
42 communicAtionS of the Acm | APrIl 2013 | vOl. 56 | nO. 4

practice

tHe Biggest cHange in Web development over the
past few years has been the remarkable rise of mobile
computing. Mobile phones used to be extremely
limited devices that were best used for making phone
calls and sending short text messages. Today’s mobile
phones are more powerful than the computers that
took Apollo 11 to the moon,10 with the ability to send
data to and from nearly anywhere. Combine that with
3G and 4G networks for the data transfer, and now
using the Internet while on the go is faster than my
first Internet connection, which featured AOL and
a 14Kbps dial-up modem.

Yet despite these powerful advances in mobile
computing, the experience of Web browsing on a

mobile device is often frustrating. The
iPhone opened up the “real” Internet
to smartphone users. This was impor-
tant because developers no longer had
to write mobile-specific interfaces in
custom languages such as Wireless
Application Protocol (WAP). Instead,
all existing websites and applications
worked perfectly on the iPhone. At
least that was the idea.

With the fast iPhone and a 3G con-
nection, one would expect a mobile In-
ternet experience to be pretty snappy.
However, the Web had developed dur-
ing a period when the bandwidth avail-
able to desktops increased each year.
That meant websites and applications
started to get larger, using more re-
sources such as Cascading Style Sheets

the evolution
of Web
Development
for mobile
Devices

Doi:10.1145/2436256.2436269

 Article development led by
 queue.acm.org

Building websites that perform well
on mobile devices remains a challenge.

BY nichoLAS c. ZAKAS

APrIl 2013 | vOl. 56 | nO. 4 | communicAtionS of the Acm 43

i
L

L
u

s
t

r
a

t
i

o
n

 b
y

 m
a

u
r

e
e

n
 f

Ly
n

n
-b

u
r

h
o

e

(CSS), JavaScript, images, and video.
All of this was to provide a better expe-
rience on the only Internet that many
people had: a wired connection going
into the home.

By using mobile devices to access
that same Internet, however, users
once again experienced a slower Web.
Although cellular connections have
continued to improve over the years,
they are still nowhere near as fast as
wired connections. Further, although
today’s smartphones are quite power-
ful, they still pale in comparison with
the average desktop computer. There-
fore, making the Internet fast for mo-
bile devices is a strange problem. On
the one hand, it is a lot like Web de-
velopment in 1996 when everyone had

slow connections. On the other hand,
mobile devices today are much more
powerful than computers were in 1996.

the Latency Problem
One of the biggest issues for mobile
Web performance is latency—the de-
lay experienced between request and
response. Any given Internet connec-
tion is capable of transferring a cer-
tain amount of data within a specified
amount of time, which is called band-
width. Latency is what prevents users
from receiving that optimal bandwidth
even though their connections are the-
oretically capable of handling it.

Wired latency. Every Internet con-
nection has some sort of latency asso-
ciated with it. Wired connections have

much lower latency because there is
less to get in the way of the requested
data. Wired connections allow data
to travel directly between points, so it
is received fairly quickly. The biggest
cause of latency here is the electrical
resistance of the wire material. That is
usually negligible unless the wire has
been damaged. Otherwise, the latency
of a wired connection remains fairly
stable over time.

When the latency of a wired net-
work changes unexpectedly, the source
could be network congestion. If you
have ever arrived home in the evening
and found your Internet connection to
be slower than it was in the morning,
it is probably because everyone in your
neighborhood is hopping on the Inter-

44 communicAtionS of the Acm | APrIl 2013 | vOl. 56 | nO. 4

practice

net at the same time. It could also be
that several people in your household
are on the Internet at the same time
using a lot of bandwidth (streaming
Netflix, surfing the Web, or using Face-
Time). Network congestion is always a
consideration when latency is high re-
gardless of the network type.

Wireless latency. Wireless Internet
connections are quite different from
their wired counterparts. Whether the
connection is 3G, 4G, or Wi-Fi, send-

ing and receiving data through the air
introduces a variable amount of laten-
cy. The air itself not only causes resis-
tance, but also provides an open space
for other sources of interference. Radi-
os, microwaves, walls, and any number
of other physical or electromagnetic
barriers can adversely impact the effec-
tive bandwidth.

Tom Hughes-Croucher ran an ex-
periment to determine the degree to
which latency affects the throughput
of a connection.2 By introducing just
50 ms of latency, he found that the
number of requests that could be com-
pleted in 300 seconds was cut by nearly
67%. At 300 ms of latency, the number
of requests was decreased by almost
90%. What did he use to affect the la-
tency in his experiment? A simple mi-

crowave oven. Now imagine all of the
interference produced by the electron-
ics that surround you every day.

The number of requests completed
is very important because a typical Web
page makes dozens of requests while
loading. Visiting a Web site for the first
time triggers two requests in sequence
right away. The first is a DNS (Domain
Name System) request to look up the
domain name the user entered. The re-
sponse to that request contains the IP
address for the domain. Then an HTTP
request is sent to that IP address to get
the HTML for the page. Of course, the
page will typically instruct the browser
to download more resources, which
means more DNS requests and HTTP
requests before the page is fully usable.
That can happen fairly quickly with a
wired connection, but a wireless con-
nection such as that on a smartphone
introduces a lot of latency.

The request first has to go from the
phone to the nearest cellular tower.
That request travels through the air
where it is subject to a large degree of
interference. Once arriving at the cell
tower, the request is routed to a mo-
bile company server that uses a GPRS
(General Packet Radio Service). For
3G, this is a GGSN (Gateway GPRS Sup-
port Node) that acts as an intermedi-
ary between the user and the Internet
(see Figure 1). The GGSN assigns IP ad-
dresses, filters packets, and generally
acts as a gateway to the real Internet.
The GGSN then sends the request to
the appropriate location (DNS, HTTP,
or other), and the response has to come
all the way back from the Internet to
the GGSN to the cell tower and finally
to the phone. All of that back and forth
creates a lot of latency in the system.

Making matters worse, mobile net-
works have only a small number of
GGSNs; thus, a user’s proximity to a
GGSN has a measurable impact on the
latency he or she experiences. For ex-
ample, developer Israel Nir noted that
making a request via a mobile phone
from Las Vegas to a resource also lo-
cated in Las Vegas actually results in
the request being routed to California
first before finally arriving back at the
device.9 Because GGSNs tend to be cen-
trally located instead of distributed,
this is very common.

Latency is always going to be a factor
for wireless communications, so devel-

figure 1. An httP request from a smartphone.

Dns

ggsn

Web

figure 2. A button generated in cSS.

View the CSS

.button {
 border-top: 1px solid #96d1f8;
 padding: 20px 40px;
 color: white;
 font-size: 24px;
 font-family: Georgia, serif;
 text-decoration: none;
 vertical-align: middle;

 /* create a gradient for the background */
 background: linear-gradient(top, #3e779d, #65a9d7);

 /* round those corners */
 border-radius: 40px;

 /* drop shadow around the whole thing */
 box-shadow: rgba(0,0,0,1) 0 1px 0;

 /* drop shadow just for the text */
 text-shadow: rgba(0,0,0,.4) 0 1px 0;
}

figure 3. cSS code.

practice

APrIl 2013 | vOl. 56 | nO. 4 | communicAtionS of the Acm 45

opers need to plan for it when working
on mobile projects. The best way to
combat latency is to use as few HTTP
requests as possible for a website or
application. The overhead of creating a
new request on a high-latency connec-
tion is quite high, so the fewer requests
made to the Internet, the faster a page
will load. Fortunately, today many
more tools are available for reducing
requests than in 1996 when the entire
Internet was slow.

improving Web Performance
In High Performance Web Sites, pub-
lished in 2007, Steve Souders wrote
the first exhaustive reference about
Web performance.11 Many of the best
practices in the industry can be traced
back to this important book. Although
the book was released before mobile
Web development existed in its current
form, a great deal of advice still applies.

Reducing HTTP requests. The first
rule in High Performance Web Sites is
to reduce HTTP requests. This can
be done by concatenating external
JavaScript and CSS files. Many sites
include hundreds of kilobytes of JavaS-
cript and CSS to create richer experi-
ences. Whenever possible, multiple
files on the server should be combined
into a single file downloaded to the
browser. The ideal setup is to have no
more than two references to external
JavaScript files and two references to
external CSS files per page load (addi-
tional resources can be downloaded
after page load is completed).

Traditionally, concatenation pro-
cesses occurred at build time. These
days, it is more common for concat-
enation to happen at runtime using
a CDN (content delivery network).
Google even released an Apache mod-
ule called mod_concat3 that makes it
easy to concatenate files dynamically at
runtime. The module works by using a
special URL format to download mul-
tiple files using a single request. For
example, suppose you want to include
the following files in your page:

http://www.example.com/assets/js/
main.js
http://www.example.com/assets/js/
utils.js
http://www.example.com/assets/js/
lang.js

Instead of referencing each of these
files separately, mod_concat allows
them to be combined into one request
using the following URL:

http://www.example.com/assets/
js??main.js,utils.js,lang.js

This URL concatenates main.js,
utils.js, and lang.js into a single
response in the order specified. Note
the double question marks, which
indicate to the server that this URL
should use the concatenation behav-
ior. Setting up mod_concat on a server
and then using the server as an origin
behind a CDN provides better edge
caching for the resulting file.

Eliminate images. Images are one of
the largest Web components on the In-
ternet. According to the HTTP Archive
(which monitors performance charac-
teristics of the top million sites on the
Internet), images account for an aver-
age of 793KB per page (as of January
2013).1 The next closest component is
JavaScript at 207KB. Clearly, the fastest
way to reduce the total size of the page
is to reduce the number of images be-
ing used.

CSS3, the latest version of CSS,
provides numerous ways to eliminate
images. Many visual effects that pre-
viously required images can now be
done declaratively directly in CSS. For
example, creating a button that has
rounded corners, a drop shadow, and
a gradient background once required
several images, as well as a graphic de-
signer to create them, but today just a
few lines of CSS can achieve the same
results.

The button pictured in Figure 2 is
generated using the CSS and a regular
<button> element shown in Figure 3.

The key parts of the CSS that replace
what would have been images are:

* background: linear-gradient
(top, #3e779d, #65a9d7). This cre-
ates a CSS gradient7 for the background.
The most recent versions of all major
browsers no longer require a vendor
prefix. This line says to create a linear
gradient starting from the top begin-
ning with the color #3e779d and ending
with the color #65a9d7.

* border-radius: 40px. This
rounds the corners of the button to
have a radius of 40 pixels. The unpre-
fixed version is supported in the most

the best way to
combat latency
is to use as few
httP requests
as possible for
a website or
application.
the overhead
of creating a new
request on
a high-latency
connection is quite
high, so the fewer
requests made
to the internet,
the faster a page
will load.

46 communicAtionS of the Acm | APrIl 2013 | vOl. 56 | nO. 4

practice

recent version of all major browsers.
* box-shadow: rgba(0,0,0,1)

0 1px 0. This creates a drop shadow
around the entire button. A box shad-
ows4 can be used in a variety of ways,
but in this example, it is used as a one-
pixel offset at the bottom of the button.
The numbers after the color are the x-
offset, y-offset, and blur radius.

* text-shadow: rgba(0,0,0,.4)
0 1px 0. This creates a drop shadow
that applies to just the text. A text
shadow5 has the same syntax as a box
shadow.

Thus, just four lines of CSS code
can replace multiple images that
might have been needed for this but-
ton. Additionally, creating this effect
requires many fewer bytes than would
be necessary using images. Replacing
images with CSS is a good idea when-
ever possible. It reduces the number
of HTTP requests and minimizes the
total number of bytes necessary for
the visual design.

Avoid redirects. Rule 11 in High
Performance Web Sites is to avoid re-
directs. A redirect works similarly to
call forwarding on a phone. Instead
of returning actual content, the server
returns a response with a Location
header indicating the URL the brows-
er should contact to get the content
it was expecting. This can go on for
quite a long time as one redirect leads
to another. Every redirect brings with
it the overhead of a full request and
all of its latency. On a desktop, the
consequence may not be immediately
apparent, but on a mobile device a re-
direct can be painfully slow.

Many websites and applications
adopted the convention of using www.
example.com for their desktop sites
and m.example.com for their mobile
sites. Their mistaken assumption was
that users would enter the full domain
name for the site based on the version
they wanted. In reality, people tend to
type in just the hostname, such as ex-
ample.com, meaning that the server
needs to figure out what to do with that
request. Frequently, the first step is to
redirect to the www version of the do-
main, which is the server that is run-
ning the Web application. Then the ap-
plication looks at the user agent string
and determines that the device is a
mobile device, prompting a second re-
direct to the m version of the domain.

Bing does this very thing—with some
terrible results.

The screenshot from the Web In-
spector window in Figure 4 shows
two redirects: the first is from bing.
com to www.bing.com; the second is
from www.bing.com to m.bing.com.
The latency values in the Web Inspec-
tor refer to the time when the browser
is waiting to receive a response. Note
that each redirect still has latency as-
sociated with it, so the actual page
does not begin to download until
1,448 ms after the first request was
made. That is a whole second and a
half of added time to get the user ex-
perience up and running without ac-
tually doing anything.

Avoiding redirects is absolutely vital
in mobile Web development. A redi-
rect has all the overhead of any HTTP
request without actually returning
any useful information. That is why
Web applications are starting to serve
both the mobile and desktop versions
from the same domain based purely
on the user agent string of the request.
Whether a domain begins with www or
m or anything else should not matter;
avoiding redirects and being able to
serve the entire experience from the
domain that received the request is
an absolute performance victory for a
site’s users.

mobile Device Limitations
Until fairly recently, Web developers
did not have to worry too much about
the device that people were using to
access their application. Developers
could assume that if a computer was
capable of running a Web browser,
then it was probably capable of ac-
cessing their applications. However,
mobile devices are very different. They
all have different performance char-
acteristics, but they have one thing in
common: they are not as capable as
desktops or laptops. Because of that,
developers must consider not just who
is accessing the application but what
device they are using to do it.

Slow and expensive JavaScript. Even
though mobile device browsers are
pretty good, the performance of their
JavaScript engines is an order of mag-
nitude slower than what is on desktop
computers. Adding to the problem—
at least in iOS—is that someone may
visit an application using Safari or an

Avoiding redirects
and being able to
serve the entire
experience from
the domain that
received the request
is an absolute
performance victory
for a site’s users.

practice

APrIl 2013 | vOl. 56 | nO. 4 | communicAtionS of the Acm 47

embedded WebView in another appli-
cation. While Safari has a reasonably
fast JavaScript engine, the embedded
WebView does not. So with the result is
two different JavaScript performance
characteristics in iOS, depending on
whether or not the user is using Safari.
The graph in Figure 5 shows the Sun-
Spider benchmark results for several
popular browsers.12

Notice that the performance of em-
bedded WebViews in iOS is actually
worse than that of Internet Explorer
8. Even for the better-performing
browsers, however, there is still a vast
difference between JavaScript engine
performance on the desktop and on a
mobile device.

Another aspect of JavaScript on
mobile devices is the associated per-
formance cost. Unlike desktop com-
puters, mobile devices have batteries
that can get drained by radios (cellular,
Wi-Fi, Bluetooth), network access, and
executing code such as JavaScript. Any
time code is executed, the CPU uses
power; therefore, more time spent ex-
ecuting code means more power used.
Running JavaScript drains batteries
more quickly.

These aspects of JavaScript on mo-
bile devices mean developers need to
be careful about JavaScript usage. As
much as possible, it is best to avoid us-
ing JavaScript. For example, using CSS
animations6 or CSS transitions8 to cre-
ate animations is much more efficient
for the device than using JavaScript for
that task. JavaScript-based animations
run a lot of code at frequent intervals
in order to create the appearance of
animation. The declarative CSS anima-
tions and transitions allow the browser
to determine the optimal way to create
those effects, which may mean bypass-
ing the CPU altogether.

JavaScript should be kept small both
in size and execution time on mobile
devices. The JavaScript environments
on these devices is much more limited
than on a desktop computer, so a good
rule of thumb is to use only as much
JavaScript as is absolutely necessary to
accomplish the goal at hand.

Less memory. Another important
limitation of mobile devices is memory
capacity. Whereas desktop and laptop
computers tend to have many giga-
bytes of memory, mobile devices have
much less. Only recently have mobile

devices reached 1GB of memory, which
is present on both the iPhone 5 and
Samsung Galaxy S III. Older devices
have less memory, so it needs to be a
consideration for mobile Web devel-
opment—especially considering the
browser does not actually have access
to all of the memory on the device.

Web developers are not used to wor-
rying about memory because it is so
plentiful on desktop and laptop com-
puters. The small amount of memory
on mobile devices and the way in which

it is used in browsers, however, means
it is easy to create a memory problem
without knowing it. Even ordinary op-
erations, such as adding new nodes
into the Document Object Model
(DOM), can cause memory problems
if not done properly. When a memory
problem gets too large, the browser be-
comes slow or unresponsive and even-
tually crashes.

Images are one of the biggest areas
of concern regarding memory. Images
that are loaded in the DOM, whether

8000

7000

6000

5000

4000

3000

2000

1000

0

 time (ms)

figure 5. JavaScript performance on various platforms.

ie 9/W
in 7

Chro
m

e 2
4/W

in 7

Chro
m

e 2
4/a

ndro
id 4.2.1/

nex
us 4

oper
a 1

1.6
1/

W
in 7

saf
ar

i/io
s 6/iP

hone 4
s

saf
ar

i/io
s 5/iP

ad
 3

silk
/k

indle
fire

W
eb

view
/io

s 6/iP
hone 4

s

ie 8/W
in 7

W
eb

view
/io

s 5/iP
ad

 3

fire
fo

x 1
8/W

in 7

figure 4. Latency from redirection.

48 communicAtionS of the Acm | APrIl 2013 | vOl. 56 | nO. 4

practice

or not they are actually visible on the
screen, take up memory. Develop-
ers who have developed photo-based
Web applications for mobile devices
have often run into problems causing
browsers to crash. The photo-sharing
site Flickr had a problem during its
first attempt at creating a slideshow in
iOS. Whenever it had loaded around
20 images, the browser would crash.
Flickr engineer Stephen Woods ex-
plained that the only way to prevent
this from happening was to periodi-
cally remove elements from the DOM
as they were no longer needed.14 Es-
sentially, Flickr decided to keep only a
few photos at a time in the DOM and
always remove one when another one
had to be added.

Part of the Flickr’s problem was
caused by hardware-accelerated
graphics, which use the GPU to cal-
culate what needs to be drawn on the
screen. The GPU is much faster than
the CPU, so the result is a faster re-
fresh of the display. CSS animations
and transitions are hardware accel-
erated wherever possible by mobile
devices (always in iOS and frequently
in Android 3+). While this creates a
smoother experience, it also requires
more memory.

For the GPU to work, parts of the
screen must be composited. Compos-
ited elements are stored as images in
memory and require (width × height ×
4) bytes to store. So an image that is
100 × 100 actually takes 40,000 bytes
(or about 39KB) in memory. The more
composited elements on a page, the
more memory will be used and the
more likely the browser will crash.

Images are not the only elements
that get composited in browsers.
DOM elements can also be compos-
ited because of certain CSS rules.
Early on in mobile Web development,
developers noticed hardware-acceler-
ated graphics were much faster, and
they tried to find ways to force hard-
ware acceleration even when anima-
tions were not necessary. Many blog
posts13 encourage the use of certain
CSS properties to force elements to
be hardware accelerated. In general,
any time a 3D transformation is ap-
plied using CSS, that element gets
translated into an image that is then
composited just like any other image.
For example, some recommend using

code such as this to trigger hardware
acceleration:

.box {
 transform: translateX(0);
}

The transform property contains
a 3D transform to translate the ele-
ment’s position. The element does
not actually move because the trans-
lation is 0, but it still triggers hard-
ware acceleration.

Overzealous developers started
adding 3D transforms like this every-
where, thinking it would speed up the
mobile Web experience. Unfortunate-
ly, it had the unintended side effect
of crashing the browser because of
memory overuse. Even in cases where
the browser did not crash, the experi-
ence would get slow as memory was
being used up.

Hardware acceleration is a useful
feature for Web pages, but it has to be
used responsibly. Enabling hardware
acceleration on the entire page, for
example, is bound to cause memory
problems and, potentially, crashes. De-
velopers should not overuse hardware
acceleration, applying it only where it
makes sense, preferably on small parts
of the page, and leaving the rest as nor-
mal graphics.

conclusion
Web development for mobile devices
is the unique wrinkle in what has tra-
ditionally been a fairly straightforward
endeavor. Mobile devices have a lot
of power compared with the desktop
computer of 10 years ago, but they also
have severe limitations that do not
have to be dealt with when developing
websites solely for the desktop. The la-
tency of over-the-air data transmission
automatically means slower download
times and necessitates vigilance in
keeping the total number of requests
on any given page to a minimum. The
slower JavaScript engine and less mem-
ory means that the same Web page that
runs quickly and smoothly on a desktop
might be quite slow on a mobile device.

In short, mobile devices force Web
developers to think about things they
never had to think about before. Web
applications now must take into ac-
count the type of device being used to
determine the best experience for the

user. Mobile devices with high-latency
connections, slower CPUs, and less
memory must be catered to just as
much as desktops with wired connec-
tions, fast CPUs, and almost endless
memory. Web developers now more
than ever need to pay close attention
to how they craft interfaces, given
these constraints. Byte counts, request
counts, memory usage, and execution
time all need to be considerations as
Web development for mobile devices
continues to evolve.

 Related articles
 on queue.acm.org

Making the Mobile Web Faster

Kate Matsudaira
http://queue.acm.org/detail.cfm?id=2434256

Mobile Media: Making It a Reality

Fred Kitson
http://queue.acm.org/detail.cfm?id=1066066

Mobile Devices in the Enterprise: CTO
Roundtable Overview
Mache Creeger
http://queue.acm.org/detail.cfm?id=2019556

References
1. httP archive; http://httparchive.org/.
2. hughes-Croucher, t. an engineer’s guide to

bandwidth; http://developer.yahoo.com/blogs/ydn/
posts/2009/10/a_engineers_gui/.

3. modconcat; http://code.google.com/p/modconcat/.
4. mozilla developer network. box-shadow, 2012; https://

developer.mozilla.org/en-us/docs/Css/box-shadow.
5. mozilla developer network. text-shadow, 2012; https://

developer.mozilla.org/en-us/docs/Css/text-shadow.
6. mozilla developer network. using Css animations,

2012; https://developer.mozilla.org/en-us/docs/Css/
tutorials/using_Css_animations.

7. mozilla developer network. using Css gradients,
2013; https://developer.mozilla.org/en-us/docs/Css/
using_Css_gradients.

8. mozilla developer network. using Css transitions,
2013; https://developer.mozilla.org/en-us/docs/Css/
tutorials/using_Css_transitions.

9. nir, i. Latency in mobile networks—the missing link;
http://calendar.perfplanet.com/2012/latency-in-
mobile-networks-the-missing-link/.

10. robertson, g. how powerful was the apollo 11
computer? http://downloadsquad.switched.
com/2009/07/20/how-powerful-was-the-apollo-11-
computer/.

11. souders, s. High Performance Web Sites: Essential
Knowledge for Front-end Engineers. o’reilly media,
2007.

12. sunspider javascript benchmark; http://www.webkit.
org/perf/sunspider/sunspider.html.

13. Walsh, d. force hardware acceleration in Webkit
with translate3d, 2012; http://davidwalsh.name/
translate3d.

14. Woods, s. Lessons learned from the flickr touch
Lightbox. Code.flickr.com, 2011; http://code.flickr.
net/2011/07/20/lessons-learned-from-the-flickr-
touch-lightbox/.

nicholas C. Zakas is a Web technologist, author, and
speaker. he currently works at box, and previously worked
at yahoo!, where he was front-end tech lead for the
company’s homepage and a contributor to the yui library.
he is a strong advocate for development best practices
including progressive enhancement, accessibility,
performance, scalability, and maintainability. he blogs
at http://www.nczonline.net/ and can be found on
twitter via @slicknet.

© 2013 aCm 0001-0782/13/04

Copyright of Communications of the ACM is the property of Association for Computing Machinery and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

