
54    COMMUNICATIONS OF THE ACM    |   JANUARY 2015  |   VOL.  58  |   NO.  1

practice

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 P
A

T
R

I
C

K
 G

E
O

R
G

E

DOI:10.1145/2687880

 

 

 Article development led by  
         queue.acm.org

Use the database built for your access model.

BY RICK RICHARDSON

THE TOPIC OF data storage is one that does not need to be  
well understood until something goes wrong (data 
disappears) or something goes really right (too many 
customers). Because databases can be treated as black 
boxes with an API, their inner workings are often 
overlooked. They are often treated as magic things that 
just take data when offered and supply it when asked. 
Since these two operations are the only understood 
activities of the technology, they are often the only features 
presented when comparing different technologies.

Benchmarks are often provided in operations per 
second, but what exactly is an operation? Within the 
realm of databases, this could mean any number of 
things. Is that operation a transaction? Is it an indexing 
of data? A retrieval from an index? Does it store the 
data to a durable medium such as a hard disk, or does 
it beam it by laser toward Alpha Centauri?

It is this ambiguity that causes havoc in the 
software industry. Misunderstanding the features and 
guarantees of a database system can cause, at best, 
user consternation due to slowness or unavailability. 
At worst, it could result in fiscal damage—or even jail 
time due to data loss.

The scope of the term database is 
vast. Technically speaking, anything 
that stores data for later retrieval is a 
database. Even by that broad defini-
tion, there is functionality that is com-
mon to most databases. This article 
enumerates those features at a high 
level. The intent is to provide readers 
with a toolset with which they might 
evaluate databases on their relative 
merits. Because the topics cannot be 
covered here in the detail they deserve, 
references to additional reading have 
been included. These topics may be the 
subjects for future articles.

This feature-driven approach should 
allow readers to assess their own 
needs and to compare technologies 
by pairing up like features. When 
viewed through this lens, compara-
tive benchmarks are valid only on data 
bases that are performing equal work 
and providing the same guarantees.

Before digging into the features of 
databases, let’s discuss why you would 
not just take all of the features. The 
short answer is that each feature typi-
cally comes with a performance cost, if 
not a complexity cost.

Most of the functions performed by 
a database, as well as the algorithms 
that implement them, are built to work 
around the performance bottleneck 
that is the hard disk. If you have a re-
quirement that your data (and meta 
data) be durable, then you must pay 
this penalty one way or another.

The Hard Disk
The serial ATA (SATA) bus of a typical 
server (Ivy Bridge Architecture) has a the-
oretical maximum bandwidth of 750MB 
per second. That seems high, but com-
pare that with the PCI 3.0 bus, which has 
a maximum of 40GB per second, or the 
memory bus, which can do 14.9GB per 
second per channel (with at least four 
channels). The SATA bus has the lowest-
bandwidth data path within a modern 
server (excluding peripherals).5 

In addition to the bandwidth bottle-
neck, there is latency to consider. The 
highest-latency operation encountered 
within a data center is a seek to a ran-

Disambiguating 
Databases



C
R

E
D

I
T

 T
K

JANUARY 2015  |   VOL.  58  |   NO.  1   |   COMMUNICATIONS OF THE ACM     55



56    COMMUNICATIONS OF THE ACM    |   JANUARY 2015  |   VOL.  58  |   NO.  1

practice

duplication within a database through a 
process called normalization.7

Lately, however, the cost of disk 
storage has fallen considerably,3 mak-
ing the economic factor of relational 
databases less relevant. Despite this, 
they are still widely used today because 
of their flexibility and well-understood 
models. Also, SQL—the lingua franca 
of relational databases—is commonly 
known among programmers.

Relational databases work by al-
lowing the creation of arbitrary tables, 
which organize data into a collection 
of columns. Each row of the table con-
tains a field from each column. It is 
customary to organize data into logi-
cally separate tables, then relate those 
tables to one another. This allows con-
stituent parts of a greater whole to be 
modified independently.

A major downside of relational da-
tabases is their storage models do not 
lend themselves well to storing or re-
trieving huge amounts of data. Query 
operations against relational tables 
typically require accessing multiple 
indexes and joining and sorting re-
sult vectors from multiple tables. 
These sophisticated schemes work 
well for 1GB of data but not so well 
for 1TB of data.

The fundamental trade-off a rela-
tional database makes is saving disk 
space in return for greater CPU and 
disk load.

The benefits of this model are many: 
it uses the lowest amount of disk space; 
it is a well-understood model and query 
language; it can support a wide variety 
of use cases; it has schema-enforced 
data consistency.

The downsides of this model are 
that it is typically the slowest; its sche-
mas mean a higher programmer over-
head for iterating changes; and it has 
a high degree of complexity with many 
tuning knobs.

Key-value model. Key-value stores 
have been around since the beginning 
of persistent storage. They are used 
when the complexity and overhead of 
relational systems are not required. 
Because of their simplicity, efficient 
storage models, and low runtime over-
head, they can usually manage orders-
of-magnitude more operations per sec-
ond than relational databases. Lately, 
they are being used as event-log collec-
tors. Also, because of their simplicity, 

dom location on a hard disk. At pres-
ent, a 7200RPM disk has a seek time of 
about four milliseconds. That means 
it can find and read new locations on 
disk about 250 times a second. If a 
server application relies on finding 
something on disk at every request, it 
will be capped at 250 requests per sec-
ond per disk.4

Once a location has been found, 
successive append-to or read-from 
operations at that same location are 
significantly cheaper. This is called a 
sequential read or write. Algorithms 
regarding data storage and retrieval 
have been optimized against this fact 
since magnetic rotating disks were 
invented. Typically, people refer to 
file operations as either random or se-
quential, with the understanding the 
latter comes at a far lower cost than 
the former.

Solid-state drives (SSDs) have 
brought massive latency and through-
put improvements to disks. A seek on 
an SSD is about 60 times faster than a 
hard disk. SSDs bring their own chal-
lenges, however. For example, the 
storage cells within an SSD have a 
fixed lifetime—that is, they can han-
dle only so many writes to them before 
they fail. For this reason, they have 
specialized firmware that spreads 
writes around the disk, garbage col-
lects, and performs other bookkeep-
ing operations. Thus, they have fewer 
predictable performance characteris-
tics (though they are predictably faster 
than hard disks).

The Page Cache
Because of the high latency and low 
throughput of hard drives, one opti-
mization found in nearly every operat-
ing system is the page cache, or buffer 
cache. As its name implies, the page 
cache is meant to transparently op-
timize away the cost of disk access by 
storing contents of files in memory 
pages mapped to the disk by the op-
erating system’s kernel. The idea is 
the same local parts of a disk or a file 
will be read or written many times in 
a short period of time. This is usually 
true for databases.

When a read occurs, if the contents 
of the page-cache are synchronized 
with the disk, it will return that content 
from memory. Conversely, a write will 
modify the contents of the cache, but 

not necessarily write to the hard disk 
itself. This is to eliminate as many disk 
accesses as possible.

Assuming that writing a record of 
data takes five milliseconds, and you 
have to write 20 different records to 
disk, performing these operations in 
the page cache and then flushing to 
disk would cost only a single disk ac-
cess, rather than 20. Considering that 
accessing main memory on a machine 
is about 40,000 times faster than find-
ing data on disk, the performance sav-
ings add up quickly.

Every operating system has a differ-
ent model for how it flushes its chang-
es to disk, but almost all work with the 
scheduler to find appropriate points to 
silently sync the data in memory onto 
disk. Files and pages can also be manu-
ally flushed to disk. This is useful when 
you need to guarantee that data chang-
es are made permanent.8

Be aware the page cache is a sig-
nificant source of optimization, but 
it can also be a source of danger. 
If writes to the page cache are not 
flushed to disk, and a power, disk, 
or kernel failure occurs, you will lose 
your data. Be mindful of this when 
analyzing database solutions that le-
verage the page cache exclusively for 
their durability operations.

Database Features
Databases have dozens of classifica-
tions. Each of the hundreds of com-
mercially or freely available database 
systems likely fall into several of these 
classes. This article skips past the 
classifications and instead provides a 
framework through which each data-
base can be evaluated by its features.

The five categories of features ex-
plored here are: data model, API, trans-
actions, persistence, and indexing.

Data model. There are fundamen-
tally three categories of data models: 
relational, key value, and hierarchical. 
Most database systems fall distinctly 
into one camp but might offer features 
of the other two.

Relational model. Relational databas-
es have enjoyed popularity in recent his-
tory. Throughout the 1980s and 1990s, 
the chief requirement of databases 
was to conserve a rare and expensive 
resource: the hard disk. This is where 
relational databases shine. They allow 
a database designer to minimize data 



JANUARY 2015  |   VOL.  58  |   NO.  1   |   COMMUNICATIONS OF THE ACM     57

practice

they are often embedded into applica-
tions as internal data stores.

Key-value stores operate by associ-
ating a key (typically a chunk of bytes) 
to a value (typically another chunk of 
bytes). Also, because records are often 
homogeneous in size and have repli-
cated data, they can be heavily com-
pressed before being stored on disk. 
This can drastically reduce the band-
width required across the SATA bus, 
which can provide performance gains.

Through clever row and column cre-
ation, and even schema application, 
some key-value stores can offer a sub-
set of relational features, but they typi-
cally offer far fewer features for data 
modeling than a relational system. If 
multiple indexes are needed, they are 
simulated by using additional key- 
value lookups.

This is a fast, fairly flexible, and easi-
ly understood storage model; however, 
it often has no schema support, so no 
consistency checks, and its application 
logic is more complicated.

Hierarchical model. The hierarchi-
cal, or document data, model has 
achieved popularity relatively recently. 
Its major advantage is ergonomics. The 
data is stored and retrieved from the 
database in the way it is stored within 
objects in an application.

The hierarchical model tends to 
store all relevant data in a single re-
cord, which has delineations for mul-
tiple keys and values, where the values 
could be additional associations of 
keys and values.

In the general case, all of the data 
of a real-world object is found within a 
single record. This means it will neces-
sarily use more storage space than the 
relational model because it is replicat-
ing the data instead of referencing it. It 
also simplifies the query model since 
only a single record needs to be re-
trieved from a single table.

Because the data being stored is 
heterogeneous in nature, compression 
can provide limited gains and is typi-
cally not used.

Hierarchical databases typically of-
fer some relational features, such as 
foreign references and multiple index-
es. Many such databases do not offer 
any schema support, as the data struc-
ture is arbitrary.

This is the most flexible model. Its 
arbitrary indexes support easy access 

to data and it has the highest fidel-
ity between application data structures 
and on-disk data structures.

On the downside, this model has 
the highest disk-space usage; and 
without a schema, data layout is ar-
bitrary, so there are no schema or 
consistency checks.

API
The application programming inter-
face (API) is, in short, how you and 
your program interact with a data-
base. The interface can be diced in 
many different dimensions, but let’s 
start with two:

In process vs. out of process. If the 
database is running in the same process 
(at least partially) as the client applica-
tion, then typically there is a library of 
function calls that invoke methods in 
the database engine directly. This tight 
coupling results in the lowest possible 
latency and highest possible band-
width (memory). It reduces flexibility, 
however, since it means only a single 
client application can access the data 
at one time. It also poses an additional 
risk: if the client application crashes, 
so does the database, since they share 
the same process.

If the database runs in a separate 
process, a protocol over TCP/IP is typi-
cally used. Many RDBMSs (relational 
database management systems), and 
recently, other types of databases, sup-
port either the ODBC (open database 
connectivity) or JDBC (Java database 
connectivity) protocols. This simpli-
fies the creation of client applications, 
as the libraries that can leverage these 
protocols are plentiful. A network pro-
tocol does drastically improve flexibil-
ity of a database, but TCP carries with 
it latency and bandwidth penalties ver-
sus direct memory access.

SQL vs. not. SQL is a declarative lan-
guage that was designed originally as 
a mechanism to simplify storage and 
retrieval of relational data. Its usage is 
ubiquitous, and as such, many devel-
opers speak the language fluently. This 
can aid the adoption of a database.

The biggest “innovation” touted 
by most NoSQL databases was simply 
achieving faster operations by remov-
ing transactions and relational tables. 
Many of those databases began to 
support SQL as an API language, even 
though they did not use its relational 

Because of  
the high latency  
and low throughput  
of hard drives,  
one optimization 
found in  
nearly every 
operating system  
is the page cache,  
or buffer cache. 



58    COMMUNICATIONS OF THE ACM    |   JANUARY 2015  |   VOL.  58  |   NO.  1

practice

an outsider were to see a partial set of 
completed steps, results would range 
from “amusing” to “horribly wrong.” 
Isolation is the guarantee that says this 
will not happen. It hides all of the op-
erations from others until the transac-
tion completes successfully.

Durability. An important trait in-
deed, durability simply promises that 
when the transaction completes the re-
sults of the operations will be success-
fully persisted on the specified storage 
medium (typically the hard disk).

Implementation of transactions. Six 
steps are common to ACID transactions:

1. Log the incoming request to per-
sistent storage in a transaction log 
(also known as a write-ahead log). This 
will protect the data in case of a system 
failure. In the worst-case scenario, this 
transaction will be able to be restarted 
from the log upon startup.

2. Serialize the new values to the in-
dex and table data structures in a way 
that does not interfere with existing 
operations.

3. Obtain write locks on all cells 
that need to be modified. Depending 
on the operation in question and the 
database, this might mean locking the 
entire table, the row, or possibly the 
memory page.

4. Move the new values into place.
5. Flush all changes to disk.
6. Record the transaction as com-

pleted in the transaction log.
Transactions have performance im-

plications. They can lead to speed-ups 
over performing the operations piece-
meal, since all of the disk operations 
are batched into a single set of opera-
tions. Also, if ACID, transactions are 
a form of concurrency control. Since 
they sit at the data itself, they can often 
be more efficient than custom-built 
concurrency solutions in the applica-
tion itself.

On the downside, transactions are 
not good for highly concurrent applica-
tions. Highly contentious operations 
will generate excessive replays and 
aborts (which result in more replays). 
They are also complex—all of the mov-
ing parts required to provide transac-
tions add to larger and less maintain-
able code bases.

Persistence Models
As previously stated, transactions and 
even indexing are completely optional 

features. Some SQL features such as 
querying, filtering, and aggregating 
were quite useful. Therefore, it was said 
that NoSQL databases should be re-
named NoACID (atomicity, consisten-
cy, isolation, and durability) because 
of their lack of transaction support. In 
2015, many of those same databases 
now have transactional support. These 
days, NoSQL might be more accurately 
called NoRelational, but NoSQL sounds 
better and is close enough.

One challenge of SQL is it must be 
parsed and compiled by the database 
engine in order to be used. This impos-
es a runtime overhead. Most database 
engines or client APIs work around this 
by precompiling, or compiling on the 
first run, the SQL-based function calls 
into prepared statements. Then the 
compiled version is saved and used for 
future calls.

SQL cannot effectively describe all 
data relationships. For example, hier-
archical relationships are difficult to 
describe in SQL. In addition, because 
of SQL’s declarative nature, iterations 
or other imperative operations are not 
describable in the core SQL specifica-
tion. The specification has been ex-
panded to include recursion to address 
both iteration and hierarchical rela-
tionships. In addition, vendors have 
provided nonstandard extensions of 
their own. Support for these extensions 
is not widely prevalent, however, and 
neither is the understanding of how to 
leverage them.9

In many cases the features of data-
bases are so sparse, lacking features 
such as indexing or aggregation, there 
is simply no reason to support the com-
plexity of a SQL parsing and execution 
engine. Key-value stores often fall into 
this category.

Transactions
A database transaction, by definition, 
is a unit of work treated in a coherent 
and reliable way. The most common 
recipe for database transactions is 
ACID. Many database systems claim 
support for transactions or “light-
weight” transactions, but they may 
provide only the features of ACID that 
are convenient and efficient to sup-
port. For example, many distributed 
databases offer the concept of trans-
actions without the isolation step. 
This means the data is being modified 

in place, and other transactions see 
that data while it is being modified. 
You can work around this if this be-
havior is expected. If not, the results 
could be disastrous.

Let’s briefly look at the ACID guar-
antees, and then what a database 
might do to provide them.

Atomicity. Within a transaction, 
there could be multiple operations. 
Atomicity guarantees all operations 
will either succeed or fail together. An 
operation could fail for a number of 
reasons:

 ˲ Constraints. A logical constraint 
is violated, such as foreign keys or 
uniqueness.

 ˲ Concurrency. Another process com-
pletes modification of a field that your 
process was going to modify, and to 
continue doing so would violate the at-
omicity guarantee of their transaction.

 ˲ Failure. Something in the hard-
ware or software stack fails, causing 
one of the operations to fail.

In a busy, concurrent database, fail-
ures can happen often. Without atomi-
city, data can get into an inconsistent 
state very quickly. Thus, atomicity is 
a key component of the next property  
of ACID.

Consistency. This guarantee means 
the state of the database will be valid to 
all users before, during, and after the 
transaction. Databases may make cer-
tain guarantees about the data itself. 
Basic guarantees such as serializability 
mean all operations will be processed 
in the order in which they are applied. 
This might sound easy, but when many 
applications with many threads are op-
erating on a system concurrently, (ex-
pensive) steps must be taken to ensure 
this is possible.

Relational databases often make an 
even larger set of consistency guaran-
tees, including foreign-key constraints, 
cascading operations on dependent 
types, or triggers that might be execut-
ed as part of this operation. In terms of 
performance, this means all of these 
operations might be running while 
rows and/or pages are locked for edit-
ing, so no other clients will be able to 
use those parts of the system during 
that time. It also, clearly affects the 
round-trip time of the request.

Isolation. Transactions do not hap-
pen immediately. They occur in steps, 
and, as in the atomicity example, if 



JANUARY 2015  |   VOL.  58  |   NO.  1   |   COMMUNICATIONS OF THE ACM     59

practice

within databases. Persistence, howev-
er, is their raison d’être.

The performance costs associated 
with disks (and the risk of data loss 
associated with the page cache) mean 
trade-offs with respect to how data is 
stored and retrieved. A multitude of 
highly specialized data structures are 
tailored to different access models, 
and, typically, if a data structure ex-
cels in one area, it will perform poorly 
in another area. A scheme for insert-
ing large amounts of incoming events 
in a sequential manner will likely not 
offer great performance for random 
updates (or may not even offer that 
capability at all).

Across all of the potential schemes 
for storage and retrieval of data, four 
of the broadest categories are: row 
based, columnar, memory only, and 
distributed.

Row based. The most common stor-
age scheme is to store data, row by 
row, in a tree or some other compact 
data structure on a local hard disk. Al-
though the exact data structures and 
access models vary, this mechanism is 
fairly universal.

In row-based storage, the rows 
themselves are contiguous in memory. 
This usually means the storage model 
itself is optimized for fetching regions 
of entire rows of data at one time.

There are two common data struc-
tures for storing rows. The B+ tree is 
optimized for random retrieval, and 
the log-structured merge (LSM) tree is 
optimized for high-volume sequential 
writes.

B+ tree. A B+ tree is a B-tree-style in-
dex data structure optimized for, you 
guessed it, minimizing disk seeks. It 
is one of the most common storage 
mechanisms in databases for table 
storage. It is also the data structure of 
choice for almost all modern file sys-
tems. The B+ tree is typically a search 
tree with a high branching factor, and 
each node is a contiguous chunk of 
memory containing more than one 
key. This is specifically designed to 
maximize the probability that multi-
ple keys can be compared with only a 
single retrieval of data from disk.1

Figure 1 shows how B-tree-based 
row storage is laid out in memory. Each 
leaf node has space for four keys, re-
ducing the amount of disk lookups 
that need to be executed per row. The 

key in the tree points to a region on 
disk or memory that stores the row, 
which is arranged serially by column. 
Also note that at each node, not every 
cell needs to be filled; they can remain 
free for future values.

Log structured. The LSM tree is a 
newer disk-storage structure opti-
mized for a high volume of sequential 
writes. It is designed to handle massive 
amounts of streaming events, such as 
for receiving Web-server access logs in 
real time for later analysis.

Despite its origins in log-style event 
collection, the LSM tree is beginning 

to be used in relational databases as 
well. It has a major trade-off, however, 
in that you cannot delete or update in 
an LSM data structure as part of the 
standard data path. Such events are 
recorded as new records in the log. 
When reading an LSM tree, you typi-
cally start from the back to read the 
newest version of the data.

Periodically, the records that have 
been made obsolete by subsequent 
deletes or updates must be garbage 
collected. This is typically called a com-
paction process. Some LSM systems 
compact in separate threads at run-

Figure 1. The layout of a B-tree-based row storage in memory.

6 15 22 36

8 1863 Gettysburg Address 3 1215 Magna Carta

1 4 5 7 8 9 10 25 27 29 3216 19 20

…

Figure 2. The layout of a columnar data file.

Id

1 2 3 4 5 6 7 8 9 10

1:1687

1: Principa Mathematica 4: Stand on Zanzibar 5: Tre

of Versailles 6: Declaration of Independence 7: El

4:1968 5:1919 6:1776

Year Name



60    COMMUNICATIONS OF THE ACM    |   JANUARY 2015  |   VOL.  58  |   NO.  1

practice

ing the balance between speed and per-
sistence. It might be too risky to store 
data only in memory on a local ma-
chine, as data loss would be complete 
if the machine crashed. If you copy 
the data across many machines, then 
your risk of total data loss is reduced. 
It is up to the application developer to 
determine the probability of machine 
failure and the level of acceptable risk.

Page-Cache Considerations
When you opt to store to disk, the page 
cache is likely to be involved. Access-
ing the disk directly would be far too 
cumbersome and would hamper the 
performance of any other applications 
running on the system, as you would be 
monopolizing the disks unnecessarily.

The question of when to flush from 
the page cache to disk is perhaps the 
most important of all when designing 
a database, as it tells you exactly how 
much risk you have for data loss.

Many databases purport many thou-
sands of operations per second. These 
databases often operate entirely on 
data structures on memory-mapped 
pages in the page cache. That is how 
they achieve their speed and through-
put—by working on in-memory data 
structures. They do this by deferring all 
flushing and syncing operations to the 
operating system itself. This means it is 
up to the kernel to decide when data in 
the cache should be persisted to disk. It 
will likely take into account not only the 
database, but also all applications run-
ning on the system. This means the ac-
tual persistence of the data is being left 
to the operating system, which does not 
understand the application domain or 
data reliability requirements.

If durability is not a strong require-
ment, then deferring to the operating 
system is probably fine. In most cas-
es, though, it is important to be clear 
about the behavior of the database 
with respect to the page cache.

For systems that sync automatically:
 ˲ If it flushes too frequently, it will 

have poor performance.
 ˲ If it flushes infrequently, it will be 

faster, but there is a risk of data loss.
A better approach might be to lever-

age a manual syncing scheme for the 
database, since that will provide the 
control to match the guarantees an ap-
plication requires. This increases the 
complexity of applications. For highly 

time; other systems attempt to incre-
mentally compact in place.6

Columnar. Column-based data stores 
optimize for retrieving regions of the 
same column of data, rather than rows of 
data. For this reason, successive columns 
are stored contiguously in memory.

Because all data types in a column 
are necessarily the same, compression 
can have a huge positive impact, thus 
increasing the amount of data that can 
be stored and retrieved over the bus. 
Also, breaking up the data into mul-
tiple files, one per column, can take 
advantage of parallel reads and writes 
across multiple disks simultaneously.

The downside of column-based da-
tabases is they are often inflexible. A 
simple insert or update requires a sig-
nificant amount of coordination and 
calculation. Because data is so typically 
tightly packed (and compressed) in col-
umns, it is not easy to find and update 
the data in place.

To help keep “rows” in sync across 
column files, many times a column 
field will also contain a copy of the 
primary key (or row ID, if there are no 
keys). This aids in reassembly of the 
data into rows, but it reduces the effi-
ciency of storage and retrieval.2

Figure 2 shows a columnar data file. 
Each data type is laid out in its own 
contiguous region, whose offset is in-
dicated in the master column. Column 
files are typically built and rebuilt in 
batches to serve data-warehousing ap-
plications for massive datasets.

Memory only. In many cases, du-
rability is simply not a requirement. 
This is common for systems such as 
caches, which update frequently and 
are optimized for nothing other than 
access speed. Because data in caches 
is typically short lived, one may not 
need to persist to disk. This is where 
in-memory databases shine. Without 
the requirement to store and retrieve 
from the disk, a much wider variety of 
sophisticated trees can be leveraged.

Distributed. The topic of distribut-
ed databases is vast and would require 
its own series of articles for proper 
coverage. In the context of persistence, 
however, there is one relevant fact: it is 
faster to copy a dataset across the net-
work within a data center than it is to 
store it onto a local disk.

Distributed databases can provide 
an interesting option when establish-

All of the data  
of a real-world 
object is generally 
found within  
a single record. 
This means it will 
necessarily use 
more storage space 
than the relational 
model, because  
it is replicating  
the data instead  
of referencing it. 



JANUARY 2015  |   VOL.  58  |   NO.  1   |   COMMUNICATIONS OF THE ACM     61

practice

concurrent systems, the difficulty level 
increases, as a disk operation serving 
one application might interfere exces-
sively with another application.

Systems such as transactions and 
batch operations that sync at the end 
can be beneficial. This will reduce the 
number of disk accesses, but there is 
a very clear guarantee as to when the 
data is flushed to disk.

Indexing
Data is rarely stored as an isolated val-
ue. It is typically a heterogeneous col-
lection of fields that make up a record. 
In relational databases, those fields are 
called columns, and they are fixed to 
the schema that defines the tables.

In nonrelational databases, hetero-
geneous fields are still often accom-
modated and even indexed. When you 
want to look up a table by specifying 
one of the fields in a record, that field 
needs to be part of an index. An index 
is just a data structure for performing 
random lookups, given a specified field 
(or, where supported, a tuple of speci-
fied fields).

To tree, or not to tree. Since a B-tree 
is an on-disk data structure as well, it 
is the tool of choice for most lookup in-
dexes, since it efficiently supports hard 
disks. Unlike the B+ tree that stores 
data, a lookup index is optimized for 
storing references to data. A B-tree can 
accommodate inserts efficiently with-
out having to allocate storage cells for 
each operation. It also tends to be flat 
in structure, reducing the number of 
nodes that need to be searched, there-
fore reducing the number of potential 
disk seeks.

There are other options, however. 
For example, a bitmap index is a data 
structure that provides efficient join 
queries of multiple tables.

A tree-style index grows linearly for 
the number of items in the index, and 
search time grows with the depth of 
the tree (a logarithmic function of the 
total depth).

A bitmap index, on the other hand, 
grows with the number of different 
items in the index.  As the name implies, 
it builds a bitmap that represents the 
membership of values for all relevant 
columns. Multiple Boolean operations 
against bitmap indexes are very fast, 
and they produce new bitmaps that can 
be cached efficiently as search results.

One of the other major innova-
tions of the bitmap index is it can be 
compressed, and it can even perform 
query operations while compressed. 
This makes storage retrieval faster. 
It also makes the bitmap index more 
CPU cache friendly, which can fur-
ther reduce latencies. Because of its 
more complicated update process, 
the bitmap index tends to be used in 
read-heavy systems, especially those 
with multidimensional queries such 
as OLAP (online analytical process-
ing) cubes.

Indexing performance summary. 
Unless your only data-access model is 
a full scan of large regions of data, you 
will probably need indexes. Every ad-
ditional index that your dataset lever-
ages, however, will add increased disk 
and CPU load, as well as increasing the 
latency of inserts.

If your system is read-heavy, and 
it possesses a relatively low variety of 
data in the columns (known as low car-
dinality), you can take advantage of bit-
map indexes. For everything else, there 
are tree indexes.

Many indexes require a unique key 
to point to a record. If it is the only 
unique index for that record, it is re-
ferred to as the primary key. Even sche-
ma-less databases often support such 
an indexing constraint. They can help 
ensure consistency and detect errors 
when loading data.

For performance, there is one basic 
rule to follow: index as little as pos-
sible. Almost every database that sup-
ports adding indexes will allow you to 
add them after the data is loaded. So 
add them later, once you are sure you 
need them. Using a unique index can 
provide a double benefit of ensuring 
data consistency.

If all of your data is loaded at once 
(in a data-mart model, perhaps), you 
might benefit from creating indexes af-
terward. This can even result in a more 
efficient index, as many indexes suffer 
negative effects from fragmentation 
caused by many inserts and updates.

Pulling It All Together
The trade-offs between performance 
and safety revolve around the disk. You 
might just get the best of both worlds 
if you choose the database that is built 
exactly for your access model. Take the 
time to understand your access model 

thoroughly and to know which features 
you require and which you are willing 
to forgo in the name of performance.

If you do not need guaranteed and 
immediate durability for every opera-
tion, you can delay persisting the oper-
ation to disk by leveraging a memory-
mapped data structure. Understand 
the risk of data loss is present any time 
you rely on memory to speed things 
up. If a failure occurs, those pending 
writes can disappear.

Regardless of your application, take 
time to understand the page cache in 
your operating system. Writes that you 
think are safe may not be. It, too, has 
many settings for fine-tuning perfor-
mance. It can be set to be highly para-
noid but busy, or carefree and fast. You 
should be very clear about how and 
when your database writes to disk. If 
it defers to the operating system, then 
take steps to ensure it behaves correct-
ly for your use case.

It is worth verifying that your expec-
tations match reality. It may just save 
your data. 

  Related articles  
  on queue.acm.org

Bridging the Object-Relational Divide 

Craig Russell
http://queue.acm.org/detail.cfm?id=1394139

Sentient Data Access via a Diverse Society 
of Devices 

George W. Fitzmaurice et al.
http://queue.acm.org/detail.cfm?id=966721

Distributed Computing Economics 
Jim Gray
ttp://queue.acm.org/detail.cfm?id=1394131

References
1. B-trees; http://www.scholarpedia.org/article/B-tree_

and_UB-tree.
2. Column-oriented databases; http://en.wikipedia.org/

wiki/Column-oriented_DBMS.
3. Hard-drive costs; http://www.mkomo.com/cost-per-

gigabyte-update.
4. Latency numbers; http://www.eecs.berkeley.edu/~rcs/

research/interactive_latency.html.
5. LGA; http://en.wikipedia.org/wiki/LGA_2011.
6. LSM trees; http://dl.acm.org/citation.cfm?id=230826; 

and http://www.eecs.harvard.edu/~margo/cs165/
papers/gp-lsm.pdf.

7. Normalization; http://en.wikipedia.org/wiki/Database_
normalization.

8. Page cache; http://www.westnet.com/~gsmith/
content/linux-pdflush.htm.

9. SQL; http://en.wikipedia.org/wiki/Hierarchical_and_
recursive_queries_in_SQL.

Rick Richardson is a systems architect for 12Sided 
Technology where he is helping to reinvent market 
structure and forge the next generation of trading systems 
for the financial world. 

Copyright held by author. Publication rights licensed to 
ACM, $15.00.



Copyright of Communications of the ACM is the property of Association for Computing
Machinery and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.


