
A Tool Supporting End-User Development of Access

Control in Web Applications

Loredana Caruccio*,§, Vincenzo Deufemia*,¶, Christopher D'Souza†,‡,||,
Athula Ginige‡,** and Giuseppe Polese*,††

*University of Salerno, Via Giovanni Paolo II, 132

84084 Fisciano(SA), Italy

†Australian Catholic University, 40 Edward Street

North Sydney, NSW 2060, Australia

‡University of Western Sydney, Locked Bag 1797
Penrith, NSW 2751, Australia

§lcaruccio@unisa.it
¶deufemia@unisa.it

||Christopher.D’Souza@acu.edu.au
**a.ginige@uws.edu.au

††gpolese@unisa.it

End-user development (EUD) is drawing an increasing attention due to the necessity of users to

frequently extend and personalize their applications. In particular, EUD in the context of Web

(EUDWeb) is focusing on technologies capable of supporting development tasks that the end-
user feels more complex. However, although the speci¯cation and implementation of access

control is perceived as a particularly complex task, little e®orts have been made to support it

within current EUDWeb environments. Thus, in this paper we propose an EUDWeb framework
and tool for the speci¯cation and the generation of web applications embedding access control

mechanisms. We extended a previous mockup-based EUDWeb approach, by introducing visual

assistance mechanisms enabling the speci¯cation of role-based access control policies, and their

integration within the application logic. The usability of the proposed framework has been
evaluated by means of a user study, in which we have shown that a group of heterogeneous end-

users could pro¯ciently use the proposed framework to develop meaningful web applications,

some of which including access control functionalities.

Keywords: Human Computer Interaction; visual languages; web application modeling; access

control; RBAC.

1. Introduction

Modern applications and mobile devices have contributed to increase the partici-

pation of users to the digital society [28]. People actively use applications, and often

manifest the necessity to personalize them, but they cannot a®ord the costs of

professional developers, nor they are willing to depend on them for the continuous

International Journal of Software Engineering

and Knowledge Engineering

Vol. 25, No. 2 (2015) 307–331

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194015400112

307

http://dx.doi.org/10.1142/S0218194015400112

updates they need. For this reason, end-user development (EUD) has been boosted in

the context of internet applications [18, 32], and many technologies are being pro-

posed to empower end-users not only to autonomously personalize their applications,

but also to develop several types of enterprise level internet applications [7, 22, 25].

EUDWeb technologies have focused on the support of development tasks that the

end-user perceives as more complex [32], such as application control °ow, state-less

protocols, database management, access control, and so forth. In particular, con-

cerning access control, while end-users are often able to understand and specify

access control policies in their application domains, they might fail to embed them

within a web application (Webapp) [32]. This is not a minor issue, since access

control has long been identi¯ed as a necessary feature in applications, especially

Webapps, due to the fact that they are remotely invoked by numerous users, by

means of many di®erent devices and software platforms, hence there are many more

risks of malicious attacks.

In the literature, there are several proposals to simplify the speci¯cation of access

control policies through visual languages, and for several types of software applica-

tions, including legacy ones [14]. However, although these proposals employ user-

friendly notations, they have been mainly exploited in the context of professional

programming activities.

In this paper we propose an EUDWeb framework and tool for the speci¯cation

and the generation of Webapps embedding access control mechanisms. We extended

a previous mockup-based EUDWeb approach and tool [10], by introducing visual

assistance mechanisms enabling the speci¯cation of role-based access control

(RBAC) policies [13, 33], supporting their implementation and integration within

the Webapp logic. The framework is composed of three main visual environments:

MODE enables end-users create both the look-and-feel of the application and its

behavior by exploiting mockups; RODE enables end-users specify the role hierarchy;

VULCAN provides the visual language for de¯ning control actions. A pioneer version of

the framework has been described in [5]. With respect to such a version, in this work

we have improved the look and feel of the VULCAN environment and have provided a

formal description of its underlying visual language. Moreover, we have provided

initial validation of the whole framework by means of a user study which involved

eight heterogenous end-users. The results show that the framework enables end-users

build meaningful Webapps, also those including access control functionalities,

thanks to the intuitiveness of the metaphors underlying the proposed environments,

which made it possible to accomplish su±ciently complex programming tasks.

The proposed framework provides a twofold contribution to EUD research. First,

through our mockup-based EUDWeb approach we make it possible handling access

control within Webapps in a user-friendly fashion. Secondarily, our visual notation

enables the end-user condition the logic of single actions, based on the role associated

to the user executing them.

The structure of the paper is as follows. In Sec. 2 we brie°y review approaches

using mockups for Webapp development, and discuss visual notations for the

308 L. Caruccio et al.

speci¯cation of access policies. In Sec. 3 we introduce the proposed EUDWeb

framework for generating Webapps embedding RBAC policies. The MODE and

VULCAN environments are presented in Secs. 4 and 5, respectively. The architecture of

the generated Webapp is detailed in Sec. 6, whereas the usability evaluation of the

proposed framework is provided in Sec. 7. Finally, conclusion and future works end

the paper in Sec. 8.

2. Related Work

In this section, we ¯rst discuss visual EUD approaches for the generation of

Webapps. Then, we survey recent metaphors proposed for the de¯nition and man-

agement of access and security policies.

2.1. EUD for web applications

Although EUD approaches and tools have been de¯ned for simplifying the devel-

opment of desktop applications [4, 23, 24], with the advent of Webapps this research

area has received a renovated interest.

Many EUDWeb approaches and tools were intended for mashup development

support, which can be seen as a special case of EUDWeb where a Webapp is con-

structed by integrating existing ones. For instance, Nichols and Lau present a system

allowing users to create a mobile version of a Website by composing pieces of con-

tents encountered during a web navigation session [26]. Similarly, Toomim et al.

enable end-users compose their Webapp by selecting sample data fromWebsites, and

automatically generate user interface (UI) enhancements [37]. Vegemite is a tool

providing end-users with direct manipulation and programming-by-demonstration

paradigms to populate tables, by extracting information from several Websites [21].

Alternatively, EUD environments have been proposed to compose Webapps from

scratch, by following a model-driven approach [29, 30]. In this context, most pro-

posals are based on UI mockups, due to their intuitiveness and e®ectiveness in re-

quirement gathering and validation. In particular, in [30] the requirements gathering

mockups created with the commercial software Balsamiq [1] are manually enriched

with tags conveying semantics to its elements. This enables the translation of the

enriched speci¯cation into an abstract UI model that is in turn converted into the

presentation and the navigation models of a Webapp. Finally, after a series of

transformations, developers achieve their executable prototype. The mockup-based

approaches presented in [31] and [9] merely generate code implementing the UI

skeleton, while the rest of the application needs to be manually coded.

The visual modeling approach proposed in [10] represents both static and beha-

vioural information of a Webapp in a visual model. In particular, the visual model

enables the speci¯cation of the Webapp look-and-feel through mockups, and of the

user interactions through links, annotations, and widget references. End-users are

guided during the modeling process through a summary view, for managing the

A Tool Supporting End-User Development of Access Control in Web Applications 309

design of complex applications, and a data model view, for improving the quality of

the generated applications.

Mockup-based navigational diagrams were proposed in [3] to formalize require-

ment analysis, in order to reduce the gap between end-user developers and software

developers. Such diagrams contain essential components related to user interactions

and navigational information. The mockup-based diagram is a graph where the

nodes are either web pages or business entities, whilst the edges represent transition

events.

Alternatively, the layout and the behaviour of a Webapp can be speci¯ed by

means of window/event diagrams (WED), which represent a combination of UI

models and state charts [35]. The tool supporting the WED notation is capable of

generating code for prototype validation.

To our knowledge, none of the existing EUDWeb approaches and tools have

explicitly and e®ectively addressed the problem of including access control within

Webapps.

2.2. Visual speci¯cation of access control

Di®erent models have been proposed to support the de¯nition of rules and con-

straints for guaranteeing secure access to resources handled within information

systems. Among these, it is worth mentioning access control list [20], task-based

authorization control (TBAC) [36], and the role-based access control (RBAC) model

[13, 33]. To simplify their de¯nition and management, several visual metaphors have

been proposed. As an example, the Miró system [16] provides two visual languages

for the speci¯cation of authorization policies: an instance language for specifying an

access matrix and a constraint language to specify possible restrictions of the system

on which access permissions should be enforced. Such languages are based on hier-

archical graphs, which make them di±cult for unexperienced users. The Language

for Security Constraints on Objects (LaSCO) exploits an annotated constraint graph

to let users visually specify authorization policies [17], but it lacks a metaphor-based

paradigm to facilitate its use to unexperienced users.

The visual language hierarchy (VTBAC) and the visual security administrator

(VISA) system enable the visual speci¯cation of access control policies based on the

TBAC model [6].

An alternative graphical speci¯cation of RBAC policies uses a generalization of

string grammars to nonlinear structures [19], together with graph transformation

tools. The model driven security (MDS) approach integrates system models and

security requirements within a CASE-tool [2], enabling the automatic generation of

system architectures, including complete, con¯gured, access control infrastructures.

The approach proposed in this paper is inspired by the suite of visual languages

presented in [15], used for specifying RBAC policies and for implementing them in

the XACML language. In particular, the role diagram is used to model roles and

relations among them, the permission diagram allows an administrator to specify the

310 L. Caruccio et al.

access policies to the available resources, the separation of duties diagram is used to

specify constraints, e.g. the resources that cannot be employed by users who have

played a given role, and ¯nally, the role assignment diagram is used to assign users to

roles.

3. EUD of Access Control Policies in Web Applications:

A Mockup-Driven Approach

The RBAC methodology is based on three fundamentals concepts: user, role, and

action, and on the idea that the association between a user and an action is related to

the concept of role, which should be assigned to each user [34]. In other words, the

association between single users and actions should indirectly occur through the

de¯nition of a policy of permissions (representing the triple role, resource, and action,

including the associated rule), which is de¯ned according to a role; and the associ-

ation of users to roles. RBAC also includes the concept of role hierarchy, which

provides the possibility to de¯ne hierarchical relationships between roles, through

which it is possible to organize authority and responsibility.

One of the most frequently used languages to de¯ne access control policies in the

RBAC methodology is the eXtensible Access Control Markup Language (XACML),

which has also become a standard in 2005 [27]. Since XACML is an XML based

language, it provides the advantage of implementation independence. Moreover, it

enables the de¯nition of access policies at di®erent levels of detail, including the

composition of policies, and the resolution of con°icts. Nevertheless, XACML is not a

simple to use language, which has motivated the development of higher level lan-

guages from which XACML code could be automatically generated [39], including

visual languages for particularly unexperienced users [15]. However, such languages

have been embedded within integrated development environments (IDEs), hence

they have been targeted to programmers, whereas it would be useful having them

available within EUD environments for Webapps. Thus, in what follows, we describe

a framework and a tool embedding visual languages for access control within a

mockup-based EUDWeb environment.

Figure 1 shows the process underlying the proposed framework, through which

the end-user will build his/her Webapp by means of three main environments: the

ROle Diagram Environment (RODE), the MOckup Development Environment

(MODE), and the VisUal Language for Control ActioN de¯nition (VULCAN) envi-

ronment. In particular, the end-user can use RODE to accomplish the ¯rst step in the

speci¯cation of RBAC policies, that is, to specify the role hierarchy. An example of

role hierarchy is shown in Fig. 2, where the role icons have associated a label,

representing the role name, and a unique color to increase the level of user awareness.

Moreover, the hierarchy represents an inheritance chain, which simpli¯es the task of

end-users when specifying permissions for a role, since those speci¯ed for ancestor

roles are inherited. In the example of Fig. 2 the role Admin inherits permissions from

Employee, which in turn will inherit permissions from User.

A Tool Supporting End-User Development of Access Control in Web Applications 311

Successively, the user speci¯es the whole Webapp by means of the MODE envi-

ronment. In particular, in MODE the end-user can create the mockups of the web

pages composing the Webapp, and enrich them with the speci¯cation of user inter-

action events, so enabling the automatic generation of the data model, the view, and

the control logic of the whole Webapp [10]. After that, the end-user can specify the

control °ow of actions associated to user interaction events by means of the VULCAN

environment. The latter also provides icon operators enabling the speci¯cation of

access control policies associated to some of the speci¯ed actions, also exploiting the

roles de¯ned within RODE.

RODE also enables the automatic translation of the mappings between roles and

colors into an XML ¯le, which is exploited by MODE to highlight the roles autho-

rized to access a given web (sub-)page. Moreover, both the speci¯cations created

with RODE and VULCAN are automatically translated into an XACML ¯le (Policy

Set), which is inquired by the generated Webapp in order to decide whether to grant

or deny access to a requested resource.

Fig. 1. The proposed EUDweb development process for generating Webapps embedding access control

mechanisms.

312 L. Caruccio et al.

In what follows, dedicated sections will provide details about the MODE and

VULCAN environments. To this end, we will ¯rst introduce a running example to help

illustrate concepts. In particular, we will refer to the speci¯cation of a Webapp for

purchasing books and ebooks online. In this context, we will consider the following

three roles: administrator, premium user, and user. The former has permissions to

add new products to the online catalogue; the premium user can purchase both

printed and online books, and is given the possibility to gain points for future dis-

counts; ¯nally, the user can only purchase printed books.

4. The MODE Environment

TheMODEEnvironment extends the mockup-based EUDWeb approach proposed in

[10] to embed the visual speci¯cation of actions associated to user interaction events,

such as those related to the granting of access to given resources upon user requests.

In what follows, we ¯rst introduce the modeling process underlying MODE [10],

and then we describe its extension to support the speci¯cation of control actions,

including actions related to access control.

Fig. 2. The RODE environment with a role diagram.

A Tool Supporting End-User Development of Access Control in Web Applications 313

4.1. A mockup-driven modeling process for webapps

Typically, end-users specify the requirements of Webapps by sketching a set of UIs

composing them. Based on this way of conceiving Webapps by end-users, the

EUDWeb visual modeling approach underlying MODE starts with the creation of

the mockup of the UI, which is enriched with user interaction information to auto-

matically derive: the data model, the view, and the control logic of the Webapp [10],

as shown in Fig. 3.

Figure 4 shows a portion of the mockup for the running example. In particular,

the ¯gure shows a mockup for the home page, which is colored according to the role

user (see Fig. 2) to indicate that all the roles from user and higher can access it to

enter login information. The orange colored mockups are only accessible to the role

administrator to enter new books or search for existing ones, and to assign roles to

users. The blue mockups are those accessible to all roles to search and purchase

books, whereas the purple ones are only accessible to premium users, who are allowed

to search and purchase ebooks, paying without entering credit card information.

The interaction behaviour is speci¯ed according to the Valverde and Pastor's

dynamic model of the UI, which captures ¯ve essential aspects of behavioural in-

formation [38], embedded in the mockup as follows:

. the navigational information is visually modeled using a red arrow (for example, in

Fig. 4, clicking on Add new eBook button on the Admin Home page causes the user

navigate to the eBook Registration page);

. the data request on demand reaction is modeled using an assignment statement `¼'

in the widget that displays the requested data (for example, the expression

`=Title' on the Book Search page issues a data request to the database storing the

books),

Fig. 3. The end-user modeling process proposed in [10].

314 L. Caruccio et al.

. the functional invocations are visually captured by a red arrow along with

an optional event and an action (for example, clicking the Submit button triggers

the invocation of the local search method with login and password as

arguments),

Fig. 4. Overview of UI mockup of a Webapp for purchasing books and ebooks.

A Tool Supporting End-User Development of Access Control in Web Applications 315

. the input validation is modeled by using the symbolic character `?', followed by a

validation rule speci¯ed in a suitable widget (for example, the Card Number widget

has associated the validation rule ?(digits) to constrain users input only digits),

and

. the property changes are modeled as a red arrow between the source widget

triggering the changes, and the target one undergoing the change.

The output of the visual speci¯cation is an XML document to be used for the

automatic generation of the textual User Interface Description Language (UIDL)

code, and a view template [10]. The UIDL code is a high-level textual speci¯cation

equivalent to the visual one, and it can be used to de¯ne behaviours requiring

complex computations, and to derive the data model. The view template de¯nes

concrete details, such as the actual position of widgets in a page, along with their

styling features, in a platform independent fashion. Finally, the view templates and

the data model are used to derive the control logic of the application.

4.2. De¯nition of access control actions

From the previous subsection we have seen that MODE enables end-users to develop

their own Webapps through a WYSIWYG (What You See Is What You Get)

paradigm. However, there might be some inner computations that the end-user is

familiar with, which need not be speci¯ed within the UI. Thus, it is necessary to

empower end-users with the possibility of specifying the behavior triggered by a

speci¯c UI event through metaphors based on their own enterprise processes.

In order to ensure a proper level of user-friendliness for such end-user process, we

propose the visual language VULCAN (VisUal Language for Control ActioN de¯ni-

tion) to de¯ne the application logic of actions triggered by UI events. In this context,

particularly important can be the speci¯cation of actions concerning access control

policies. In what follows, we detail how MODE supports the speci¯cation of this type

of actions, and in particular, the metaphors used within mockups to recall roles and

their permissions. The details of the VULCAN language will be discussed in Sec. 5.

4.2.1. Control °ow speci¯cation

When specifying the control °ow of an action, the end-user might want to condition

it on the actor's role. In the MODE environment this will be speci¯ed by placing a

role icon on the arrow representing the action °ow, immediately before a fork.

Moreover, the background color of each target page will indicate the lowest role

required to access it. As an example, in Fig. 4, the action to be executed upon clicking

the Sign in button on the Home Page depends on the role of the actor. In particular, if

the actor has the Admin role, then the orange colored Admin Home Page will be

visualized, whereas actors with other roles will be directed towards a blue colored

Book Search page.

316 L. Caruccio et al.

The details on the role-based control °ow de¯nition can be de¯ned through

VULCAN, which enables the speci¯cation of aspects concerning the application logic

underlying an action, as explained in the next section.

4.2.2. Visualization of the requested role within mockups

The role associated to an actor could also be taken into consideration to decide

whether to visualize some containers of a page. This o®ers the possibility to de¯ne the

same page for di®erent roles, but some elements will only be visible to users with

higher privileges. An example is reported in the Book Search page in Fig. 4, where

the section of the search results for eBooks will only be visible to actors with at least

the role Premium, even though the whole page is accessible to all users.

MODE also o®ers the end-user the possibility to visualize only the mockups

accessible to a subset of the speci¯ed roles. This also contributes to provide support

for debugging, which is perceived as one of the most complex activities for end-user in

the EUDWeb process [32].

5. The VULCAN Visual Language

The icon dictionary of the VULCAN visual language is reported in Table 1. The ¯rst

column depicts the icon for each icon operator, whereas the second column reports

the name of the icon operator, a brief description, possibly the input and output

operator, and ¯nally, the con¯guration parameters.

Table 1. The VULCAN icon operators for specifying action rules.

Icon Summary

LINK: This operator links visual operators and indicates the execution °ow in the action rule.

ITEM: This operator refers to the information de¯ned in an HTML input element of the

mockup or to the information contained in the input LINK operator.

CHECK: This operator de¯nes a conditional statement determining the branch to be executed.

INPUT OPERATORS: one or more LINKS

PARAMETERS: a boolean expression on the values of the input LINKS
OUTPUT: one or two LINKS, the one labeled true refers to the °ow executed when the boolean

expression is satis¯ed, whereas the other one (which is optional) is labelled false.

OPERATION: This operator enables operations on the input data.

INPUT OPERATORS: one or more LINKS

PARAMETERS: arithmetic expressions and/or functions on the input values
OUTPUT: a set of values produced by the application of the arithmetic expressions and/or

functions to the input data.

WEB SERVICE: This operator enables the invocation of web services.

INPUT OPERATORS: one or more LINKS

PARAMETERS: WSDL address, web service parameters
OUTPUT: a LINK referring to the °ow executed when the web service works correctly.

(Continued)

A Tool Supporting End-User Development of Access Control in Web Applications 317

The parameters for each icon operator can be speci¯ed through a con¯guration

panel, which appears in the UI when the operator is selected. As an example, Fig. 5

shows the screenshot of the panel for specifying the condition associated to a Check

operator. The end-user can select the input values of the icon operator from the list

Items, and the operation to be performed on them from the list Operators. S/he can

optionally specify constant values for the de¯ned condition.

Figure 6 shows another example of panel for the con¯guration of icon parameters.

It enables the speci¯cation of properties of the Access Policy operator, by de¯ning

the roles that can access the resource, and possibly, the target resource. In particular,

the resources are de¯ned either in the MODE editor, as targets of action arrows, or in

the panel of the Access Policy operator.

5.1. The VULCAN environment

The VULCAN environment provides an editor and a compiler for a visual language to

be used for specifying control actions. It is activated from MODE upon double

clicking on UI components. As shown in Fig. 7, the environment is composed of four

main areas. The central area provides a workspace, in which the control °ow of the

action is speci¯ed. The top area provides the icon operators that the end-user can

employ to de¯ne the application logic associated to the action. The left area provides

Table 1. (Continued)

Icon Summary

ACCESS POLICY: This operator speci¯es a role-based policy for accessing a given resource.
INPUT OPERATORS: one LINK whose associated values include the role

PARAMETERS: list of policies specifying which roles can access to a given resource

OUTPUT: one or more LINKS whose labels indicates the roles required to access the resource.

DB SEARCH: This operator speci¯es a database search operation.
INPUT OPERATORS: one or more LINKS

PARAMETERS: the data sources and the conditions on data

OUTPUT: a LINK referring to the °ow when the query is executed correctly.

DB INSERT: This operator speci¯es a database insert operation.

INPUT OPERATORS: one or more LINKS
PARAMETERS: the data sources

OUTPUT: a LINK referring to the °ow when the query is executed correctly.

DB UPDATE: This operator speci¯es a database update operation.

INPUT OPERATORS: one or more LINKS

PARAMETERS: the data sources and speci¯c conditions for the application of the data update
operation

OUTPUT: a LINK referring to the °ow when the query is executed correctly.

DB DELETE: This operator speci¯es a database delete operation.

INPUT OPERATORS: one or more LINKS

PARAMETERS: the data sources and speci¯c conditions for the application of the data remove
operation

OUTPUT: a LINK referring to the °ow when the query is executed correctly.

318 L. Caruccio et al.

the domain entities that can be used while managing the action logics, and includes

automatically constructed permanent entities (i.e. those inferred by MODE during

the generation of the data model) and those newly de¯ned in the MODE mockup,

within possibly di®erent containers. Finally, the bottom area enables the end-users

de¯ne properties of the operators being used within the workspace.

As an example, the speci¯cation of the control action shown in Fig. 7 is activated by

clicking on the update action de¯ned for the Pay button of the Payment page in Fig. 4.

In particular, it speci¯es that the amount credit decreases by the Total amount spent,

bymeans of the operation Credit=Credit-Total, whereas the update of the collected

points is increased by the Earn Points, by means of the operation Points=Points

+Earn Points. The currently selected symbol in the workspace window is colored in

gold.As an example, in Fig. 7 the currently selected symbol is the one of the function for

updating earned points, and its properties are shown in the bottom area.

However, more a complex logic could be associated to the control action, like

introducing a check on the collected score, in order to reward the premium users

upon exceeding a given score threshold, as shown in Fig. 8, where the user credit is

increased by 10 at the cost of 100 points.

Fig. 6. The UI for customizing the access policy operator.

Fig. 5. The VULCAN UI for customizing the check operator.

A Tool Supporting End-User Development of Access Control in Web Applications 319

Fig. 7. The update action associated to the Pay button of Fig. 4.

Fig. 8. An action associated to the Pay button of Fig. 4 that rewards premium users.

320 L. Caruccio et al.

As said above, the VULCAN environment allows the user handle the control actions,

also according to the restrictions de¯ned for the di®erent roles. As an example, in the

Webapp presented in Fig. 4, the control action associated to the Sign in button in the

HomePage couldbedescribedas shown inFig. 9.There, the restrictions onthe rolesAdmin

Fig. 10. The action associated to the Confirm button in Fig. 4.

Fig. 9. The search action associated to the Sign in button in Fig. 4.

A Tool Supporting End-User Development of Access Control in Web Applications 321

andUser causea split on theassociatedcontrolactions. Inparticular, after verifying their

identities by means of their login and password, the role User will access the page

BookSearch.html, whereas the role Admin will access the page AdminHome.html.

Figure 10 shows the control action triggered upon clicking the Confirm button in

the page Payment Details (see Fig. 4). First, the action exploits a web service to

check validity of the credit card info. Then, in case of validity, it completes the

purchase operation, updating the database of sales.

It is important to notice that the end-user can avoid specifying the application

logic, if not necessary. Moreover, it is not always necessary to use the VULCAN en-

vironment, since for simple Webapps it is su±cient using the MODE environment

alone. In fact, in a typical EUD scenario the main goal is to gain high simpli¯cation,

aiming to build small applications with little e®ort. However, when the user becomes

more familiar with system characteristics, s/he would probably wish to face more

complex problems, for which it will be necessary to provide details on the application

logic behind each action (skill growth).

6. Generation of Web Applications

The system modules we use to implement the proposed EUDWeb development

process are standalone ones, and currently communicate through ¯le exchange. In

particular, the MODE environment embeds Balsamiq to create mockups of the

Webapps [1], and is capable of reading the RODE generated XML ¯le containing the

mappings between roles and colors. The modules RODE and VULCAN have been

implemented in Java by using Aspect Oriented Programming (AOP), and in par-

ticular, the following technologies: Eclipse, JBoss application server, AspectJ, Java

Authentication and Authorization Service (JAAS), and OMG Resource Access

Decision (RAD) facility. They cooperate to produce the XACML policy ¯les, and the

VULCAN speci¯cation is exploited by MODE for updating the control °ow of the

generated controllers, according to the speci¯ed control actions.

The XML version of the mockups produced by Balsamiq is used to translate them

into their equivalent tree data structure. The latter is important for two reasons:

¯rstly, during the generation of the Webapp it helps performing frequent operations

on the UI, such as searching a widget, identifying a group of widgets, checking

uniqueness of a group of widgets, and ¯nding source and destination of navigation

widgets; secondly, during the evolution of the Webapp it checks against the Webapp

tree structure the e®ects of changes to UI elements, prior committing them to the

structure and behaviour of the Webapp. The tree data structure is also used to infer

the data model of the Webapp, and to generate the whole Webapp by using client

side MVC components, and server side MC components [12].

The MVC-MC architecture generated with the proposed approach is shown in

Fig. 11. The MVC-MC pattern has been designed by following the principle of

optimal separation of concerns. The main concerns are the separation of components

within the client-side MVC, and within the server-side MC. Since aWebapp has both

322 L. Caruccio et al.

client-side and server-side processing components, the MVC paradigm has been

suited to the two sides. However, in our architecture the server side View component

has been omitted to reduce the design complexity of the generated Webapp. That is,

the generated Webapp will always create dynamic HTML by using the View logic on

the client side. Secondly, beyond the initial request, all the communications between

the two sides are managed through requests from client-side to server-side con-

trollers. This eliminates the need of persistent connections between the server and

the client. Similarly, beyond the initial request, all the communications between the

user and the Webapp are handled by the client-side controller.

As shown in the Fig. 11, on the server side there are components controlling access

to resources, i.e. PEP (Policy Enforcement Point), and PDP (Policy Decision Point)

controllers, and a component managing policies, i.e. the Policy Model. In particular,

all the access requests coming from the client are intercepted by the PEP, which

issues a request to the PDP component. The latter evaluates such request against the

policy stored within the mockup generated XACML ¯le contained in the Policy

Model, and returns a response to the PEP, which in turns grants or deny access to

the requested resource. The message exchange underlying this process is detailed in

Fig. 12.

Fig. 11. The architecture of the generated Webapp.

A Tool Supporting End-User Development of Access Control in Web Applications 323

7. Usability Evaluation

The goal of the presented EUDWeb framework is to enable end-users to create web

applications embedding access control mechanisms. In order to reach such goal we

targeted three sub-goals:

(1) the MODE environment has to address the limitations of current mockup tools,

since they lack end-user paradigms for the speci¯cation of access control

mechanisms in Webapp development;

(2) the VULCAN environment has to enable end-users specify control actions by using

metaphors, since the targeted users would not be able to use coding;

(3) the whole EUDWeb framework has to enable end-users to accomplish the task of

building a complete Webapp including access control mechanisms.

In this section, we report on the evaluation of the presented EUDWeb framework,

involving end-users in a real usage of its di®erent environments. In particular, since to

the best our knowledge there is no tool with analogous functionalities, as also stated in

Sec. 2, we could only perform an evaluation based on the capability of the presented

EUDWeb framework to reach the previous stated subgoals, and in particular subgoal

(3). A comparative evaluation could only be accomplished bymanually simulating the

speci¯cation of access control mechanisms within existingWYSIWYG environments.

However, this could not be e®ectively made in practice, since the proposed EUDWeb

framework is targeted at users with little technological background. Moreover, such a

manual comparison would be of limited value since it would not allow to measure

important parameters, such as performances, easy of use, error-proneness.

The evaluation was performed by involving eight users with an average age of

38.37 years (standard deviation = 11.18), no programming skills, and with an even

distribution of both genders. Table 2 reports their pro¯les. All participants under-

went a three hours tutorial on access control concepts, mockup-driven web devel-

opment, and the proposed EUDWeb framework. The evaluation was conducted by a

Fig. 12. The sequence diagram describing the messages exchanged between the Webapp components

devoted to access control.

324 L. Caruccio et al.

research fellow using two data collection methods: observation and questionnaires.

The duration of each test session ranged from one up to four hours, and the goals of

the evaluation were clearly stated to participants.

7.1. Method

The user evaluation included an introductory questionnaire, a set of tasks to ac-

complish, and a post-test questionnaire.

The introductory questionnaire included: demographic information, computer

skills, previous EUD experiences, and access control backgrounds. This step was

performed to categorize end-users and collect data on their backgrounds.

After undergoing the introductory questionnaire, participants accomplished a

usability test consisting of four test sessions, in each of which they were requested to

execute a di®erent task by using the proposed EUDWeb framework. Tasks included:

(a) Creation of a simple Webapp and evaluation of VULCAN operators;

(b) Creation of a Webapp exploiting a web service to show the weather forecasts

based on an input city;

(c) Creation of a Webapp enabling generic users to register their credentials to a

website, and successively access a welcome page. The administrator can access

the system for viewing the registered users;

(d) Creation of a Webapp for selling products. It allows administrators to add

products, companies to buy and add products, and customers to buy products.

Finally, participants underwent a post-test questionnaire, which included a

quantitative and a qualitative analysis. The quantitative analysis included 23 sen-

tences, and the user was asked to evaluate each sentence within a Likert scale

(strongly disagree ¼ 1, disagree ¼ 2, neutral ¼ 3, agree ¼ 4, strongly agree ¼ 5).

The purpose of this set of sentences was to support the analysis of the following

aspects: user friendliness of the environments, learnability, e±ciency, memorability,

e®ectiveness, and intuitiveness. The qualitative analysis of the post-test question-

naire focused on: best and worse characteristics on the EUDWeb framework, usage

obstacles, improvement suggestions, general comments, and task accomplishment.

Table 2. Participant's pro¯les.

ID Background Age Gender

User1 Industrial Manager 45 F

User2 Student of Law 19 F

User3 Math Teacher 48 M
User4 Architect 41 M

User5 Student of Archaeology 25 F

User6 Web Master 35 M

User7 Lawyer 44 M
User8 Municipality 50 F

A Tool Supporting End-User Development of Access Control in Web Applications 325

7.2. Results

The results showed that the framework could be used to complete the assigned tasks

with a moderate e®ort. The framework enabled the user to pro¯ciently accomplish

most relevant and critical tasks, especially the speci¯cation of control actions trig-

gered by UI events, and in particular, those related to access control. This corro-

borates the e®ectiveness of the metaphor underlying the visual language of VULCAN.

In what follows, after presenting the results of the introductory questionnaire, we

discuss performances of participants in the accomplishment of the assigned tasks,

and ¯nally present the results of the post-test questionnaire.

From the analysis of answers to the introductory questionnaire, it came out that

all users had familiarity with computers, internet, and main o±ce automation

packages. However, concerning web development, two participants had low level

skills, two medium level, and the remaining had no skills. Four participants were

familiar with the concept of EUD, and each of them had previously used some

software package supporting such paradigm, such as formulas or macros in Microsoft

Excel, Microsoft FrontPage, and Dreamweaver. Among these, two also had been

exposed to access control problems, together two additional participants.

Regarding the performances of participants in the accomplishment of tasks, we

evaluated them according to the following scale: 0, not completed; 1, completed with

di±culty or help; 2, easily completed. The ¯rst task was completed by all the par-

ticipants, even though User7 and User8 had some di±culties. Similar results were

achieved for the second task, but also User5 required some assistance. Tasks 3 and 4

involved the speci¯cation of control actions concerning access control. All partici-

pants completed task 3, but half of them requested some assistance. Finally, one

participant was not able to complete task 4, and three of them requested some help.

We observed that User7 and User8 needed assistance for all the tasks, and more

speci¯cally, on the usage of tool features. Conversely, the participants with some

knowledge on EUD and web development (User1, User3, and User6) were pro¯cient

in all the assigned tasks, but User4, who needed some assistance on task 4. Parti-

cipants with less pertinent skills (User2 and User5) achieved di®erent performances.

In particular, User5 requested help only for tasks 2 and 3, whereas User2 did not

completed task 4, and requested assistance for task 3.

Finally, we performed a quantitative and qualitative analysis by means of the

post-task questionnaire. The quantitative analysis aimed at evaluating the user

friendliness of the environments, their learnability, e±ciency, memorability, e®ec-

tiveness, and satisfaction while using the EUDWeb framework. Box plots built from

the participants answers on a Likert scale 1 to 5 are shown in Figs. 13 and 14. The

box plot includes the smallest observation (sample minimum), lower quartile (Q1),

median (Q2), upper quartile (Q3), and largest observation (sample maximum) for

each participant and each question, respectively. Bottom and upper tickers represent

minimum and maximum values, respectively. Bottom and upper lines for the purple

boxes represent Q1 and Q2, respectively. The upper line of the green box is the Q1.

326 L. Caruccio et al.

The qualitative analysis highlighted some usage °aws related to the prototypal

implementation, and to the poor integration among the environments of the

framework. On the other hand, as a positive remark, most participants considered

the metaphors underlying the environments intuitive and pleasant, making them

su±ciently easy to use.

Fig. 13. Quantitative analysis results by questions.

Fig. 14. Quantitative analysis results by participants.

A Tool Supporting End-User Development of Access Control in Web Applications 327

7.3. Discussion

The usability evaluation discussed above con¯rmed that the metaphors underlying

the environments of the proposed framework were intuitive and enabled the majority

of end-users to accomplish Webapp development tasks, including those embedding

some access control functionalities. The evaluation revealed some little problems on

UI and on interoperability among the proposed environments, probably due to the

prototypal implementation. Thus, we expect the tool became much more e®ective as

the quality of the implementation grows.We could also observe that participants with

some previous EUD knowledge could be more pro¯cient. Moreover, participants

showed no particular problems in the implementation of access control functionalities.

The quantitative analysis in Fig. 13 indicates that RODE was perceived as easier

to use, with a mean of 4.08 and standard deviation of 0.77, with respect to MODE

and VULCAN that gained a mean of 3.59 and 3.61, and standard deviation of 0.84 and

0.87, respectively. Our challenge here was to prove that the environments MODE

and VULCAN could help end-users master the complexity of core activities. To this

end, the answers to questions from 3.1 to 4.7 revealed that we satisfactorily reached

this goal. Moreover, answers to last six questions revealed that the environments

were su±ciently easy to learn, e±cient, intuitive, mnemonic, and required the right

time and the proper number of steps to accomplish the assigned tasks.

As said above, the results reported in Fig. 14, together with average values

computed for each user, revealed that the whole framework could be more e®ectively

used by people with some EUD knowledge, and/or with some exposure to similar

problems in their professional environment. However, we think that these results can

be considered satisfactory, since we gained an global average score of 3.68, with a

standard deviation of 0.86. Moreover, while the active involvement of less experi-

enced users typically yields a reduced expectation on the levels of sophistication of

the Webapp, our end-users could accomplish su±ciently complex tasks.

Although the participants pointed out the necessity to improve the implemen-

tation quality of the UI, they provided positive feedbacks on the adequacy of the used

metaphors, and on the capability of the whole framework to guide the user towards

the completion of meaningful Webapp programming tasks. Finally, the participants

also pointed out the necessity of better levels of integration among the di®erent

environments of the framework, but this did prevent them from pro¯ciently ac-

complish most of the assigned tasks. The feature they liked most was the use of colors

to immediately recall the minimum role requested to execute tasks, whereas the

con¯guration of icons for database operation in VULCAN was the feature that most

participants liked less.

8. Conclusions and Future Work

We have presented an EUDWeb framework and tool enabling end-users develop

Webapps embedding RBAC-based access control policies. In particular, we have

328 L. Caruccio et al.

extended a previous mockup-based approach and tool [10] by empowering it with

visual languages for specifying RBAC policies.

In this work we have focused on access control, since it is a Webapp programming

functionality that the end-user perceives as one of the most complex. However, since

there are few additional critical aspects to make EUDWeb e®ective, in the future we

would like to develop new metaphors and visual languages to broaden the range of

complex tasks that can be tackled within our EUDWeb environment. Particular

attention deserve the management of stateless protocols, database implementation,

and more general aspects of Webapp control °ow management. Finally, we aim to

simplify the speci¯cation process, by reducing the manual activities and by intro-

ducing sketch-based interaction paradigms [8, 11].

References

1. Balsamiq, Balsamiq mockups, http://balsamiq.com/. last accessed: January 22, 2015.
2. D. Basin, J. Doser and T. Lodderstedt, Model-driven security: From UML models to

access control infrastructures, ACM Trans. Softw. Eng. Methodol. 15(1) (2006) 39–91.
3. I. Bouchrika, L. Ait-Oubelli, A. Rabir and N. Harrathi, Mockup-based navigational di-

agram for the development of interactive web applications, in Proc. Int. Conf. Infor-
mation Systems and Design of Communication, 2013, pp. 27–32.

4. D. Bricklin, B. Frankston and D. Fylstra, VisiCalc, software arts. http://www.bricklin.
com/history/intro.htm. 1979, last accessed: January 22, 2015.

5. L. Caruccio, V. Deufemia, C. D'Souza, A. Ginige and G. Polese, Supporting access control
within a mockup-based EUDWeb environment, in Proc. 7th International Symposium on
Visual Information Communication and Interaction, 2014, pp. 88–97.

6. S. Chang, G. Polese, R. K. Thomas and S. Das, A visual language for authorization
modeling, in Proc. IEEE Symposium on Visual Languages, 1997, pp. 110–118.

7. O. Chudnovskyy, T. Nestler, M. Gaedke, F. Daniel, J. I. Fern�andez-Villamor, V.
Chepegin, J. A. Fornas, S. Wilson, C. K€ogler and H. Chang, End-user-oriented telco
mashups: The OMELETTE approach, in Proc. 21st International Conference on World
Wide Web, 2012, pp. 235–238.

8. G. Costagliola, V. Deufemia, G. Polese and M. Risi, A parsing technique for sketch
recognition systems, in Proc. IEEE Symposium on Visual Languages and Human-Centric
Computing, 2004, pp. 19–26.

9. A. Coyette and J. Vanderdonckt, A sketching tool for designing anyuser, anyplatform,
anywhere user interfaces, in Human-Computer Interaction ��� INTERACT 2005, Lecture
Notes in Computer Science, Vol. 3585, 2005, pp. 550–564.

10. V. Deufemia, C. D'Souza and A. Ginige, Visually modelling data intensive web appli-
cations to assist end-user development, in Proc. 6th International Symposium on Visual
Information Communication and Interaction, 2013, pp. 17–26.

11. V. Deufemia, M. Risi and G. Tortora, Sketched symbol recognition using latent-dynamic
conditional random ¯elds and distance-based clustering, Pattern Recognition 47(3)
(2014) 1159–1171.

12. C. D'Souza and A. Ginige, MVC-MC: A rich internet application architecture for optimal
separation of concerns, in Int. Conf. Computer and Software Modeling, 2010, pp. 78–82.

13. D. F. Ferraiolo, R. D. Kuhn and R. Chandramouli, Role-Based Access Control (Artech
House, Norwood, 2007).

A Tool Supporting End-User Development of Access Control in Web Applications 329

14. M. Giordano and G. Polese, Visual computer-managed security: A framework for de-
veloping access control in enterprise applications, IEEE Software 30(5) (2013) 62–69.

15. M. Giordano, G. Polese, G. Scanniello and G. Tortora, A system for visual role-based
policy modelling, Journal of Visual Languages and Computing 21(1) (2010) 41–64.

16. A. Heydon, M. Maimone, J. D. Tygar, J. Wing and A. Zaremski, Miró: Visual speci¯-
cation of security, IEEE Trans. Software Engineering 16(10) (1990) 1185–119.

17. J. A. Hoagland, R. Pandey and K. N. Levitt, Security policy speci¯cation using a
graphical approach, Technical report, University of California, 1998.

18. A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig, C. Sca±di, J.
Lawrance, H. Lieberman, B. Myers, M. B. Rosson, G. Rothermel, M. Shaw and S.
Wiedenbeck, The state of the art in end-user software engineering, ACM Comput. Surv.
43(3) (2011) 21:1–21:44.

19. M. Koch, L. V. Mancini and F. Parisi-Presicce, A graph-based formalism for RBAC,
ACM Trans. Inf. Syst. Secur. 5(3) (2002) 332–365.

20. B. W. Lampson, Protection, SIGOPS Oper. Syst. Rev. 8(1) (1974) 18–24.
21. J. Lin, J. Wong, J. Nichols, A. Cypher and T. A. Lau, End-user programming of mashups

with Vegemite, in Proc. 14th International Conference on Intelligent User Interfaces,
2009, pp. 97–106.

22. D. Lizcano, F. Alonso, J. Soriano and G. López, A new end-user composition model to
empower knowledge workers to develop rich internet applications, J. Web Eng. 10(3)
(2011) 197–233.

23. B. A. Myers, Creating User Interfaces by Demonstration (Academic Press, San Diego,
1998).

24. B. A. Myers and W. Buxton, Creating highly-interactive and graphical user interfaces by
demonstration, SIGGRAPH Comput. Graph. 20(4) (1986) 249–258.

25. T. Nestler, A. Namoun and A. Schill, End-user development of service-based interactive
web applications at the presentation layer, in Proc. 3rd ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, 2011, pp. 197–206.

26. J. Nichols and T. Lau, Mobilization by demonstration: Using traces to re-author existing
web sites, in Proc. 13th International Conference on Intelligent User Interfaces, 2008, pp.
149–158.

27. OASIS, Oasis extensible access control markup language (XACML) v2.0 speci¯cation,
http://www.oasis-open.org/committees/xacml/, last accessed: January 22, 2015.

28. T. O'Reilly, What is web 2.0? Design patterns and business models for the next gener-
ation of software, http://oreilly.com/web2/archive/what-is-web-20.html, 2005, last
accessed: January 22, 2015.

29. F. P�erez, P. Valderas and J. Fons, Towards the involvement of end-users within model-
driven development, in Proc. 3rd International Conference on End-user Development,
2011, pp. 258–263.

30. J. M. Rivero, J. Grigera, G. Rossi, E. R. Luna and N. Koch, Improving agility in model-
driven web engineering, in CAiSE Forum, Vol. 734 of CEUR Workshop Proceedings,
2011, pp. 163–170.

31. J. M. Rivero, G. Rossi, J. Grigera, J. Burella, E. R. Luna and S. Gordillo, From mockups
to user interface models: An extensible model-driven approach, in Proc. 10th Interna-
tional Conference on Current Trends in Web Engineering, 2010, pp. 13–24.

32. J. Rode, M. B. Rosson and M. A. P�erez Quiñones, End user development of web appli-
cations, in End User Development, Vol. 9 of Human-Computer Interaction Series, 2006,
pp. 161–182.

330 L. Caruccio et al.

33. R. Sandhu, D. Ferraiolo and R. Kuhn, The NIST model for role-based access control:
Towards a uni¯ed standard, in Proc. 5th ACM Workshop on Role-Based Access Control,
2000, pp. 47–63.

34. R. S. Sandhu, E. J. Coyne, H. L. Feinstein and C. E. Youman, Role-based access control
models, Computer 29(2) (1996) 38–47.

35. H. St€orrle, Model-driven development of user interface prototypes: An integrated ap-
proach, in Proc. 4th European Conference on Software Architecture, 2010, pp. 261–268.

36. R. K. Thomas and R. S. Sandhu, Task-based authorization controls (TBAC): A family of
models for active and enterprise-oriented authorization management, in Proc. IFIP TC11
WG11.3 11th International Conference on Database Securty XI: Status and Prospects,
1998, pp. 166–181.

37. M. Toomim, S. M. Drucker, M. Dontcheva, A. Rahimi, B. Thomson and J. A. Landay,
Attaching UI enhancements to websites with end users, in Proc. SIGCHI Conference on
Human Factors in Computing Systems, 2009, pp. 1859–1868.

38. F. Valverde and O. Pastor, Facing the technological challenges of web 2.0: A RIA model-
driven engineering approach, in Proc. 10th International Conference on Web Information
Systems Engineering, 2009, pp. 131–144.

39. N. Zhang, M. Ryan and D. P. Guelev, Synthesising veri¯ed access control systems in
XACML, in Proc. 2004 ACM Workshop on Formal Methods in Security Engineering,
2004, pp. 56–65.

A Tool Supporting End-User Development of Access Control in Web Applications 331

Copyright of International Journal of Software Engineering & Knowledge Engineering is the
property of World Scientific Publishing Company and its content may not be copied or
emailed to multiple sites or posted to a listserv without the copyright holder's express written
permission. However, users may print, download, or email articles for individual use.

	A Tool Supporting End-User Development of Access Control in Web Applications
	1. Introduction
	2. Related Work
	2.1. EUD for web applications
	2.2. Visual specification of access control

	3. EUD of Access Control Policies in Web Applications: A Mockup-Driven Approach
	4. The MODE Environment
	4.1. A mockup-driven modeling process for webapps
	4.2. Definition of access control actions
	4.2.1. Control flow specification
	4.2.2. Visualization of the requested role within mockups

	5. The Vulcan Visual Language
	5.1. The Vulcan environment

	6. Generation of Web Applications
	7. Usability Evaluation
	7.1. Method
	7.2. Results
	7.3. Discussion

	8. Conclusions and Future Work
	References

