each h ∈ T(k)
    if h ∉ Y(p, j) for all 0 ≤ j ≤ i
        Y(p, i+1) = Y(p, i+1) ∪ {h}
    end if
   end for
  end for
  i = i+1
 end while
end for

Figure 2. calculation of Y(p, y)
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Power

we use the key access sequences, discovered from web logs, to approximate visitors’ 
information-seeking targets. let U be a set of n key access sequences discovered from 
logs, U = {u

i
}, i = 1, 2, ..., n, and u

i
 = < p

i,1
, p

i,2
, ..., p

i,m 
>, where p

i,j
 is the jth visited 

content page in u
i
, j = 1, 2, ..., m. For an information-seeking target approximated by 

a key access sequence u
i 
, power R(u

i
) can be measured as the probability of locating 

all the content pages in u
i
 sequentially, from p

i,1
 to p

i,m
. let p

s
 denote the start page of 

seeking for u
i
. If p

s
 ≠ p

i,1
, the distance from p

s
 to the first sought page p

i,1
, d(p

s
, p

i,1
), can 

be derived from the distance matrix (constructed in the hyperlink structure represen-
tation step).6 Visitors willing to surf at least d(p

s
, p

i,1
) hyperlinks can locate p

i,1
 from 

p
s
. According to Equation (6), G(l ) is the probability of surfing at least l hyperlinks; 

therefore, the probability of surfing at least d(p
s
, p

i,1
) hyperlinks is G(d(p

s
, p

i,1
)). Ac-

cordingly, the probability of locating p
i,1

 from p
s
 can be approximated as G(d(p

s
, p

i,1
)). 

After locating p
i,1

, a visitor can continue to locate p
i,2

, and the probability of locating 
p

i,j
 from p

i,j–1
 also can be approximated as G(d(p

i,j–1
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i,j
)), where 2 ≤ j ≤ m. If p
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the power R(u
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) of locating u

i
 becomes

 

R u p G d p p G d p p  p pi s s i i j i j s i
j

m( ) = ( )( ) ( )( ) ≠−
=

∏, , ., , , ,1 1 1
1

if

 
(7)

likewise, if p
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let P(start of seeking for u
i
 = p

s
) be the probability of seeking for u

i
 starting from page 

p
s
, which can be estimated from surfing data recorded in web logs. For example, if we 

observe in web logs the following sessions that record the seeking of target information 
u

i 
— < homepage u

i
 >, < homepage u

i
 >, < page1 u

i
 >, < page1 u

i
 >, < page2 u

i
 > —seek-

ing of u
i
 would start from the homepage, page1, or page2, with probability P(start of 

seeking for u
i
 = homepage) = 0.4, P(start of seeking for u

i
 = page1) = 0.4, and P(start 

of seeking for u
i
 = page2) = 0.2. Accordingly, we can calculate the R(u

i
) as
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Not all key access sequences are equally important. we therefore introduce a weight 
w(u

i
) of u

i
 in U, calculated as
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where v(u
i
), the occurrence rate of u

i
, is identified from the access pattern mining step. 

Therefore, the power R(U) of a web site can be measured as the weighted probability 
of achieving each information-seeking target in U on the web site:
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Power, R(U), falls inclusively between 0 and 1 and generally can reveal the prob-
ability that a visitor achieves an information-seeking target by navigating through a 
web site’s hyperlink structure. when R(U) = 0, no information-seeking targets can 
be achieved; when R(U) = 1, all the targets can be achieved with a probability of 1. 
The higher the value of R(U), the more powerful is a web site’s hyperlink structure 
design for helping visitors locate target information on the site.

Efficiency

In general, the closer a page is to the currently visited page, the more efficient it is 
to locate that page. For an information-seeking target approximated by a key access 
sequence u

i
 = < p

i,1
, p

i,2
, ..., p

i,m 
>, given that seeking for u

i
 starts from page p

s
 ≠ p

i,1
, the 

efficiency Q(u
i 
| p

s
) of achieving the information-seeking target can be measured as  

d(p
s
, p

i,1
) + Sm

j=2
d(p

i,j–1
, p

i,j
), where d(x, y) denotes the distance from page x to page y. 

By normalizing the efficiency metric onto [0, 1], we obtain
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where m is the number of content pages in u
i
; the function min(x, y) returns the smaller 

value between x and y, and γ > 1 is a constant. A page is considered most efficient to 
locate if it is one click away; it is least efficient to locate if it is γ or more clicks away. 
we set γ to an appropriate value such that the probability of surfing γ or more clicks 
(i.e., G(γ)) becomes trivial. Similarly,
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we can then derive Q(u
i
) as follows:
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In turn, we can measure the efficiency Q(U) of a web site as the weighted efficiency 
of locating each information-seeking target in U on the web site, that is,
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The term Q(U) indicates the efficiency of locating an information-seeking target on 
a scale of [0, 1], with 0 being the least efficient (i.e., average distance to the visitor-
sought content pages is γ or more clicks away) and 1 being the most efficient (i.e., all 
visitor-sought content pages are only one click away). The higher the value of Q(U), 
the more efficient it is for a visitor to locate the target information on a web site.
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Directness

Visitors are likely to find target information with fewer clicks if we add more hyperlinks 
pointing to content pages on each page. At an extreme, efficiency Q(U) becomes 1 
when each page has hyperlinks pointing to all content pages on the site, that is, all 
content pages are only one click away from any page, which obviously is not a good 
design. Placing more hyperlinks on a page makes it increasingly difficult for visitors 
to decide on their next move. given an information-seeking target approximated by a 
key access sequence u

i
 = < p

i,1
, p

i,2
, ..., p

i,m 
> and that seeking for u

i
 starts from p

s
 ≠ p

i,1
, 

directness L(u
i
 | p

s
) can be measured as N(p

s
, p

i,1
) + Sm

j=2
N(p

i,j–1
, p

i,j
), where N(x, y) denotes 

the average number of hyperlinks on the pages located on the shortest path from x to 
y (identified in the hyperlink structure representation step) and N(x, y) is ∞ if there is 
no path from x to y. By normalizing the directness measure onto [0, 1], we obtain

  

L u p

m N p p N p p m

mi s

s i i j i j
j

m

( ) =
− ( ) + ( )






−(
−

=
∑δ δ

δ

min , , ,, , ,1 1
2

1)) ≠if  p ps i, ,1

 

(16)

where the function min(x, y) returns the smaller value between x and y and δ is a 
constant, δ > 1. Visitors have less difficulty deciding on their next move if the current 
page contains only one hyperlink but more difficulty if the current page contains δ or 
more hyperlinks. The value of δ can be user specified or set to an adequate constant, 
according to a generally accepted usability guideline (e.g., [83]). Similarly,
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we can derive L(u
i
) as
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we can then calculate the directness L(U) of a web site as the weighted directness 
of achieving each information-seeking target in U on the site:
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i
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Directness, L(U), is within [0, 1] and indicates the degree of ease of deciding on the 
next navigation move: 0 indicates the most difficulty, and 1 indicates the least. The 
higher the value of L(U), the easier it is for a visitor to decide on the next move.

Our proposed metrics are distinct but related. For example, although efficiency and 
directness measure different fundamental aspects of navigability, they can be correlated 
because visitors’ cognitive load may increase as they click more to find information 
on a web site. Figure 3 summarizes the procedure for using access patterns and the 
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distance matrix of a web site as inputs to produce power, efficiency, and directness 
scores that jointly convey the site’s navigability.

Implementation and Illustrations

to deMonStRate tHe viabilitY oF ouR MetHod and MetRicS, we developed a prototype 
system that follows the method described in Figure 1. we employed SpidersRus [14] 
to parse a web site (step 2 in Figure 1).7 we used the prototype system to analyze and 
compare the navigability of two large sites in the higher education domain: Site A 
and Site B.8 The sites are built and administered by two comparable public research 
universities in the united States (Site A university and Site B university hereinafter) 
that offer comprehensive degree programs at graduate and undergraduate levels and 
have approximately 30,000 faculty, staff, and students. These two sites serve similar 
user populations and have a comparable number of pages (i.e., Site A has 4,277 pages: 
3,840 content pages and 437 index pages; Site B has 4,118 pages: 3,738 content pages 
and 380 index pages). Overall, we chose these web sites primarily because they 
are from the same domain, are comparable in size, serve similar purposes and user 
populations, and have highly similar content and traffic, which can reduce the threat 
of potential confounding factors pertaining to web site domain, size, objectives, or 
user groups.

From each site, we collected web logs generated over a four-week window. The 
logs from Site A contained 35,966,494 records, from which we preprocessed and 
identified 732,321 sessions. The logs from Site B consisted of 32,170,062 records, 

Input: a set of key access sequences U = {u
i
}, i = 1, 2, ..., n

  a distance matrix of a web site
Output: power R(U), efficiency Q(U), directness L(U) of a web site

calculate G(l ) using (4) and (6)
for each u

i
 = < p

i,1
, p

i,2
, ..., p

i,m 
> in U

 calculate its weight w(u
i 
) using (10)

 for each start page p
s

  if p
s
 ≠ p

i,1

   retrieve d(p
s
, p

i,1
) from the distance matrix

  end if
  retrieve d(p

i,j–1
, p

i,j
), 2 ≤ j ≤ m from the distance matrix 

  calculate power R(u
i 
| p

s
) using (7) or (8)

  calculate efficiency Q(u
i 
| p

s
) using (12) or (13)

  calculate directness L(u
i 
| p

s
) using (16) or (17) 

 end for
 calculate R(u

i
), Q(u

i
), and L(u

i
) using (9), (14), and (18), respectively

end for
calculate R(U), Q(U), and L(U) using (11), (15) and (19), respectively

Figure 3. Measuring a web Site’s Power, Efficiency, and Directness
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from which we identified 555,299 sessions. we first derived the actual distribution 
of session size (i.e., the number of clicks per session) from the preprocessed logs to 
estimate the parameters α and β in Equation (4). By applying nonlinear regression to 
the actual distribution of session size, we obtained least square estimates for α (= 2.68) 
and β (= 10.97) for Site A. The fit between Equation (4) and the actual distribution 
of session size was statistically significant, p < 0.0001 and R2 = 0.92. For Site B, the 
estimated α and β were 2.99 and 10.40, respectively. The fit between Equation (4) and 
the actual distribution of session size was also statistically significant, p < 0.0001 and 
R2 = 0.97. we then used the α and β estimates to calculate G(·), according to Equa-
tions (4) and (6). For both sites, we set γ in Equation (12) to 10 because G(10), or the 
probability of accessing pages 10 or more clicks away, seems trivial (i.e., < 0.005). 
consistent with google’s webmaster guidelines [83], we set δ in Equation (16) to 
100 for both sites. Table 1 summarizes the specific parameter values used to assess 
the navigability of each site.

After determining these parameter values, we used the prototype system to as-
sess each site’s navigability. when mining key access sequences from web logs, we 
initially set the threshold at 0.05 percent because a large number of sessions in web 
logs favor small thresholds to keep a reasonable number of discovered sequences. To 
ensure the reliability and robustness of our evaluation results, we conducted a series 
of trials at threshold values between 0.05 percent and 0.175 percent, in increments of 
0.025 percent. Table 2 summarizes the metric scores calculated for each site.

According to our metrics, the navigability of Site A seemed better than that of 
Site B, across the range of threshold values. On average, Site A recorded higher 
scores in power, efficiency, and directness, showing 19.6 percent, 12.8 percent, and 
11.7 percent differentials, respectively. To provide a proper anchor for interpreting the 
between-site differences, we identified an additional 18 comparable university sites 
and calculated the range of each metric’s value across Site A, Site B, and these ad-
ditional sites with a threshold value of 0.05 percent. According to our analysis, power 
ranged between 0.50 and 0.77 (average = 0.71, standard deviation = 0.06), efficiency 
between 0.75 and 0.89 (average = 0.85, standard deviation = 0.03), and directness 
between 0.20 and 0.60 (average = 0.40, standard deviation = 0.12). In this light, the 
difference between Site A and Site B in each metric seems substantial, that is, at least 
15 percent of the maximum difference across the 20 sites. For example, across the 
20 sites, the maximum difference of power is 0.27 (i.e., 0.77–0.50). The difference in 
power between the two sites we studied is 0.12 (i.e., 0.75–0.63), which is 44 percent 
of the maximum difference.9

Table 1. Key Parameter Values used for Each Investigated web Site

Site A Site B

α 2.68 2.99
β 10.97 10.40
γ 10 10
δ 100 100
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we evaluated power and efficiency according to the distance between the starting 
page of a session and the first content page sought in a key access sequence and then 
the distance between successively sought content pages in that sequence. In general, 
the greater these distances, the lower are the power and efficiency. Our analysis 
showed that these distances were consistently greater on Site B than on Site A. For 
example, on average, a content page appearing in the top 10 most frequently visited 
key access sequences was 1.7 clicks away on Site A, whereas a similar content page 
on Site B was 2.3 clicks away. Both sites had low directness scores and the directness 
difference between Site A and Site B was smaller than that of power or efficiency. 
The low directness scores could be partly attributed the fact that each site contains 
many content pages that inevitably increase the likelihood of having many hyperlinks 
on a page; as a result, it is difficult for visitors to decide on their next move from the 
currently visited page. Moreover, both sites feature frequently visited index pages, 
each of which contains many hyperlinks. while serving as springboards for naviga-
tion, these index pages also make it difficult for visitors to decide on which hyperlink 
to click next.

To empirically examine the navigability analysis results revealed by our metrics, 
we collected user performance and assessments by conducting an evaluation study. 
According to our metrics, Site A has higher navigability than Site B; accordingly, 
we anticipate that people will be more likely to find information successfully with 
fewer clicks and less cognitive processing on Site A than on Site B. Furthermore, as 
an ex post facto comparison, we used the collected user performance and assessment 
data to further assess our metrics versus prevalent navigability metrics such as that 
developed by Zhou et al. [94]. In the following, we describe our evaluation study 
design and data collection.

Evaluation Study and Data collection

in ouR evaluation StudY, we aSKed voluntaRY PaRticiPantS to complete 12 information-
seeking tasks on an investigated site. Our overall objective was to assess whether 
visitors are more likely to find target information successfully, efficiently, and easily 

Table 2. Evaluation Results for Navigability (Site A Versus Site B)

Threshold 
value

Power Efficiency Directness

Site A Site B Site A Site B Site A Site B

0.05% 0.75 0.63 0.87 0.77 0.42 0.36
0.075% 0.77 0.64 0.88 0.77 0.42 0.37
0.1% 0.78 0.65 0.88 0.78 0.41 0.37
0.125% 0.78 0.66 0.89 0.79 0.41 0.37
0.15% 0.79 0.66 0.89 0.79 0.42 0.38
0.175% 0.80 0.66 0.89 0.79 0.42 0.38
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on a web site of high navigability than on one of low navigability, as revealed by our 
metrics. In this section, we describe our study design, tasks, participants, measure-
ments, and data collection.

Study Design

Despite their similarity in purpose, populations served, content, and traffic, Site A 
has considerably higher navigability than Site B. we recruited participants from both 
universities and asked them to complete specific information-seeking tasks on the 
respective sites. Each participant used one of the investigated sites to complete the 
tasks, and the web site assignment was random, that is, a participant might or might 
not use his or her own university’s site.

Our evaluation also addressed the significance of user familiarity. In general, users’ 
familiarity with a site can influence their performance and satisfaction. For example, 
people highly familiar with a web site understand its structural design and content 
layout; they are more likely to find information on the site than on an unfamiliar 
site and are less likely to become confused or “lost” [29]. High familiarity enables 
visitors to minimize the number of clicks necessary to find information [29], partly 
because of reduced trial-and-error behaviors [23]. According to galletta et al. [28], 
people can complete more information-seeking tasks on a familiar site than otherwise. 
Visitors usually choose a surfing path because they believe it will lead them to target 
information; familiarity with the site’s structure facilitates their choice making [7]. 
The performance improvement resulting from users’ familiarity with a web site 
aligns with the power law of practice [38], which suggests search effectiveness and 
efficiency gains through repeated visits, which reduce information-seeking difficulty 
and complexity. when visiting a familiar site, people can find information with less 
cognitive attention [8] and thus exhibit greater satisfaction [56]. As galletta et al. [29] 
note, when navigability is problematic, its adverse influences on people’s navigation 
can be mitigated by user familiarity with the site. Furthermore, the negative effect of 
low familiarity can be reduced when the site offers high navigability, that is, people 
are more likely to find information on an unfamiliar site when the site is more navi-
gable. Our analysis showed that participants in general were more familiar with their 
university’s site than with the other site. with navigability (i.e., high versus low) and 
familiarity (i.e., high versus low), we created four experimental conditions and as-
signed participants to each randomly, while mindfully balancing the total number of 
participants in each group.

Tasks

we analyzed each site’s web logs to identify frequently sought content page sequences 
(i.e., key access sequences). we conducted a pretest with 256 participants from Site A 
university and 165 participants from Site B university. All the participants reviewed 
20 pages from their own university site (10 content and 10 index pages), randomly 
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selected from the pages on the site, and indicated whether the presented page provided 
information they searched for frequently, on a five-point likert scale (1 = “not at all,” 
5 = “very high”). The pretest participants from both universities were comparable in 
age, number of years at the current university, gender composition, and self-reported 
familiarity with their own university site. According to the paired sample t-test results 
for Site A, content pages were more likely to constitute information-seeking targets than 
index pages (3.48 versus 1.90, t = 31.15, df [degrees of freedom] = 255, p < 0.001); 
we noted similar results for Site B (2.99 versus 1.91, t = 17.07, df = 164, p < 0.001). 
These participants then received 10 key access sequences of content pages and 10 
nonkey access sequences of content pages (i.e., sequences of low visit frequency) 
from their own university site, all randomly selected from our access pattern mining 
results. For each sequence, a participant specified his or her need, desire, or interest in 
seeking the pages in that sequence, on a five-point likert scale (1 = “no need, desire, 
or interest at all,” 5 = “great need, desire, or interest”). According to our analysis, for 
both universities, the need, desire, or interest was significantly higher for key than 
for nonkey access sequences: Site A: 3.48 versus 1.30, t = 59.23, df = 255, p < 0.001; 
and Site B: 2.99 versus 1.33, t = 37.24, df = 164, p < 0.001. According to our pretest 
results, content pages were more likely to constitute information-seeking targets than 
index pages, and key access sequences identified from web logs were consistent with 
users’ common information-seeking needs, desires, or interests.

Next, we verified the frequently sought key access sequences by surveying another 
random sample of 20 participants from each university. Each reviewed 20 frequently 
sought key access sequences we discovered from the participant’s own university’s 
web logs and specified the frequency with which he or she would access each 
sequence, on a five-point likert scale (1 = “never” and 5 = “once or several times 
a month, or more frequently”). According to our analysis, participants from both 
universities frequently sought 15 key access sequences, that is, students shared some 
similarity in their information needs and interests (e.g., the operating hours of the 
campus medical center).10 In our evaluation study, we used 3 of these 15 key access 
sequences as warm-up exercises and the remaining as the information-seeking tasks 
to be performed by participants in the evaluation study. Among the 12 tasks included 
in our study, half were low in complexity (e.g., only one page in the access sequence) 
and the others high in complexity (e.g., multiple pages in the sequence). Appendix A 
lists all the tasks.

Participants

we recruited participants among the business undergraduate students enrolled in simi-
lar information systems or operations classes in both universities.11 Participation was 
voluntary, and each participant received $10 for his or her time and efforts. To solicit 
best efforts, we offered substantial, additional monetary incentives to top performers 
in the study, that is, those who successfully completed the greatest number of tasks 
in the least amount of time. Instructors assisted in our recruitment, and a student’s 
decision to participate had no effect on his or her class grade.
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Measurements

we examined user performance by focusing on effectiveness and efficiency. Specifi-
cally, we used three measures: task success rate, task time, and the number of clicks to 
complete a task. we assessed effectiveness with task success rate, which is the ratio of 
the number of successfully completed tasks (i.e., participant finding the target page) to 
the total number of tasks to be performed in the study. we measured the click require-
ment with the exact number of clicks a participant used in a task. we also measured 
the amount of time (in seconds) a participant spent on a task, which closely relates to 
the number of clicks and offers another perspective on user performance efficiency. 
Participants had up to four minutes to complete each task.12 we collected participants’ 
self-reports about the cognitive-processing load required, after they had completed 
all the tasks, which indicates the cognitive processing they underwent when choos-
ing paths to access the target information. we used five items adapted from Hong et 
al. [32] and Palmer [59] to measure cognitive-processing load, with minor wording 
changes appropriate for our context; all the items employed a seven-point likert scale 
(1 = “strongly disagree,” 7 = “strongly agree”). Appendix B lists the measurement items 
for cognitive-processing load. To various extents, these measurements corresponded 
with our metrics: task success rate for power, the number of clicks for efficiency, and 
cognitive-processing load for directness.

Data collection

we conducted the evaluation study in multiple sessions, all administered in a desig-
nated computer laboratory at each university.13 Before each session, we read a script to 
inform the participants of the study’s purpose, answered questions, and addressed any 
privacy-related concerns. we explicitly stated our intent and commitment to performing 
data analyses at aggregate levels without using any personally identifiable information. 
we obtained written consent from each participant and promised convenient access 
to the data he or she provided in the study. we then collected some demographic data 
from the participants, described the overall study flow and the tasks to be performed, 
and provided warm-up exercises until each participant signaled readiness for the study. 
Then, the participants received packets that detailed each task, together with target page 
screenshots they could use to verify whether they had completed that task. we used 
client-side monitoring software to record the exact starting and ending time of each 
task, the number of clicks, and the specific pages accessed. By comparing the recorded 
pages a participant accessed with the target page(s), we determined whether he or she 
had successfully completed a task. After completing all the tasks, the participants filled 
out a questionnaire survey that gathered their cognitive processing.

Data Analyses and Results

we PeRFoRMed a Pilot StudY to ReeXaMine tHe iteMS for cognitive-processing load and 
to fine-tune our study flow and data collection procedure. In total, 39 undergraduate 
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students—17 from Site A university and 22 from Site B university—enrolled in a 
required information systems or operations management class took part in the pilot 
study voluntarily. Each participant followed the described study flow and completed 
the 12 information-seeking tasks. According to our analysis, these participants under-
stood the tasks clearly and knew exactly what they needed to do in each task; more 
than 99 percent were able to complete a task within three minutes. we used their 
responses to assess the reliability of the items for cognitive-processing load. The 
cronbach’s alpha was 0.95 for cognitive-processing load, exceeding the common 
threshold of 0.7 [58].

we then conducted an evaluation study with 248 participants (128 from Site A 
university and 120 from Site B university). As Table 3 summarizes, the participants 
were comparable in terms of age and gender composition; we noted no significant 
between-group differences in general computer efficacy, Internet usage, or familiar-
ity with the randomly assigned site they used in the study. In addition, participants 
reported higher familiarity with their university’s site than with the other site, and 
the difference was statistically significant.14 we reexamined the reliability of our 
cognitive-processing measurements and noted a cronbach’s alpha greater than 0.90, 
suggesting adequate reliability.

To compare user performance and assessments between the two web sites, we ag-
gregated the data associated with each site, across participants and tasks, and used them 
to perform a series of paired t-tests. As Table 4 shows, the task success rate associated 
with Site A was significantly higher than that of Site B (0.90 versus 0.78, p < 0.001). 
The time requirements associated with Site A were significantly lower than those of 
Site B (40.25 versus 65.70, p < 0.001), as was the number of clicks (3.69 versus 6.08, 

Table 3. comparative Analysis of Participants from the Studied universities

Dimension
Participants from  
Site A university

Participants from  
Site B university

Average age 24.79; range: 19–52 23.53; range: 16–60
Gender Male: 90 (70.3%)

Female: 38 (29.7%)
Male: 72 (60%)
Female: 48 (40%)

Major Business: 127 (99.2%)
Not declared: 1 (0.8%)

Business: 110 (91.7%)
Not declared: 10 (8.3%)

Status in university Freshman: 43 (33.6%)
Sophomore: 31 (24.2%)
Junior: 29 (22.7%)
Senior: 25 (19.5%)

Freshman: 10 (8.3%)
Sophomore: 28 (23.3%)
Junior: 26 (21.7%)
Senior: 56 (46.7%)

General computer efficacy 5.72 (out of 7) 5.85 (out of 7)
Internet technology 

competence
5.3 (out of 7) 5.5 (out of 7)

Web browsing capability 5.4 (out of 7) 5.8 (out of 7)
Familiarity with studied Web 

site
3 (out of 7) 3 (out of 7)

Internet usage 14.8 hours a week 18.2 hours a week
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p < 0.001) and the cognitive-processing load (2.83 versus 3.94, p < 0.001).15 Overall, 
our results showed that participants were more likely to find information successfully, 
efficiently, and easily on Site A than on Site B, which is congruent with the analysis 
results revealed by our metrics.

we further compared user performance between the two sites by separating tasks 
germane to high versus low complexity. we then combined the data associated with 
tasks from each site to create two data sets: one pertaining to low-complexity tasks 
and the other to high-complexity tasks. we used each data set to further compare user 
performance between sites by performing paired t-tests. For low-complexity tasks, user 
performance seemed better on Site A than on Site B, and the differences were statisti-
cally significant: task success rate (0.97 versus 0.79, p < 0.001), time requirements 
(27.35 versus 36.61, p < 0.001), and number of clicks (2.35 versus 3.15, p < 0.001). we 
found similar results for high-complexity tasks, and the differentials appeared greater 
in magnitude: task success rate (0.83 versus 0.67, p < 0.001), time requirements (53.14 
versus 94.79, p < 0.001), and number of clicks (5.03 versus 9.01, p < 0.001). Table 5 
summarizes the comparative user performance results by task complexity, which does 
not include the cognitive-processing load because we gathered participants’ assess-
ments of cognitive processing after they completed all the tasks. Our results showed 
that participants were more likely to find information successfully and efficiently on 
Site A than on Site B, regardless of task complexity.

we also compared user performance between the two sites by taking into account 
participants’ familiarity with the site they used, that is, their own university’s site or the 
other site. we combined the data from each site that were generated by the participants 
familiar with the site versus those produced by their unfamiliar counterparts, thereby 
creating two data sets: one germane to high familiarity and the other to low familiar-
ity. we used each data set to perform paired t-tests that enabled us to understand user 
performance between the two sites when participants were familiar versus not familiar 
with the site. when participants were familiar with the site, user performance was better 
on Site A than on Site B, and the differences were statistically significant: task success 
rate (0.93 versus 0.80, p < 0.001), time requirements (29.76 versus 56.06, p < 0.001), 
number of clicks (3.39 versus 5.76, p < 0.001), and cognitive-processing load (2.62 
versus 3.48, p < 0.001). we found similar results when participants were not familiar 
with the site they used: task success rate (0.87 versus 0.77, p < 0.001), time require-
ments (50.90 versus 74.33, p < 0.001), number of clicks (3.99 versus 6.36, p < 0.001), 
and cognitive-processing load (3.05 versus 4.35, p < 0.001). Table 6 summarizes our 
comparative results in terms of participants’ familiarity with the site, which shows that 
participants were more likely to find information successfully, efficiently, and easily 
on Site A than on Site B, regardless of whether they were familiar with the site.

we examined the performance of the participants from each university who used 
different web sites; specifically, we aggregated the participants by university to create 
two data sets: participants from Site A university versus those from Site B university. In 
each data set, approximately half the participants used their own university’s site, and 
the others used the other site. For example, among the 120 participants we recruited 
from Site B university, 60 used their own university’s site in the study. with these data, 
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we performed paired t-tests to examine user performance across the universities. For 
participants recruited from Site A university, we noted better user performance when 
they used Site A rather than Site B, with statistically significant differences: task success 
rate (0.93 versus 0.77, p < 0.001), time requirements (29.76 versus 74.33, p < 0.001), 
number of clicks (3.39 versus 6.36, p < 0.001), and cognitive-processing load (2.62 
versus 4.35, p < 0.001). we found similar results for participants recruited from Site B 
university, though the differences were smaller in magnitude, with the exception of 
time requirements (50.90 versus 56.06, p > 0.05): task success rate (0.87 versus 0.80, 
p < 0.001), number of clicks (3.99 versus 5.76, p < 0.001), and cognitive-processing 
load (3.05 versus 3.48, p < 0.05). Table 7 summarizes the comparative results by 
grouping participants by university; as shown, our overall results imply that visitors’ 
familiarity with a web site cannot compensate for its low navigability.

In addition to empirically testing the comparative analysis results revealed by our 
metrics, we used the experimental data to perform an ex post facto comparison with a 
Markov model–based navigability measure (MNav), which has been shown to be more 
effective than many existing navigability measures [94]. This measure is developed 
with web structure data and a Markov model that emulates users’ browsing behaviors. 
Specifically, at time t = 0, 1, 2, ..., a visitor’s current position is represented by a vector 
p(t) = (p

1
(t), p

2
(t), ..., p

n–1
(t), p

n
(t)), where p

i
(t), i = 1, 2, ..., n – 1, denotes the probability 

at page i, and p
n
(t) is the probability at the virtual stopping state, which indicates the 

termination of browsing on a site. let P be the matrix of transition probabilities; each 
element of P represents the probability of transiting from one page to another. Ac-
cording to Zhou et al. [94], p(t) is calculated as

 p(t) = p(t – 1)P = p(0)P t. (20)

Equation (20) converges at time T; the MNav score of a site then can be calculated 
as the probability not in the virtual stopping state, that is, 1 – p

n
(T). The greater the 

MNav score of a site, the higher is the site’s navigability [94].
we used Equation (20) to calculate the respective MNav scores of Site A and Site B, 

following the procedure and parameter settings by Zhou et al. [94]. we obtained an 
MNav score of 0.66 for Site A and 0.67 for Site B, suggesting comparable navigability 
between the two sites, although Site B has a slightly higher navigability. This result 
contradicts the comparative analysis revealed by our metrics and is not supported by 
our user evaluation data that show that Site A has higher navigability than Site B. The 
comparative analysis by the MNav measure may have several limitations. First, this 
measure does not consider web usage and content data in its calculation. To derive 
the transition probability matrix P, the MNav measure instead assumes that each 
hyperlink on a page has equal probability of being clicked. This assumption may not 
always hold, because a hyperlink a visitor will click on may depend on his or her 
information-seeking target as well as his or her estimate of the hyperlink’s likelihood 
of leading to the target. As a result, some hyperlinks could be clicked more frequently 
than others rather than equally. By analyzing visitors’ browsing behaviors recorded in 
Site A’s web logs, we noted that, on average, 10 percent of hyperlinks on a page drew 
nearly 60 percent of the clicks on that page. Taking the most frequently visited page of 
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Site A as an example, among 120 hyperlinks on this page, the most frequently clicked 
hyperlink attracted 19 percent of the total clicks. we also analyzed Site B’s logs and 
noted a similarly skewed distribution of hyperlink clicks. Second, the MNav measure 
assumes that all the visits start from the home page and accordingly sets the vector 
p(0). By examining the logs of Site A and Site B, we found that more than 20 percent 
of visit sessions started from pages other than the homepage. Furthermore, prior web 
usage analyses do not support this assumption [42]. These questionable assumptions 
can constrain the use of p(0) and P to represent web surfing behaviors, which affects 
the accuracy of p(t) as calculated by Equation (20) and thus hinders the effectiveness 
of the MNav measure for revealing a web site’s navigability. In contrast, our metrics 
consider web structure and content data and are calculated with actual web surfing be-
haviors recorded in web logs, rather than making assumptions about surfing behaviors. 
Thus, the comparative analysis revealed by our metrics is congruent with the actual 
user performance and assessments observed in the evaluation study.

we further examined our metrics with additional sites beyond the education domain. 
Specifically, we identified from website Review (www.websitereview.net), which 
provides user evaluations of navigation on different sites, three pairs of web sites for 
shopping, sports, and recreation. In each pair of sites, one is high in navigation and the 
other low in navigation, according to the user evaluations.16 we examined these sites to 
test whether the navigability results revealed by our metrics are consistent with the user 
evaluations of navigation. For each site, we used our method to extract its content and 
structure; we simulated web logs by following the method of liu et al. [46] because the 
usage data (i.e., web logs) are not publicly available. This method, which simulates the 
random walk of information foraging agents (e.g., visitors) on a web site to generate 
artificial logs for the site, has been shown to be capable of generating synthetic web 
logs that demonstrate the regularities observed in actual web logs, such as the law of 
surfing [46]. By applying our method to a site’s content, structure, and simulated logs, 
we then calculated its scores for power, efficiency, and directness. Table 8 shows the 
power, efficiency, and directness scores of each site, in conjunction with user navigation 
evaluation of that site. By grouping the sites by domain (e.g., Shopping-1, Shopping-2), 
we note that the navigability revealed by our metrics is consistent with the user evalua-
tions across all three pairs of sites that we analyzed. we also compared our metrics with 
the MNav measure by Zhou et al. [94] in relation to the user evaluations. According 
to the MNav measure, Shopping-1 has navigability comparable to that of Shopping-2, 
Sports-1 is more navigable than Sports-2, and Recreation-1 is more navigable than 
Recreating-2. These results are not consistent with the user evaluations. Overall, our 
analyses of these sites show that the navigability revealed by our metrics is consistent 
with user evaluation results available at website Review, while the navigability analyses 
by the MNav measure contradict the user evaluations results. last, we benchmarked 
our metrics against the measure by Yen [90] in Appendix c.

Extensions to Proposed Metrics

Our metrics can be extended in several ways. For example, our metrics could be 
extended to compare the navigability of web sites that vary in scale (i.e., different 
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numbers of pages) or domain (e.g., commerce versus education). In general, it is more 
difficult to find information on a larger web site than on a smaller one. In this case, 
we could introduce a scale factor to account for the difference in scale, as measured 
by the number of pages on a web site. For example, consider two sites: site one with 
n

1
 pages and site two with n

2
 pages; we can define the scale factor as n

1 
/n

2
. when 

comparing the navigability of the sites, we multiply each metric score of site one by 
the scale factor to accommodate for the scale difference. Similar accommodations may 
be needed for cross-domain comparisons because the scale may vary with domain, 
for example, a university site could have more pages than an e-government site. Visi-
tors’ browsing behaviors may also differ across domains. Thus, the navigability of a 
web site, as suggested by our metrics, should be interpreted in terms of how well its 
hyperlink structure facilitates visiting behaviors specific to that domain.

In addition, our metrics can be extended with the combined use of search engine. 
Toward that end, several factors should be properly considered. For example, we 
need to estimate the probability of a visitor’s use of search engine versus browsing 
the hyperlink structure to find information. Such probabilities could be estimated by 
analyzing web logs. The effectiveness of the search engine is relevant as well (e.g., the 
probability that the links returned by a search engine point to the target information). 
Several measures commonly used in information retrieval (e.g., recall, precision) offer 
logical ways to assess a search engine’s effectiveness [66]. The remaining distance, 
from the results returned by a search engine to the target information, also needs to 
be estimated. For example, the search results returned by a search engine could be 
displayed over multiple pages; in this case, if a hyperlink that points to the target page 
appears on the kth page of the results, the target page is then k clicks away, after using 
the search engine. we therefore should evaluate the average distance traversed to a 
target page after using a search engine.

Finally, we could integrate power, efficiency, and directness for a single, holistic 
measure. Specifically, we calculate overall navigability with the harmonic mean, a 
common approach of combining multiple measures to produce a holistic measure [22, 
36, 66]. For power R(U) > 0, efficiency Q(U) > 0, and directness L(U) > 0, the har-
monic mean of these metrics is

3
1 1 1

3

R U Q U L U

R U Q U L U

Q U L U R U L U R U Q U
( ) + ( ) + ( )

=
( ) ( ) ( )

( ) ( ) + ( ) ( ) + ( ) ( ) ..

Overall navigability metric O(U) is 0 if R(U) = 0, or Q(U) = 0, or L(U) = 0. Therefore, 
we have

O U

 R U   Q U   L U

R U Q U L U

Q U L U R

( ) =
( ) = ( ) = ( ) =

( ) ( ) ( )
( ) ( ) +

0 0 0 0

3

if or or

UU L U R U Q U( ) ( ) + ( ) ( )







 otherwise,

where O(U) is bounded within [0, 1]. In addition, O(U) = 0 if R(U) = 0, or Q(U) = 0, 
or L(U) = 0; O(U) = 1 if R(U) = Q(U) = L(U) = 1. Apparently, the greater the value 
of O(U), the better is a site’s overall navigability.
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Discussion

ouR StudY HaS SeveRal iMPlicationS FoR PRactice. Although information seeking 
is a common reason people visit web sites, many sites remain difficult to navigate, 
hindering user experience and satisfaction [57]. Toward that end, we provide three 
data-driven metrics and a viable method for assessing a web site’s navigability. Sup-
ported by our method and metrics, organizations can evaluate and monitor their sites’ 
navigability continually or even implement an automatic alert mechanism if the navi-
gability, as revealed by our metrics, falls below a specified threshold. Organizations 
also can use our metrics to record navigability longitudinally and analyze essential 
patterns or emerging trends to generate insights into the conditions that yield high or 
low navigability. use of our navigability metrics can augment existing web analyti-
cal tools (e.g., Omniture, webTrends) by providing normative or diagnostic analyses. 
Also, organizations modify their sites periodically for improved user performance, 
such as by comparing alternative designs. using our metrics and method, web site 
administrators could quickly predict the impact of each design on navigability. To 
do so, they could synthesize artificial web logs using liu et al.’s [46] method, which 
simulates the random walk of information foraging agents (e.g., visitors) on a site 
and thereby generates artificial logs. Employing our metrics and artificial logs, web 
site administrators could predict the navigability of alternative designs, choose the 
promising designs that yield high navigability scores, and then use existing evalua-
tion methods to evaluate the promising designs only. This capability offers benefits 
because time constraints often make it difficult for web site administrators to under-
take full alternative design evaluations, particularly those involving a large number 
of users. In addition, our metrics and method can be used prescriptively by helping 
organizations identify promising areas for improving their existing hyperlink structure 
design. For example, by sorting key access sequences by their weights and then by 
their navigability scores (power, efficiency, directness), organizations could identify 
sequences that have high weights but are low in navigability. Such sequences in turn 
highlight important bottlenecks for navigability, that is, frequently visited sequences 
(high weight) that are not effectively facilitated by the existing hyperlink structure 
design (low navigability); mitigating these bottlenecks could improve a web site’s 
navigability substantially.

Our study has several limitations that deserve future research attention. First, we 
targeted university web sites, and therefore our results may not be equally applicable to 
sites with very different structures, such as social networking or wiki sites. Our spiders 
and page parsers offer limited utilities for web 2.0 sites and interactive contents (e.g., 
Flash or Ajax based); extensions are needed to process such contents. The two web sites 
we studied have little web 2.0 and interactive contents; however, to apply our methods 
to sites rich in such contents, our spiders must be able to download interactive contents 
and our page parser must extract links and other features from these contents. Second, 
although our study is appropriate for our objectives and intended comparison, it targets 
a specific scenario. understandably, web sites may vary in their relative strengths and 
weaknesses; therefore, we should perform empirical evaluations in different scenarios. 
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For example, comparing a site high in power but low in directness with another site low 
in power but high in directness is essential; similarly, assessing user performance and 
assessments on two sites that are comparable in navigability is also critical because it 
allows us to demonstrate that user performances do not differ when there is no differ-
ence in navigability, according to our metrics. Third, our metrics and method should 
be extended by considering additional factors that affect navigation, such as navigation 
aids (e.g., back button) and information scent [15]. For example, the importance of 
a page could be estimated with anchor text or font size of the main text [10]. links 
located in prominent locations on a site and with anchor text in a large font size or a 
sharp color may be more likely to be clicked by users. Multimedia, including images 
and movies, are important page properties as well and may affect the likelihood of 
a visitor’s clicking on a link. Although our proposed metrics and method can shed 
light on probable problem areas of a site’s hyperlink structure, formal algorithms 
and implementable methods are needed for prescriptive purposes. Finally, efforts are 
also needed to combine our data-driven metrics and salient perceptual measures for 
assessing web site navigability, preferably by involving different user groups, work 
contexts, or domains (e.g., e-commerce, digital government, online learning).

conclusion

tHe Main ReSeaRcH contRibution oF ouR StudY lies in the development of three data-
driven metrics for measuring web site navigability. we use established theories to guide 
our choices of the fundamental navigability dimensions to emphasize and propose 
specific data-driven metrics (i.e., power, efficiency, and directness) that correspond 
to these dimensions respectively. Premised in the law of surfing, we formulate our 
metrics by considering web structure, usage, and content data. By integrating ap-
propriate web mining techniques, we develop a method for calculating a web site’s 
navigability according to our metrics, which explicitly specifies the input web data 
and their transformations and analyses. In addition, we demonstrate the viability and 
practical value of our metrics and method by implementing a prototype system, and 
we use it to assess the navigability of two sizable, real-world web sites. we perform 
an evaluation study by comparing the user performance observed on the respective 
sites and thus produce empirical evidence suggesting that people are more likely to 
find information successfully, efficiently, and easily when the site has high navigabil-
ity, as revealed by our metrics.

noteS

1. A typical web log record includes the IP (Internet Protocol) address, time, and uRl 
(uniform Resource locator), which describe who accessed a page and when, the request status 
(i.e., success or failure), and the size of the data transmitted.

2. Other issues surrounding navigability also have been studied [11, 65, 77], such as the 
development of data-gathering agents for navigability evaluation [65]. Because our focus is on 
navigability metrics, we do not provide a review of these studies.
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3. Previously accessed pages can be cached at a proxy server or a client machine; revisits 
to these pages therefore may not be recorded in server-side web logs, although they are part 
of a session.

4. The results of our evaluation task selections in the Evaluation Study and Data collection 
section also suggest that content pages are much more likely to constitute visitors’ information-
seeking targets than index pages and that frequently accessed sequences of content pages ap-
proximate common information-seeking targets reasonably well.

5. we constructed our classifier with the SVM (support vector mechanism)-light 
implementation [37].

6. we consider two scenarios of seeking for u
i 
: starting from any page but the first page in 

u
i
 (i.e., p

s
 ≠ p

i,1
) or starting from the first page in u

i
 (i.e., p

s
 = p

i,1
).

7. To parse a site, SpidersRus specifies the homepage uRl as the seed. when accessing 
a page, SpidersRus downloads the page and extracts all the hyperlinks on the page; it then 
downloads each of the pages pointed to by the extracted hyperlinks and extracts the hyperlinks 
on that page. SpidersRus continues this process until exhausting all the pages on the site.

8. Both sites are the main sites of their respectively served universities, e.g., www.university-
name.edu.

9. The difference between Site A and Site B in power, efficiency, and directness is about 2 
times, 3 times, and 0.5 times of their respective standard deviation.

10. The two sites use different wordings to describe highly similar, if not identical, resources, 
services, or information. For example, Site A used “contact information and hours of the stu-
dent health center” for information about the campus medical center’s contact information and 
operating hours, and Site B used “contact information and operating hours of the main campus 
medical center.”

11. Although students, faculty, staff, and external visitors could use a site, students constitute 
a crucial user group. They substantially outnumbered faculty and staff combined and often used 
the university’s site to obtain information.

12. we administered this maximal time limit to keep the experiment at a reasonable duration. 
This time limit seemed adequate because the vast majority of pilot study participants completed 
each task within three minutes.

13. we conducted six experimental sessions at Site A university, which were administered 
by the same two investigators; seven sessions were conducted at Site B university, all admin-
istered by the same investigator. All the sessions followed the same procedure regardless of 
their locations or administrators.

14. we performed a manipulation check in the experiment, which indicated that participants 
were significantly more familiar with their university’s site than with the other site; unpaired t-test 
results showed a significant between-group difference: 4.68 versus 1.10, t = 28.66, p < 0.001, 
on a seven-point likert scale (1 = “extremely unfamiliar,” 7 = “extremely familiar”).

15. The time requirements and number of clicks we report do not incur any penalty for failed 
tasks, that is, for each task a participant failed to complete successfully, we used the exact 
amount of time and the number of clicks he or she took in the task. If considering any penalty, 
we expect greater differences in user performance between the two sites.

16. Each site is “low” or “high” in navigation, according to the user ratings on a five-point 
scale, with 1 being the lowest and 5 being the highest. In our study, we chose two sites from 
the same domain that have noticeable differences in the navigation rating.
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Appendix A: warm-up Exercises and Information-Seeking Tasks

warm-up Exercises

 1. Find the location of the college of Business Administration and the dean’s 
bio.

 2. Find the university’s president’s name.
 3. Find the page containing current campus news and then the page containing 

the information about the university (e.g., facts, history, etc.).

Information-Seeking Tasks

 1. Find the location and operating hours of the campus Main library.
 2. Find the page containing the description of the university Athletics and then 

the page containing the description of the university Football team.
 3. Find the location and hours of the Office of Academic Advising and then the 

Office of career Services.
 4. Find the page containing a list of current campus events.
 5. Find the location and store hours of the campus Bookstore.
 6. Find parking permit rates and how to buy parking permits.
 7. Find the contact information and operating hours of the campus Medical 

center.
 8. Find the Academic calendar of the current academic year and then the dates 

for spring break.
 9. Find the class schedule of the current semester and then the location of a specific 

course.
 10. Find the page containing campus Directory and then the page containing 

campus Map and Directions.
 11. Find the page containing campus Recreation Services and then the page con-

taining campus Sports clubs.
 12. Find the Tuition and Rates of the current semester and how to pay tuition.

Appendix B: Measurement Items used in the Study

cognitive Processing load (sources: [32, 59])

cPl-01: In the study, it generally took me a lot of processing efforts to figure out 
how to find a target page/content on the web site.

cPl-02: I needed a lot of thinking when deciding how to navigate from a current 
page toward the target page/content on the web site.

cPl-03: In general, I spent a lot of cognitive effort to find a target page/content on 
the web site.

cPl-04: generally speaking, my navigating the web site to locate a target page/
content was cognitively demanding.

cPl-05: Overall, I incurred a significant cognitive load when trying to find a target 
page/content on the web site.
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Appendix c: comparing Proposed Metrics and Additional 
Benchmark Measure

we bencHMaRKed tHe PRoPoSed MetRicS against the accessibility measure developed by 
Yen [90], which evaluates a web site’s navigation according to the ease of accessing 
a page through the site’s hyperlink structure. when a site is high in accessibility, it is 
easier for visitors to find information on the site. According to Yen [90], the accessibility 
of a page is higher if more hyperlinks point to it and its source pages (i.e., pages with 
a hyperlink pointing to that page) are located closer to the homepage. For Sites A and 
B, we calculated the accessibility of each page, as summarized in Table c1.

we performed welch’s t-test to compare the page accessibility of both sites; the page 
accessibility of Site A is significantly lower than that of Site B (t = 2.64, p < 0.01). 
This comparative analysis suggests that visitors can find information more easily on 
Site B than on Site A, a finding that contradicts our user evaluation results, in which 
participants were able to locate target pages more successfully and easily on Site A than 
on Site B. web site navigation should be assessed at the confluence of the hyperlink 
structure and user browsing behaviors [11, 51, 59]; it manifests how well a web site’s 
hyperlink structure enables visitors to find information by navigating the site. In this 
light, the proposed metrics consider more comprehensive web data and therefore can 
better reveal navigability by producing analytical evaluation results congruent with 
actual user performance, assessment, and satisfaction.

Table c1. Accessibility Measure

Page accessibility Site A Site B

Mean 0.98 1.34
Standard deviation 5.00 5.79
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