
august 2013 | vol. 56 | no. 8 | communications of the acm 45

If it was not your priority last year or the year before,
it is sure to be your priority now: bring your website
or service to mobile devices in 2013 or suffer the
consequences. Early adopters have been talking
about mobile taking over since 1999—anticipating
the trend by only a decade or so. Today, mobile Web

traffic is dramatically on the rise, and
creating a slick mobile experience is at
the top of everyone’s mind. Total mo-
bile data traffic is expected to exceed 10
exabytes per month by 2017, as shown
in Figure 1 (in case your mind is not
used to working in exabytes yet, that is
10 million terabytes per month, or al-
most four terabytes per second).1

Of that data, iOS and Android de-
vices consume the lion’s share, which

suggests a focus for any immediate
Web development efforts. Figure 2
shows a breakout of megabytes per
month downloaded in 2011 and 2012,
indicating these platforms are widely
used and trending upward.

So, piece of cake, right? Just take
some of the great literature on writing
desktop Web sites and apply it to mo-
bile. For example, Yahoo!’s excellent
YSlow tool and corresponding perfor-

Best Practices
on the Move:
Building
Web Apps
for Mobile
Devices

doi:10.1145/2492007.2492023

 Article development led by
 queue.acm.org

Which practices should be modified or avoided
altogether by developers for the mobile Web?

By Alex Nicolaou

46 communications of the acm | august 2013 | vol. 56 | no. 8

practice

ment, some of them need to be recon-
sidered to provide maximum benefit
for mobile development. Network con-
nectivity, while far more ubiquitous
than ever before, is still spotty; a mo-
bile site needs to compensate for this
problem so users generally feel the app
is responsive even when the network is
not. Older phones parse and execute
JavaScript 100 times slower than desk-
tops, and even the latest phones are
still slower than desktop devices by a
factor of 10—and this slowdown mag-
nifies the smallest of sins. Handling
JavaScript and network problems well
will bring your performance within
the expectations for any native mobile
app. Then all that will remain is a host
of fit-and-finish problems that require
a solid understanding of when and
why the browser paints and lays out to
add the final polish.

With these thoughts in mind, let’s
consider how YSlow and PageSpeed
guidelines apply to the world of An-
droid and iPhone Web-app development.

Eliminate HTTP Requests and
Round Trips. A core recommendation
from both Google and Yahoo! is to
minimize HTTP requests. This is a crit-
ical concept that needs special exper-
tise and care to be effective on mobile.
The good news is that existing recom-
mendations on using CSS sprites to
represent images embedded as inline
data:URLs are techniques that work
well on mobile.

Image maps should work as well,
but their inflexibility in terms of lay-
out options is a bit of a drawback for
mobile. For example, for a truly slick
mobile experience you will want to
make good use of orientation changes
that affect the horizontal dimension of
your Web page. With image maps you
would either have to use two of them or
dice them up, in which case you might
as well use CSS sprites and do your lay-
out with markup as usual. So while im-
age maps should work as a technique,
on the whole sprites work better.

These existing techniques alone
will not be enough to supercharge
page load on mobile. On iOS, for ex-
ample, pages are cached in memory
only, and HTML files still appear to
be limited to 25KB uncompressed
(though other resource types can be
much larger now). In addition, some
iOS devices are still limited to a maxi-

mance rules8 are an excellent starting
point; Google’s PageSpeed provides
similar guidelines.5

The best practices for optimizing
website performance, as articulated
in YSlow and PageSpeed, were devel-
oped largely with the desktop world in
mind. Now that mobile devices need to
be accounted for as well, some of those
practices might not have the intended
benefits—or might even degrade per-
formance on mobile.

Mobile users expect a more applica-
tion-like experience. Smooth load expe-
riences, fast and animated transitions,
and application-centric error messages

are part of what makes using Internet
services on mobile devices bearable and
perhaps even enjoyable in spite of slow
networks, tiny screens, and cold fingers
(at least for those of us in the north).
Mobile users demand that you deliver
more with less, and the old rules of web-
site design and implementation for the
desktop need a lot of adaptation to cre-
ate a slick mobile Web-app experience.

Which Recommendations
Should Be Followed?
Although the recommendations in
Google’s PageSpeed and Yahoo!’s
YSlow work well for desktop develop-

Figure 1. Mobile data traffic projection.

0.9 EB

Source: Cisco Global Mobile Data Traffic Forecast, 2012–2017

1.6 EB

2.8 EB

4.7 EB

7.4 EB

11.2 EB
12

6

0
2012

Exabytes per Month 66% CAGR 2012–2017

2013 2014 2015 2016 2017

Figure 2. Megabytes per month by year and platform. Figure 2. Megabytes per month by
year and platform.

Source: Cisco Global Mobile Data Traffic Forecast, 2012–2017

3,000

1,500

0

A
n

d
ro

id

iOS

P
al

m
 OS

P
ro

p
ri

et
ar

y

W
in

d
ow

s

B
la

ck
b

er
ry

L
in

u
x

S
ym

b
ia

n

Megabytes per Month
  September 2012
 O ctober 2011

practice

august 2013 | vol. 56 | no. 8 | communications of the acm 47

mum of four parallel connections to
download your content—which means
you cannot afford to rely on multiple
external sources to load in a reason-
able amount of time. Finally, the HTTP
1.1 specification recommends at most
two parallel downloads per hostname.
Of course these values are changing
all the time; to find tools and data on
the latest limits, Steve Souder’s Mobile
Cache File Sizes7 and Ryan Grove’s Mo-
bile Browser Cache Limits, Revisited6
are good starting points.

If you truly want to solve the cache
issue, it is important to force the mo-
bile browser to cache all the unchang-
ing content on a site permanently,
using HTML5 application cache, com-
monly referred to as app cache. Be-
cause app cache is still on the bleeding
edge, it is best to use the minimal sub-
set possible for your application.

The cache is controlled by a single
manifest file that tells the browser
where to get resources. The minimum
functionality would be to make your
website load as a single large Web page,
and have the manifest file list that page
and a hashCode as a comment that is
updated when the Web page changes.
Dynamic content can be loaded via
XHR (XMLHttpRequest) and inserted
into the document. This technique is
most effective if you design the prefix
of your page (up to about the 1,400th
byte, in order to fit into a single packet
across almost any TCP/IP network) to
render a basic framework for the page
before any script is executed.

If you design your site in this way,
you can also have the framework
of the page fade in by providing an
opacity transition from 0.0001 to 1.0
just after the framework of markup
is loaded. This will create a very slick
“app-like” startup experience. The
opacity property is the method of
choice for smooth transitions because
the browser will have prerendered ev-
erything that is at opacity 0.0001, but
the user cannot see it, and fading in is
slick and smooth. Using opacity 0 will
cause a white flash when the browser
repaints, and using the display CSS at-
tribute will be even worse because it
will cause re-layout. If you cannot get
the basic framework of your page to fit
into the first packet, then you can in-
stead load a spinner or a logo, again at
opacity 0.0001, and conditionally de-

tect whether the app cache is already
populated before showing the spin-
ner. The JavaScript for accomplishing
this should appear in a script tag after
the markup, as illustrated in Figure 3.

Using this pattern ensures the user
will immediately get the feedback that
your page is loading, thus reducing the
chance of abandonment at the most
critical moment: when the user first
discovers your site.

To complete the effect, you also
need to ensure your serving infrastruc-
ture flushes the framework of the page
to the network before doing any heavy
lifting on the server side, so that all
overhead on first request is deferred
until after the initial packet is sent.
This will prove remarkably speedy even
on spottier connections. It is also not a
bad idea to make a request to the server
at this point to track the page-load met-
ric (more on this later in the section on
JavaScript parse performance).

Following the recommended pat-
tern means that even on the first load,
all code, assets, and CSS for your site
will load in a single round trip, and
that will create the best possible mo-
bile experience. Dynamic data will of
course have to be loaded separately,
and the same level of care and cach-
ing should apply there, too, except that
HTML5 storage APIs will have to be
used to cache follow-on content. Few-
er than four round trips—one for the
DNS lookup, one for the initial page
content, and up to two for dynamic
content—should produce a responsive
mobile experience for your users.

Page Speed’s best practices for mini-
mizing round-trip times4 also include
a number of techniques for avoiding
round trips you might overlook, such as
DNS lookups and redirects. Almost ev-
ery recommendation relating to round-
trip times is well worth implementing,
as Google has provided good techniques
for combining the content that forms
all the components of your site.

The last item in that section of
Google’s recommendations focuses
on parallelism achieved by serving
from multiple hostnames; but paral-
lel downloads are likely to prove inef-
fective for mobile devices. Combin-
ing your resources and components
into single files and ensuring they are
served from app cache will be the most
effective technique.

Use Compression. Using compres-
sion on all content that would benefit
(essentially everything except images
and video) remains a great recommen-
dation for mobile. Mobile CPUs are
getting faster much more quickly than
mobile networks, and their speed does
not change when a user is visiting the
cottage. Even if you have diligently used
app cache and local storage to save all
resources locally on the device, you can
expect the user will be regularly loading
dynamic content, and all these requests
should be compressed. To speed initial
load time, even cached content should
be delivered compressed whenever
possible, though the benefit is less.

Manage JavaScript Parse Time. Af-
ter caching and compression, script
loading is likely to be the single biggest
source of performance degradation for
a website, and it is the more difficult to
address. The big issue on mobile is that
parse and execute times of script are
much slower than one would expect. In
fact, the rule of thumb is that parse and
execute times are 10 times slower than
when testing on a desktop. A JavaScript
payload of as little as 100KB can cost
100ms of startup time even on reason-
ably recent phones such as iPhone 4—
and the previous generation of iPhone
was 10 times slower!

Therefore, it is certainly worth put-
ting the vast bulk of script at the bot-
tom of the page. To evaluate parse
time, you can use two script tags as
shown in Figure 4.

The start checkpoint is parsed and
evaluated before parsing for the sec-

Figure 3. Reduce abandonment with a conditional spinner for non-approached loads.

<script>
if (window.applicationCache.status == 0) {
 // Page was loaded from the Network; reveal the spinner
} else {
 // Page was loaded from AppCache; heavier-weight startup applies
}
</script>

48 communications of the acm | august 2013 | vol. 56 | no. 8

practice

the document. Seemingly innocuous
JavaScript can trigger style recomputa-
tion in the midst of execution, while a
rearrangement of the same code can
be much more efficient.

The rule of thumb is to avoid reading
properties that rely on the position of el-
ements on the page to be returned, be-
cause any such property could cause the
browser to recalculate styles on demand
and return the value to your script.

The easiest way to inspect ex-
amples of this problem is to use the
developer tools in Chrome. Ryan
Fioravanti’s excellent Google I/O pre-
sentation2 details how to do this by
using adb (Android Debug Bridge) to
forward a port on a desktop machine
to the development-tool port on the
Android Chrome browser. Once that
is set up, the Events timeline can be
used to spot Layout events followed by
large gaps of time that represent style
recalculation. In the example in Fiora-
vanti’s talk, paying attention to when
style recalculation was happening
made the event handler in question
twice as fast as previously.

Monitor Request Size as Well. The fo-
cus so far has mainly been on the size of
responses to the client and how long the
client takes to process data on the client
side. Request size can also be a problem,
particularly for sites using a large num-
ber of cookies alongside every request.
This is easiest to monitor on the server
side, and ideally all requests made back
to the server should be much smaller
than a single TCP packet.

Preloading Components is most
effective when the user’s workflow is
almost certain to cause a predictable
action just after the initial page loads.
For example, in a news site certain ar-
ticles will have a large click-through
rate caused by a combination of place-
ment, content, and imagery, so it
makes sense to preload the article page
as soon as there is no other work to be
done. This can give users a positively
delightful experience where the site
seems to load instantly.

Another example of this is the AJAX
version of the mobile Google Calendar
website, where the next day’s events
are loaded as the user clicks through
each day. The effect is the user can
easily walk through the week and see
the data load instantly. You can com-
pare this to the non-preloaded case by

ond script tag begins. The second
script is then loaded and parsed, and
the time is recorded in the parse check-
point (which technically includes a tiny
bit of execution of the second script
tag, but this is neglected and billed to
the parser). The eval checkpoint is
recorded only after your business logic
has all been evaluated.

Chrome on Android now of-
fers a much more powerful tech-
nique to debug startup time: using
window.performance to read perfor-
mance-related timestamps in the code.
Figure 5 illustrates how to compute the
load time of the page. Whether you are
using JavaScript Date objects or the
new window.performance time-
stamps, it is a good idea to record this
number by making a request to your
server side so that you can track page-
load metrics as a basic performance
indicator of your site—it is so easy to
regress that without continuous moni-
toring, performance is almost sure to
degrade over time.

It is highly instructive to look at
these numbers to appreciate how bad
parse time is, and then to apply tricks
to avoid parse latency. The most pow-
erful of these tricks is allowing the
browser to load your JavaScript without
recognizing it as script and defer pars-
ing and initial evaluation to a time of
your choosing.

There are two methods for accom-
plishing this. The older one is com-

menting out your JavaScript and using
another block of script to uncomment
the content of the tag only when it is
needed, as described in the Google
mobile blog post from 2009.3 More re-
cently, a cleaner technique has been
used for the same purpose. It involves
setting the type of the script to an un-
recognized type and changing it to
text/JavaScript later. In this approach,
you start with script blocks that look
like this:

<script type=”deferred” id=”module1”>

var start _ checkpoint = new Date();

</script>

When you are ready to use the script, the
JavaScript finds the script tag and modi-
fies the type, which will cause the brows-
er to parse and evaluate it at that time.

By putting your deferred script at
the bottom and uncommenting it only
when needed, you can very effectively
amortize the cost of using JavaScript
across the runtime of your application.
If your modules are small enough,
this technique is cheap enough to be
applied at the moment the user first
clicks a button or link that needs the
script, which can be uncommented,
parsed, evaluated, and executed with
no noticeable latency.

Avoid Layout and Style Calculation.
One of the easiest ways of introducing
unexpected latency into a site is inad-
vertently causing the browser to lay out

Figure 4. Monitor the time required to parse and evaluate your JavaScript.

<script>
var start_checkpoint = new Date();
</script>
<script>
var parsed_checkpoint = new Date();
// more script here
var eval_checkpoint = new Date();
var parse_time = parse_checkpoint - start_checkpoint;
var eval_time = eval_checkpoint - parse_checkpoint;
</script>

Figure 5. Declaring a block of JavaScript for deferred parsing.

You can compute the load time of the page with:

 window.performance.responseEnd - window.performance.navigationStart

and document load time with:

window.performance.loadEventEnd - window.performance.responseEnd.

practice

august 2013 | vol. 56 | no. 8 | communications of the acm 49

By putting your
deferred script
at the bottom and
uncommenting
it only when needed,
you can very
effectively amortize
the cost of using
JavaScript across
the runtime
of your application.

using the month view to jump ahead a
few days at a time, exposing how slow
it can be to take a round trip to the
server to serve the same quantity of
data. The round trip involves a notice-
able spinner even over Wi-Fi, while
the precached data appears instantly,
even on old devices.

Optimize Images. Particularly for
dynamic images, applying the best
compression available will pay off
handsomely in overall page speed. You
can test image quality on a device to
determine if there is a noticeable dif-
ference between 50% JPEG quality and
80% or 90%, and note the significant
reductions in size that can be achieved.
Even dramatic reductions in JPEG qual-
ity are often not visible, and the savings
can be as much as 40% of the file size.
Similar advice applies to .PNG and .GIF
files, though these are used less for dy-
namic content (and therefore they are
served from app cache and are not as
sensitive to size).

Avoid Inefficient CSS Selectors.
Almost every recommendation in
Google’s “Optimize Browser Render-
ing” section applies perfectly to mo-
bile, particularly the concerns about
needlessly inefficient CSS. There is a
trade-off to consider, however: using
a complex CSS selector can avoid a
Document Object Model (DOM) modi-
fication. While complex CSS selectors
are considered inefficient by Google,
they are fast compared with doing the
equivalent work in JavaScript on a mo-
bile device. For other cases where the
CSS selector is not being used to avoid
JavaScript execution, Google’s recom-
mendations apply.

Reduce DNS Lookups. Ideally, a
site would load with 0 DNS lookups,
as each represents a round trip with
the potential to block all other activ-
ity. Minimally, however, a DNS lookup
will fetch the manifest file, which is
done in parallel with page load as the
browser brings in resources from the
application cache. So it is fairly safe
to use the name of your host site and
assume it will be in the system’s DNS
cache whenever the device is online.

If you rely on using multiple hosts
to parallelize content loading, you
may need one more hostname look-
up. There is no point using more
than two hosts to parallelize content
loading since in the best of cases you

are likely to be limited to four simul-
taneous connections. A second DNS
lookup is probably preferable to hard-
coding the IP address in your appli-
cation. This would cause all content
to download every time your servers
moved and would make it impos-
sible to make good use of any CDN
(content delivery network) you may
be using to serve data. On balance,
the recommendation here is to stick
with a single hostname for serving all
resources, as the benefit from mul-
tiple hostnames to get more parallel
downloads is small relative to the im-
plementation complexity, and actual
speed gains are unlikely to be signifi-
cant over poor networks.

Minify JavaScript and CSS. Minifi-
cation is beneficial for mobile, though
the biggest effect is seen in comparing
uncompressed sizes. If minification
poses a challenge, be sure to compare
the sizes only after applying gzip to get
a realistic sense of the gains. They may
be below 5% and not worth the extra
serving and debugging complexity.

Which Recommendations Should
Be Used Only Occasionally?
Some recommendations depend on
the context of the particular project and
should be used only on certain sites.

Use Cookie-Free Domains for Sub-
components. Using cookie-free do-
mains applies to mobile, except that all
static content should already be served
by the app cache, so the effect is not as
strong. If you are not using app cache,
then follow this recommendation.

Avoid Empty Image SRC. If you
need to create image tags that contain
a dummy image, then you can use a
data URL to encode a small image in
place of an empty string until you can
replace the image source.

Keep Components Under 25KB.
The 25KB restriction does not apply to
resources in the app cache but does ap-
ply to everything else. If older devices
are important to your site, you may still
want to respect this recommendation.
If you are designing primarily for fu-
ture devices, however, only HTML pag-
es still need to be lightweight: the rest
of your resources will stay cached in
memory until the user restarts the iOS
device or forcibly exits the process; and
on Android, your components will stay
in persistent cache until they expire.

50 communications of the acm | august 2013 | vol. 56 | no. 8

practice

Redirects are
a source of round
trips and are to
be avoided at all
costs. Regularly
monitoring the
response codes
from your servers
should make it
possible to catch
redirect mistakes.

Which Recommendations
Should Be Ignored?
Some of the guidelines for desktop de-
velopment do not apply when building
mobile sites.

Do Not Make JavaScript and CSS
External. This is one recommenda-
tion that cannot really be followed on
mobile. Because of a healthy distrust
of the mobile device’s browser cache
policy, it will almost always turn out
best if you cache your JavaScript and
CSS manually; thus, inlining it all into
the main page will deliver the best re-
sults in terms of speed. For mainte-
nance reasons, or perhaps if a site has
seldom-visited areas where it would
be better not to download until first
use, you can use XHRs to fetch the Java
Script or CSS and the HTML5 database
to store the resource for later reuse.

Redirects are a source of round trips
and are to be avoided at all costs. Regu-
larly monitoring the response codes
from your servers should make it pos-
sible to catch redirect mistakes, which
are commonly caused by poor URL
choices, authentication choices, ads,
or external components. It is better to
update the site’s script and resources
and let app cache download and cache
all the new locations than to deliver
even one redirect return code per user
visit. Redirects can also cause unex-
pected effects with app cache, causing
the browser to download the same re-
sources multiple times and store them
in the database. This is easiest to test
for on the desktop where the sqlite3
command-line tool can be used to look
directly at the app-cache database and
see what is stored there. On Chrome, an
even easier method is to use chrome://
appcache-internals to inspect the state
of app cache.

YSlow also recommends avoiding
duplicate script. Certainly after all the
effort made to minify, obfuscate, and
manually cache your script tags, it will
be worth ensuring the browser is not
parsing and evaluating the same piece
of script twice. Removing duplicate
scripts remains a solid piece of advice
for mobile sites.

Do Not Configure ETags. In the case
of entity tags (ETags), the removal ad-
vice is the bit that applies. As you are
already storing all the resources in app
cache, and app cache is separate per
host domain, there is no benefit to us-

ing ETags—and the mobile browser
cache cannot be trusted to retain the
components, anyway.

Do Not Make AJAX Cacheable.
Rather than trusting the browser
to cache AJAX responses, it is best
to build either a full-blown write-
through cache layer or an XHR cach-
ing layer on top of the HTML5 local
storage facilities.

Do Not Split Components Across
Domains. I have already discussed par-
allel downloads, and the opportunity
for leveraging high-bandwidth connec-
tions on mobile is too limited to make
this a core technique.

Reducing cookie sizes applies to
mobile just as it does to the desktop.
Specifically, be sure the cookies for a
page do not, in aggregate, cause any
requests to be split across multiple
packets. Aim for 1,000 bytes or less of
cookie data.

Do Not Choose <link> over @Im-
port. Despite the existing recommen-
dation stated in the title here, for ab-
solute speed on mobile, neither link
nor @import is appropriate. Instead,
inline styles in the main body of the
page create the fastest load time and
the most app-like Web experience. If
separate resources are a must to sim-
plify serving, the preference should
be <link> to avoid rendering content
with missing style information.

Do Not Pack Components into a
Multipart Document. As mobile de-
vices do not support multipart docu-
ments, app cache is required.

What Still Applies?
With these extensive modifications
to the guidelines, the YSlow and Page
Speed recommendations may seem to
have very little application to mobile
Web development. Quite a few recom-
mendations can still be used effective-
ly for mobile, however, depending on
your exact requirements. Here is a list
of recommendations from YSlow that
can still be useful for mobile sites:

˲˲ Use a CDN
˲˲ �Add an expires or
cache-control header

˲˲ Put style sheets at the top
˲˲ Avoid redirects
˲˲ Remove duplicate scripts
˲˲ Flush the buffer early
˲˲ Use GET for AJAX requests
˲˲ Postload components

practice

august 2013 | vol. 56 | no. 8 | communications of the acm 51

˲˲ �Reduce the number of
DOM elements

˲˲ Minimize the number of iframes
˲˲ No 404s
˲˲ Reduce cookie size
˲˲ Optimize CSS sprites
˲˲ Do not scale images in HTML
˲˲ �Make favicon.ico small
and cacheable

Similarly, Google’s PageSpeed rec-
ommendations, except those that
have been specifically modified in this
article, can apply to mobile. These
tools from Yahoo! and Google should
be the first line of defense against a
slow site.

Putting It All Together
Let’s spend a moment on how to mea-
sure performance. One technique
already referenced is using adb to
connect to Chrome running on your
mobile device. This enables you to ap-
ply the full set of Web development
tools in Chrome to the instance run-
ning on your phone. For interactive
debugging, this cannot be beat. It is
worth spending some time to under-
stand the Network, Timeline, Profile,
and Resources screen so you can mas-
ter debugging and optimizing using
Chrome. Since Chrome and Mobile
Safari are very similar rendering en-
gines, this will pay dividends on both
major mobile platforms.

For the long run, do not forget to
implement server-side statistics. Us-
ing JavaScript timestamps or win-
dow.performance, you can measure
and track all the key load-time latency
metrics so you know when there is a
regression and in which part of the
system it is. Frequently authentica-
tion, domain name changes, or third-
party components wind up introduc-
ing additional redirects or network
traffic that are not noticeable on good
connections but that show up for your
end users’ real-world networks.

For AJAX, it is generally valuable to
build a generic AJAX fetch layer that
knows how to cache AJAX requests per-
sistently. For example, a simple tech-
nique for a news or discussion board
site would be to use unique hashes for
each piece of content and a generic
AJAX fetch layer that records all in-
coming data in an LRU (least recently
used) cache in local storage. This gen-
eral pattern of unique URLs and a sim-

ple-minded cache scheme will make
dynamic content caching easy to un-
derstand and easy to implement and
reuse across multiple sites.

For the final bit of polish, it is worth
thinking hard about using CSS tricks to
prerender layers of your site and transi-
tion between them. By rendering dia-
logs, for example, at a low opacity and
fading or sliding them in as needed,
you can create application-like experi-
ences that run smoothly in response to
user actions.

For the ultimate fit and finish, the
site should never let the browser paint
elements in an order of its choosing,
but instead use layers of divs that are
revealed in the right order and only
when completely rendered. For tran-
sition durations, values of 150ms–
300ms strike a nice balance between
a snappy transition and a slick look-
ing one—slower transitions look bet-
ter but cost too much time, and faster
ones look choppy.

A final note to consider is whether
to use any application meta tags to
give your website a special icon on
the desktop, a splash screen, or to
load full screen. For some sites these
little touches add significantly to the
fit and finish. The main drawback of
these methods is that on iOS the Web
view used for full-screen mode does
not take advantage of the JavaScript
JIT (just-in-time) compiler in Webkit,
so JavaScript compute-intensive code
runs slower. This will almost never af-
fect the site, but you will need to test for
it. In addition, the cookies are separate
from the browser cookies, which could
mean authenticating multiple times
for different bookmarks.

On iOS, Mobile Safari gets special
treatment and can start up significant-
ly faster than a full-screen bookmark.
Given these considerations, if you want
to use bookmarking, there is sample
code that provides a nice example of
how to show users a different screen on
first load, encouraging them to book-
mark your site to their home screens.

Conclusion
With diligent attention to existing
desktop recommendations and a few
additions that take into account mo-
bile network and CPU speed challeng-
es, it is possible to create very fast, very
slick website experiences for users. If

you cannot follow all the recommen-
dations, this article has presented the
most valuable techniques first—name-
ly, HTML5 app cache and deferred
JavaScript techniques. If you can fol-
low every recommendation, then your
users can look forward to a fast mobile
experience that they will come back to
again and again.

Acknowledgments
Almost every idea in this article is not
mine, but rather the ideas of many
Google teammates working on mobile
websites over the years. They are Mat-
thew Bolohan, Bikin Chiu, Ryan Fiora-
vanti, Andrew Grieve, Alex Kennberg,
Pavel Kobyakov, Robert Kroeger, Peter
Mayo, Joanne McKinley, Derek Phil-
lips, Keith Stanger, Neil Thomas, and
Ilia Tulchinsky.	

 Related articles
 on queue.acm.org

Streams and Standards:
Delivering Mobile Video

Tom Gerstel
http://queue.acm.org/detail.cfm?id=1066067

Mobile Media: Making It a Reality

Fred Kitson
http://queue.acm.org/detail.cfm?id=1066066

Mobile Devices in the Enterprise:
CTO Roundtable Overview
Mache Creeger
http://queue.acm.org/detail.cfm?id=2019556

References
1.	C isco. Cisco Visual Networking Index: global mobile data

traffic forecast update, 2012–2017 (2013); http://www.
cisco.com/en/US/solutions/collateral/ns341/ns525/
ns537/ns705/ns827/white_paper_c11-520862.html.

2.	F ioravanti, R. Building high-performance mobile Web
applications; http://rjf-io2012.appspot.com/#5; video:
http://www.youtube.com/watch?v=jD_-r6y558o.

3.	G oogle Code Blog. Gmail for Mobile HTML5 Series:
reducing startup latency; http://googlecode.blogspot.ca/
2009/09/gmail-for-mobile-html5-series-reducing.html.

4.	G oogle Developers. Minimize round-trip times (2012);
https://developers.google.com/speed/docs/best-
practices/rtt.

5.	G oogle Developers. Web performance best practices
(2012); https://developers.google.com/speed/docs/
best-practices/rules_intro.

6.	G rove, R. Mobile browser cache limits, revisited; http://
www.yuiblog.com/blog/2010/07/12/mobile-browser-
cache-limits-revisited/.

7.	 Souders, S. Mobile cache file sizes; http://www.
stevesouders.com/blog/2010/07/12/mobile-cache-
file-sizes/.

8.	Y ahoo! Developer Network. Best practices for
speeding up your Web site (2013); http://developer.
yahoo.com/performance/rules.html.

Alex Nicolaou is Chrome Engineering Manager at the
Google office in Waterloo, Ontario where he works on
building ChromeOS for ARM platforms. Prior to joining
Google in 2006, he was president of aruna.ca Inc., a startup
developing RDBMS based on text-search algorithms and
data structures and was part of LiquiMedia Inc.

© 2013 ACM 0001-0782/13/08

Copyright of Communications of the ACM is the property of Association for Computing
Machinery and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

