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ABSTRACT: Platform desertion, or a developer’s stopping the development of an
app for a platform, is a widespread phenomenon to the detriment of platforms.
However, the extant literature focuses primarily on why app developers join—not
leave—a platform. This app-level study develops two ideas: (a) coordination costs
borne by an app’s developer are associated with platform desertion, and (b) these
costs are, in turn, shaped by a nuanced interplay between app decision rights and
app “microarchitecture” introduced here. We use survey and snapshot archival
data spanning 2009–2014 on over 300 apps in the Mozilla Firefox ecosystem to
test these ideas. Our novel contribution shows how, by influencing coordination
costs, the previously invisible interplay between app decision rights and app
microarchitecture shapes an app’s platform desertion. We find that delegating
app decision rights to its developer weakens the coordination cost-reducing
benefits of decoupling an app from the platform but strengthens those of standar-
dizing its interfaces to the platform. The key theoretical implication is that app
decision rights and app microarchitecture symbiotically influence the coordina-
tion costs borne by an app’s developer. The key practical implication for platform
designers is that the choices about who ought to make what decisions are inter-
twined with the architecture of the governed information technology artifact.
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A software platform refers to an extensible technological foundation (e.g., iOS and
Android) created by a platform owner, on top of which outside firms (“app
developers”) can build platform-augmenting applications [14, 18, 74]. The platform
and its apps together constitute an ecosystem.
Apps are central to vibrant platform ecosystems [13, 54], but they are plagued by

high mortality rates (41–69 percent in recent estimates [73]). Prior studies have
focused primarily on what initially motivates outside app developers to join a
platform (e.g., [7, 17, 18, 34, 36]). However, the widespread churn of app devel-
opers has only recently been recognized [74]. The question of why an app devel-
oper stops developing an app for a given platform (“platform desertion”) has yet to
receive research attention. Understanding this phenomenon is important for sustain-
ing a platform. For example, a mass exodus of app developers collapsed the once-
dominant Palm OS platform. A contrast of iOS’s success (1.3 million apps, a billion
users) and BlackBerry’s misfortunes (0.13 million apps, 85 million users) similarly
illustrates the importance of apps in attracting end users to a platform [34]. Low
entry barriers, such as witnessed in the deluge of millions of apps in iOS and
Android, however, require an app developer to frequently update the app to survive
competition [57, 61, 68], as well as to do routine maintenance and security updates
[20, 22, 33, 39, 64].
Coordination costs borne by app developers can be the Achilles’ heel in plat-

form ecosystems, which potentially span millions of asynchronously evolving
apps [40]. We define coordination costs as the effort required of an app developer
to manage an app’s dependencies with the platform. Platform owners attempt to
reduce such coordination costs in two ways, (a) through modular architectures,
and (b) by distributing authority over app design decisions to app developers.
First, platforms increasingly adopt modular architectures to reduce coordination
costs [40, 70]. But the exclusive use of the ecosystem as the unit of analysis in
prior studies steers our attention away from what we conceptualize as the “micro-
architecture” of individual apps (e.g., [13, 19, 44, 74]). Baldwin and Clark [8, p.
22] call this the “microstructure” of designs to distinguish it from an ecosystem’s
macroarchitecture. Understanding platform desertion at the app level therefore
requires zooming in to the app as the unit of analysis. A second, scarcely studied,
approach to reducing coordination costs is decision rights (DR) delegation,
defined as delegating authority over an app’s design decisions to its developer
[74]. The premise is that app developers have the incentives and knowledge of an
app’s end users’ needs to make better app design decisions. However, it is
plausible that the extent to which DR delegation reduces coordination costs
depends on the properties of the information technology (IT) artifact itself (i.e.,
an app’s microarchitecture). How the second approach interplays with the first is
therefore our focus of attention.
In summary, prior research offers insight into the way that app microarchitectures

and decision rights might independently reduce coordination costs. But their under-
studied interplay can exacerbate coordination costs—the very problem that it was
intended to alleviate. This study focuses on this interplay, guided by the following
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research question: How does the interplay between app decision rights and an app’s
microarchitecture influence an app’s desertion of a platform?
We theorize that the interplay between an app’s microarchitecture and app

decision rights influences coordination costs borne by an app’s developer specific
to an app, which are associated with platform desertion.
We use both survey and archival data spanning three snapshots from 2009 to 2014

on more than 300 Firefox apps (“extensions”) to test the proposed ideas. Our
original contribution is the nuanced interplay between app decision rights and the
two disentangled properties of app microarchitecture—that is, an app’s decoupling
from the platform and its faithful use of platform-specific interface standards.
Although they independently decrease an app developer’s coordination costs, our
distinctive insight is that delegating app-specific decisions to app developers
weakens the coordination cost-reducing benefits of one microarchitectural property
of an app (decoupling) but amplifies those of the other (interface standardization).

Theory Development

Our forthcoming model (in Figure 1) develops two ideas building toward our
dependent variable, platform desertion. (The constructs are defined in Table 1.)
First, app-specific coordination costs borne by an app’s developer are associated
with app desertion of a platform. Second, app decision rights (DRs) interplay in two
opposing ways with the two microarchitectural properties of an app to influence
coordination costs borne by the app’s developer. We develop these ideas next.

Table 1. Core Constructs and Their Definitions

Construct Definition Time
Data
type

Role in
nomology

App decoupling Degree to which changes within an
app do not affect its interoperability
with the platform

t1 Survey Predictors

App interface
standardization

Degree to which an app faithfully uses
standards and protocols predefined
by the platform owner to interact
with the platform

t1 Survey

App decision rights
(DR) delegation

Degree to which the authority for
making app-specific design
decisions reside with the app’s
developer

t1 Survey

Coordination costs Effort required by an app’s developer
to manage an app’s dependencies
with the platform

t1 Survey Mediator

Platform desertion The app developer discontinues
developing the app for that platform

t2 Archival Criterion
variable
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Modular Systems Theory

Any complex system—technical or organizational—is composed of subsystems
that can interact in unpredictably complex ways [23, 56]. Modularity is a design
principle for managing such complexity [26, 38]. Modularity refers to minimizing
interdependence between subsystems, which allows them to change independently
yet to interoperate [9, 56]. Modularity can be a property of both the technological
and organizational systems [38]. The technical subsystems here are apps and the
organizational subsystems are teams in third-party app-development firms (here-
after, app developers). Their technical and organizational modularity thus represents
respectively the apps’ and their developers’ autonomy vis-à-vis the platform and the
platform owner. However, apps within the same ecosystem can exhibit considerable
variability in such modularity [9, 46, 68]. We therefore distinguish an app’s micro-
architecture from the higher-level ecosystem-wide macroarchitecture and use the
app as our unit of analysis.

Coordination Costs and Platform Desertion

Building on Malone and Crowston’s [43] definition of coordination as the effort
required to manage dependencies, we define coordination costs as the effort
required by an app’s developer to manage that app’s dependencies with the plat-
form. Table 2 summarizes the plethora of synonyms used to describe coordination
costs in different disciplines such as information systems (IS), organization theory,
operations, industrial organization, software engineering, and engineering manage-
ment. The common thread across all of them is the notion of the effort required for
managing interdependence between two parties.
Coordination between the platform owner and app developers is often costly [14,

36, 40], yet an app’s synergistic interoperation with the platform is necessary for an
app to create value [17, 57]. An app must therefore adapt to competition from rival

Coordination

Costs

Platform
Desertion

t2

App

Decoupling

App Interface
Standardization

App Microarchitecture

App
Decision Rights

Delegation

H1
(+)

H2a
(-)

H2b
(-)

H3
(-)

H4a
(+)

H4b
(-)

Figure 1. The Research Model Using the App as the Unit of Analysis
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apps, to changing user needs, and to platform capabilities but still interoperate with
the platform [74]. As any change in an app or in the platform can potentially
jeopardize their interoperability [17, 70], coordination costs can cripple an app
developer’s ability to tweak and adjust an app, or even to keep it functioning.1 Such
coordination challenges have recently been characterized as coordination frictions
among firms in a platform ecosystem [36]. Although a platform itself might be
designed to ease coordination with app developers,2 theoretically underappreciated
differences in app microarchitecture can lead to heterogeneity in coordination costs
across apps.
We define platform desertion as the choice by an app’s developer to stop further

development of that app for the given platform. Desertion is therefore abandon-
ment of a platform by an app developer for a specific app. Higher coordination
costs increase the effort required by the app developer to continue developing the
app on the platform. In contrast, low coordination costs allow the app’s developer
to more readily tweak an app to meet emerging user needs and exploit new
platform application programming interfaces (APIs) or platform functionality
without requiring inordinate effort to ensure its interoperability with the platform.
Lower coordination costs therefore increase the ease with which an app’s devel-
oper can make frequent, incremental enhancements in the app [45, p. 63]. We
therefore expect that app-specific coordination costs borne by its developer will
be positively associated with platform desertion. This leads to our first
hypothesis:

Table 2. Conceptualization of Coordination Costs Across Different Disciplines

Concept Definition Discipline
Representative
references

Coordination
costs

Effort required to manage
dependencies between
interdependent stakeholder
groups

Information
systems

[4, 43, 49]

Organization
theory

[28, 32, 60, 72]

Coordination
deficit

Mismatches between product
architecture and team
structure

Operations [31]

Systems
integration
costs

The costs of integrating
modular components into a
cohesive system

Industrial
organization

[15]

Software
composability

Ease with which subsystem
enhancements can be made
without compromising their
integration

Software
engineering

[45]

Coordination
frictions

Coordination challenges
between an enterprise
platform owner and third-
party developers of add-in
modules

Engineering
management

[36]
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Hypothesis 1: App-specific coordination costs borne by an app’s developer are
positively associated with platform desertion.

Coordination costs arise primarily from the need for mutual adaptation and com-
munication; they can arise even when the two parties share common interests [32,
60]. Any mechanism that reduces an app developer’s need for mutual adjustment or
communication should therefore decrease coordination costs. Both app microarch-
itecture and app DR delegation can decrease the app developer’s coordination costs.

Granularizing App Modularity into App Microarchitecture

The software engineering literature conceptualizes modularity primarily from a
technical perspective as the extent to which one subsystem is independent of
another [52]. Based on this view, app modularity can be conceptualized as the
degree of independence of an app from the platform. Modularity has two
interrelated but theoretically distinct dimensions: (a) decoupling an app from
the platform, and (b) using standardized interfaces between the app and the
platform, following Sanchez and Mahoney [56].3 Parnas’s original conceptuali-
zation notably emphasized that these are two “desirable but independent proper-
ties” [51] of system structure. The rationale is as follows. Apps can differ in
how closely they adhere to interface standards, protocols, and programming
guidelines prescribed to all app developers by a platform owner [9, 68].
Although a platform’s app developers might draw from a common pool of
platform-specific APIs and standards, this pool is relatively large. For example,
Firefox extension developers have several hundred available APIs, and iOS
developers have more than a thousand. A typical app will use only a subset
of the available APIs and available platform functionalities, and can also differ
considerably in the degree to which its developer complies with the prescribed
platform-specific interface standards. Therefore, there can be considerable het-
erogeneity in decoupling as well as interface standardization among apps for the
same platform [68].
Figure 2 illustrates—somewhat simplistically—two apps of the same platform.

The bolt and the wing nut depict two platform interface standards such as APIs and
protocols, many types of which can exist in a platform. An app’s microarchitecture
then refers to two properties characterizing an app’s relationship with the platform:
(a) how extensively it is coupled to the platform, and (b) how closely it adheres to
platform-specific interface standards. App A in this illustration is more decoupled
from the platform than app B (i.e., it has fewer connections). However, App B relies
more on platform-specific standards and thus has greater app interface standardiza-
tion. In contrast, app A is more decoupled. It also uses a workaround to patch the
app to the platform (the connection bypassing the standard interface in Figure 2),
and is thus less rigorous in adhering to the platform’s interface standards. The two
aspects of app microarchitecture—often assumed to covary in the aggregate con-
cept of modularity—can therefore vary independently of each other at the app level.
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App Decoupling

App decoupling refers to an app’s property wherein changes within it do not
have a cascading ripple effect that disrupts its interoperability with the platform.
Wareham et al. [74] call such connections “thin” connections. App decoupling
minimizes dependencies at the app-to-platform boundary to a few carefully
placed dependencies [41, 46, 68], thus weakening interactions between the app
and the platform.
A change in the platform or the app—both of which might change at a

mutually independent pace—can potentially disrupt an app’s interoperability
with the platform. In the absence of app decoupling, the app developer would
need to constantly monitor changes in the platform to ensure the app’s continued
interoperability [57]. This potentially prohibitive need for constant mutual
adjustments can paralyze the app developer’s ability to improve the app, or
even to tinker with it.
App decoupling can reduce coordination costs by allowing the app developer to

change the app’s internal implementation without having to know the internal
details of the platform [52, 56]. Changes in the app are then less likely to require
compensating changes outside it, and changes in the platform are less likely to
require compensating changes in the app [41, 68]. This reduces how cognizant an
app’s developer must remain to the ripple effects of within-app changes on the
platform [25, 52]. This allows the app developer to autonomously and indepen-
dently tinker with the app, less constrained by platform dependencies. Thus, by
reducing the need for ongoing communication and mutual adjustment, app decou-
pling reduces the app developer’s coordination costs.

Hypothesis 2a: App decoupling is associated with a decrease in coordination
costs.

App Coupling

App Interfaces

App A App B Platform

Platform Interface Standards

InterfaceWorkaround

Figure 2. A Contrast in Microarchitectural Properties of Two Apps in the Same Platform
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App Interface Standardization

We define app interface standardization as the degree to which an app faithfully
uses standards and protocols predefined by the platform owner (e.g., platform-
specific APIs, data formats, and protocols) to interact with the platform. This
conceptualization builds on Farrell and Saloner’s definition of standards as an
explicit agreement to do certain things in an agreed upon way [29]. Such stan-
dards codify the relationships between the app and the platform, permissible
assumptions [52], and rules that apps ought to obey and can expect the platform
to obey [8, p. 64].
Greater adherence to platform-specific interface standards by an app lowers

coordination costs borne by the app’s developer by reducing the need for
iteration between the app developer and the platform owner [5]. The app
developer is assured that a revised app conforming to the platform’s codified
interface specifications will interoperate with it [35, 68, 74]. This is akin to the
use of protocols [28] and formalized rules [72] as coordination mechanisms.
App interface standardization therefore reduces app developers’ coordination
costs.

Hypothesis 2b: An app’s compliance with platform-specific interface standards
is associated with a decrease in coordination costs.

App Decision Rights Delegation

We define app decision rights (DR) delegation as the degree to which the authority
for making app-specific design decisions reside with the app’s developer. They
encompass decisions about an app’s features, functionality, design, and
implementation.4 This conceptualization builds on decision rights as the allocation
of decision-making authority [6, 48, 67]. App decision rights therefore signify the
locus of authority over an app [2, 21], which can reside anywhere on the continuum
from being completely with the platform owner (i.e., completely concentrated) or
with an app’s developer (i.e., completely delegated).5

Apps of the same platform can differ in DR delegation for two reasons. First,
platform owners might discriminate in how much autonomy they grant to individual
apps, especially those that they deem strategic or potentially cannibalizing [68].
Second, app developers might also exhibit variance in their uptake of delegated
authority [14].
DR delegation places authority over app-level decisions with the app’s developer,

who has both the strongest incentives and nuanced knowledge of the app’s end
users’ needs to make better design decisions about the app. It also creates clear
accountability; app developers become accountable for their own app’s code and
the platform owner for the platform’s code. Such clear division of responsibilities
lowers coordination costs [32]. We therefore expect that app DR delegation will
lower its developer’s coordination costs.
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Hypothesis 3: Delegation of app decision rights is associated with a decrease
in coordination costs.

Interplay of App Decision Rights with App Microarchitecture

Interplay of App DR Delegation with App Decoupling

Although increasing app decoupling reduces an app’s technical dependence on the
platform, coordination challenges can persist because such autonomy is insufficient
to guarantee an app’s coherent interoperability with the platform [13, 74].6

Bresnahan and Greenstein [14] describe this tension between empowering an
app’s developer and coordinating the developer’s work with the platform owner
as an exploration-coordination trade-off. Centralization of app decision rights that
ordinarily ensures a revised app’s interoperability no longer exists when app
decision rights are delegated to the app’s developer [13]. Thus coordination costs
for ensuring a decoupled app’s ongoing interoperability with the platform increase
with DR delegation.7 Therefore, DR delegation weakens the benefits of app decou-
pling in reducing coordination costs borne by the app’s developer interaction effect.
This mutually diminishing interplay of app decoupling with DR delegation leads to
our next hypothesis.

Hypothesis 4a: App decision rights delegation weakens the degree to which
app decoupling reduces coordination costs.

Interplay of App DR Delegation with App Interface Standardization

In contrast, greater app interface standardization compensates for the loss of
centralized coordination associated with DR delegation. Platform standards are by
definition explicitly codified, typically with reference designs and app design best
practices prescribed by the platform owner. Adherence to them permits an app to
interoperate coherently with the platform without imposing additional coordination
burden on the app developer, thus making app developer autonomy over app
decisions even more valuable. A revised app more compliant with predefined
platform standards is therefore more likely to interoperate coherently with the
platform. App DR delegation therefore strengthens the benefits of app interface
standardization in reducing coordination costs borne by the app’s developer. When
two things reinforce each other, they are complementary [10]. This mutually
reinforcing interplay of app interface standardization and DR delegation leads to
our final hypothesis.

Hypothesis 4b: App decision rights delegation strengthens the degree to which
app interface standardization reduces coordination costs.
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Research Methodology

Data Collection

We collected data in two phases spanning a period of six years (2009–2014) as
part of a larger multiyear research program of app developers in Mozilla’s
Firefox platform ecosystem [68]. Figure 3 shows this data collection timeline.
Predictor data were collected in 2009 (t1) using a survey and objective depen-
dent variable data in June 2014 (t2). (The archival data for the dependent
variable and the majority of controls were collected independently and after
the temporal end point of [68] based on this research program.) Our unit of
analysis is the app.
Firefox is an open-source web browser platform with almost 500 million users

and a community of independent app development firms that have developed
over 11,000 apps. Such apps, known as Firefox “extensions,” add functionality
that is natively absent in Firefox (see https://addons.mozilla.org for a complete
list). The advantage of focusing on this single platform is twofold.8 First,
changes in a platform over time can affect all apps in two different ways: (a)
changes in a platform’s existing interface standards might compromise backward
compatibility, and (b) new platform functionality can substitute for an app’s
functionality. Our research design mitigates (a) because Firefox APIs always
remain backward compatible, and (b) as described next asserting that app
downloads would drop if that happened. Second, studying platform desertion
requires accounting for app demand as well as revenues. Our model explicitly
accounts for demand by controlling for both the objective count of downloads at
time t2 and the change (Δ) in download counts for each app during our t1→t2
observation interval. All Firefox apps are free; this mitigates confounding by
revenues because they are zero for all apps.
Our sampling frame was a random sample of 1,000 Firefox apps spanning all

13 categories (listed in Table 4, presented later in the article).Their total count
grew from 6,500 to about 11,000 from 2009 to 2015. Firefox users collectively
used these apps about 600 million times per day. We sampled only one app per
developer to ensure independence among observations. We excluded from the
sampling frame the few apps developed in-house by Mozilla. We used a key

Figure 3. Data Collection Timeline
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informant approach for survey data collection. The survey respondent was the
primary/lead developer of each app, identified through Mozilla records. This is
consistent with project-level studies in information systems that use the project
manager as the informant regarding the entire project team. This ensured that
the survey responses were representative of the team of individuals responsible
for developing a specific app. Most Firefox apps are developed in very small
teams with fewer than 10 developers. We anchored all survey responses to an
explicitly named Firefox app to ensure consistency in the unit of analysis, as
one developer can have multiple apps. This also ensured that our survey did not
inadvertently anthropomorphize an app; it is the app developer who chooses to
desert. Three e-mails generated 342 responses for a response rate of 34.2
percent. The developers spanned 28 countries shown in Figure 4, with the
majority from the United States (72 percent). T-tests on the independent vari-
ables (app decoupling T = –1.47; app interface standardization T = –1.24; DR
delegation T = .28; all nonsignificant) comparing the early (first 25 percent) and
late (last 25 percent) respondents provided no evidence of nonresponse bias. A
nonsignificant (ns) relationship between survey response date and platform
desertion (.014; p = .81, ns) assures us that the sample was not systematically
biased toward or against apps prone to platform desertion.

Construct Operationalization and Scale Development

We operationalized all constructs at the app level, using multi-item, seven-point
Likert scales with all principal constructs measured other than the dependent
variable (see Appendix A). We used lagged (t2) archival data for the dependent
variable and most control variables.
We adapted existing modularity scales for app decoupling and app interface

standardization [9, 47, 75, 78]; and an existing software implementation

Figure 4. The App Development Firms in Our Sample Represented 28 Countries
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decision rights scale [67] to measure app-level DR delegation. The preliminary
item pools were pilot tested and iteratively refined for clarity and contextual
meaningfulness through a series of interviews with a convenience sample of 11
Firefox developers and 6 academic experts. We anchored all measures in the
language used in the Firefox ecosystem; for example, apps were referred to as
Firefox extensions and the platform as the Firefox browser. The app’s developer
refers to the team in the third-party app development firm that was responsible
for a specific app.
App decoupling used three items that assessed the degree to which loose cou-

pling, and few and minimal unnecessary interdependencies characterized the app’s
relationship with the platform. App interface standardization used five items that
tapped into the degree to which the app used interface standards and protocols
specific to the Firefox platform that were clearly specified, unambiguous, stable,
well-documented, and standardized to interact with it. App decision rights delega-
tion used five items to assess the degree to which the responsibility for making
decisions about the app’s features, functionality, design, implementation, and user
interface leaned more toward the app developer than toward the platform owner.
Coordination costs between the app’s developer and the platform owner used five
items to assess whether the app’s last major upgrade compromised interoperability
with the platform, caused unexpected interactions with it, required changes in the
platform’s internal code, and required extensive joint effort and communication
with the platform owner. The emphasis on the last major upgrade was driven by
pilot feedback comments to anchor the items specifically rather than on an overall
perception potentially spanning many years; the mean app age in our sample is over
seven years. We used objective data to measure platform desertion, recognizing that
it is often not an abrupt, clearly recognizable event (e.g., an app developer remov-
ing an app from the platform ecosystem). Instead, it is likely manifested gradually
in an app developer’s ceasing further development of an app for the platform and
letting it languish. Using too short an interval might lead us to incorrectly conclude
the absence of such effects because the observation interval might be shorter than
the phenomenon’s existence interval (see [77]).9 This required a sufficiently long
observation window (six years in this study) and an objective way to measure it. We
therefore measured platform desertion as an app-level dummy variable set to 0 if
the difference between version numbers t1→t2 was nonzero (75.9 percent); and 1 if
it was zero (24.1 percent). This objective measure is consistent with its conceptua-
lization as the app developer’s stopping further development of that specific app for
the given platform. Alternative measures of platform desertion produced robust
results.
In addition to the pilot tests used to ensure content validity of our measures, we

used two approaches to ensure construct validity: discriminant validity and mea-
surement reliability. The measures exhibited discriminant validity with high load-
ings and low cross-loadings as shown in the factor matrix in Appendix B. The scale
αs shown in Table 3 range acceptably from .64 to .95. The core theoretical variables
appear first in Table 3. Overall, the scale αs and their eigenvalues (> 1.75) suggest
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psychometric adequacy. Measures for the mostly archival control variables appear
in Appendix A.

Descriptive Statistics

Our sample represented diverse categories such as security and privacy (14
percent), social networking (14.9 percent), feed management (10.8 percent),
appearance tools (10 percent), bookmark managers (11.7 percent), photo/video
tools (10 percent), and search tools (24 percent). Even though the apps share a
common delegator of authority (the platform owner), they exhibit considerable
variance (σ 1.14) in DR delegation. Figure 5 visually summarizes the major
developments that occurred as Firefox evolved from 2009 to 2015. Most of the
changes affected app developers, primarily improving platform functionality
and adding APIs that apps could potentially use. This pattern is consistent with
the recent observation that the platform itself must continue to evolve to
remain relevant in the market [57]. At t2, our average app had been in
existence for 7.3 years (σ 1.21), had been downloaded 2.35 million times (σ
9.83 million), and had received 109.5 reviews (σ 305.3) with an average rating
of 4.05 on a five-point scale (σ .63). On average, an app had progressed from
version 1.41 to 1.52 and its mean rating decreased by half a star over this
period. 24.1 percent of the apps in the study deserted the platform during the
t1→t2 interval.

Control Variables

Coordination costs alone are unlikely to drive platform desertion at the app level; we
therefore accounted for a variety of rival explanations. We used three sets of control
variables—(a) app characteristics, (b) app developer characteristics, and (c) app
dynamics manifested during the t1→t2 interval. Given no prior empirical studies of
platform desertion, our choice of control variables is entirely conceptually motivated. All
control variables used either t2 archival data or multi-item measures measured at t1, as
shown in Appendix A. Among app characteristics, we controlled for app age (in years),
app rating on a five-star scale averaged across all raters10 (a proxy for consumption
utility [63]), app version number (a proxy for app maturity), whether it was open-source
(a dummy), its complexity relative to other Firefox extensions (relative complexity) [53,
76], and its category (using Mozilla’s 13 mutually nonexclusive categories; the reference
category was other). We also controlled for the developer’s perception of the relative
rapidity with which it introduced feature enhancements (functional enhancement), and
the coordination costs faced by the app developer in managing potential dependencies
with other Firefox extensions (cross-app coordination costs). For app developer char-
acteristics, we controlled for the number of other Firefox extensions by the developer
(other apps count) as a proxy for platform-specific development experience, developer
commitment to the platform, the developer’s intent to port the app to rival platforms
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(multihoming intent), and the developer’s perception of the extent to which the platform
owner made platform decisions with little collaborative input from app developers
(platform decision rights concentration) [13].11 This set of controls also indirectly
accounts for app developers’ motivations not explicitly accounted for in the model—
for example, reputational benefits from having a successful open-source app. Finally, our
longer observation interval also requires accounting for changes during this time span
that might confound the results. We therefore also controlled for two dynamics over the
six-year period to account for the role of time (see [77]): change (a) in the number of
reviews (ΔReviewst1→t2), and (b) in the app’s rating (ΔRatingst1→t2).

Analysis and Results

Model Specification and Endogeneity Bias Assessment

The hypotheses were tested using two equations, one predicting time-lagged plat-
form desertion using a hierarchical linear model (Model 1 in Equations 1.1–1.4)
and the other predicting coordination costs (the mediator) (Model 2 in Equations
2.1–2.2). In Model 1, we added the controls (Step 1.1; Equation 1.1), the mediator
(Step 1.2), main effects (Step 1.3), and finally the interaction terms (Step 1.4). In
Model 2, we added the main effects (Step 2.1) and then the interaction terms (Step
2.2).12 Equation steps 1.2, 2.2, and 2.2 test the hypotheses; the corresponding
results are highlighted in Table 4 (presented later in the paper).

Platform desertiont2 ¼β0 þ β1ageþ β2rating þ β3version#þ β4open� source

þ β5relative complexity

þ β6func enchancement

þ β7cross-app coordination cost

þ fβ8category alertsþ β12category feeds

þ β13category photosþ β14category privacy

þ β15category searchþ β16category social

þ β17category tab mgmt þ β18category toolbars

þ β19category web devg þ β20other apps count

þ β21commitment platformþ β22multihoming

þ β23platform dr concþ β24Δrating

þ β25Δdownloadsþ ε

(1:1)

þ β26coordination costs (1:2)

þ β27decoupling þ β28int std þ β29DR delegation (1:3)
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þ β30 decoupling�DR delegationð Þ þ β31 int std�DR delegationð Þ
þ β32 decoupling�int stdð Þ (1:4)

Coordination costs ¼ γ0 þ γ1decoupling þ γ2int std þ γ3DR delegationþ ε (2:1)

þ γ4 decoupling�DR delegationð Þ þ γ5 int std�DR delegationð Þ
þ γ6 decoupling�int stdð Þ (2:2)

We conducted a variety of econometric analyses and econometric diagnostics to
assess endogeneity in our model’s predictors. These are summarized in Appendix
C. This econometric analysis revealed no evidence of endogeneity, suggesting that
it was appropriate to use case-wise ordinary least squares (OLS) regression for our
hypothesis tests.

Results

The results appear in Table 4. The results corresponding to Equations 1.1–1.4
appear in the columns marked Steps 1.1–1.4; and Equations 2.1–2.2 in the columns
marked Steps 2.1–2.2. We used one-tailed tests because the hypotheses are
unidirectional.
As Step 1.3 in Table 4 shows, coordination costs had a significant positive

relationship with platform desertion (β = .41, T = 2.08, p < .05). H1 was therefore
supported. The main effects of app decoupling (β = –.15, T = –2.66, p < .01), app
interface standardization (β = –.13, T = –2.39, p < .01), and DR delegation (β =
–.12, T = –2.14, p < .05) were negative and significant in Step 2.1 in Table 4,
supporting H2a, H2b, and H3. Interaction terms were used to test H4a and H4b in
Step 2.2. (We used centered product terms to mitigate multicollinearity; the highest
variance inflation factors for Models 1 [1.01] and 2 [2.2] were well below the
recommended threshold of 5.) The interaction between app decoupling and DR
delegation had a significant positive relationship with coordination costs (β = .12, T
= 2.24, p < .05), supporting H4a. The interaction between app interface standardi-
zation and DR delegation had a significant negative relationship with coordination
costs (β = –.15, T = –2.79, p < .01), supporting H4b.13 The direct effects of app
decoupling (β = .03, T = .24; ns), app interface standardization (β = –.06, T = –.41;
ns), and DR delegation (β = .17, T = .1.04; ns) on platform desertion were all
nonsignificant (see Step 1.3 in Table 4). This implies that by themselves, app
microarchitecture and app decision rights allocation do not influence platform
desertion. The model was statistically significant (F-value 7.09; p < .001), and
adding the interaction terms significantly increased its explanatory power (F-
change 4.39; p < .001). The results explain 39.4 percent of variance in platform
desertion.
Figure 6 illustrates app-level DR delegation’s interaction with (a) app decoupling

and (b) app interface standardization. The top panel shows that greater app
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decoupling increases coordination costs when DR delegation is high (the solid line)
but decreases it when it is low (the dotted line). The bottom panel shows that
greater app interface standardization decreases coordination costs when it is high
(the solid line) but increases it when it is low (the dotted line). Therefore, DR
delegation weakens the coordination benefits of app decoupling but strengthens
those of app interface standardization.
For the control variables, the patterns in Step 1.1 in Table 4 intuitively show that

apps that are less likely to desert the platform vary by category and are created by
developers with greater commitment to that platform. The corresponding step in the
robustness analysis using a continuous desertion measure further showed that apps
that are more likely to stick with a platform are more mature, undergo more rapid
functionality enhancements, and do not multihome in other platforms. The model
explained 39.4 percent of the variance, of which the controls explained 30.9
percent.

Figure 6. Interaction Plots for High and Low (±3 SD) App Decision Rights Delegation for
(a) App Decoupling (top panel) and (b) App Interface Standardization (bottom panel)
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Supplementary Robustness Checks

This analysis raises a legitimate concern about using OLS for the dichotomously
measured outcome, platform desertion. We therefore conducted extensive robust-
ness analyses to assess this. We reanalyzed the data in two different ways by
recoding the mediator and dependent variable to be consistent—that is, making
both dichotomous or both continuous. First, we retested the entire model with OLS
regression using a nondichotomous measure of the dependent variable. We used a
continuous measure of the dependent variable: version changes from t1 to t2,
ΔVersion numbert1→t2. The results showed a pattern of significance completely
consistent with Table 4. Second, we retested the platform desertion part of the
model with logistic regression after using a median split to dichotomize the
mediator. (Logistic regression cannot be used throughout because the part of the
model leading up to the mediator does not use a dummy criterion variable;
combining OLS with logistic regression will produce uninterpretable results across
the two parts of the model.) This also produced a consistent pattern of results.

Limitations

Four limitations of the study are noteworthy. First, the use of a single referent
platform might mitigate confounding due to differences among platforms (e.g., [37,
44]) but not due to platform changes between t1 and t2. Our research design cannot
account for how the addition of new platform APIs appearing after t1 allow an
app’s developer to redesign an app to reduce coordination costs, thus affecting
platform desertion. Second, extrapolating the findings from a free and open-source
platform to paid and proprietary platforms—which have rarely been studied—
warrants caution. Third, although the model explains almost 40 percent of the
variance, the theorized variables account for under 9 percent of it, suggesting
fertile, uncharted ground for further theory development. Variables beyond coordi-
nation costs might be especially salient for paid apps. Fourth, the α for app
decoupling was below the preferable 0.7 cutoff.

Discussion and Implications

We examined how the interplay of app microarchitecture with app decision rights
influences platform desertion. This question has not yet received attention because
prior studies focus on the antecedent question of why app developers join—not
leave—a platform (e.g., [17, 18, 34, 36, 57]). Unlike our focus on an end-user
platform, prior studies have focused exclusively on enterprise resource planning
(ERP) platforms where firms rather than end users are the primary customers.
We zoomed in to the app level to introduce and theoretically develop the notion

of app microarchitecture, whose interplay with decision rights affects coordination
costs borne by its developer. Higher coordination costs are positively associated
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with platform desertion at the app level. A strength of the study is that we
objectively observed platform desertion at the app level over a half decade observa-
tion interval, allowing us to study a phenomenon that would be infeasible in a
cross-sectional study. Our results show that even though DR delegation, app
decoupling, and app interface standardization all independently reduce coordination
costs, apps whose microarchitecture is incongruent with their decision rights are
more likely to desert a platform.
Our distinctive contribution pertains to the way DR delegation interplays in

nuanced, mutually opposing ways with the two dimensions of app microarchitec-
ture. Whereas DR delegation grants authority to app developers with incentives and
expertise to make better app decisions, it can imperil the app’s continued interoper-
ability with the platform. The results support our central idea that DR delegation
weakens the benefits of app decoupling but strengthens those of app interface
standardization in reducing app developers’ coordination costs. These nuances
were invisible before our disentangling of an app’s two microarchitectural proper-
ties. Our results therefore theoretically bridge the hitherto separate the notions of
modular software design, which has existed primarily in the realm of software
engineering, from decision rights, which have existed primarily in IS (e.g., [42,
67]). These findings have three theoretical implications for the IS platforms
literature.
First, app decision rights and app microarchitecture function as a system of

interlocked choices that jointly influence coordination costs; one must be cognizant
of the other to fully realize the coordination-facilitating benefits of either. Insight
into this symbiotic relationship responds directly to the call for understanding the
relationship between software architecture and the organization of software devel-
opment work [41]. It complements recent work on modularity by showing that app
modularity’s benefits can be amplified by the delegation of app decision rights to
app developers, and not just by gatekeeping by a platform owner (e.g., [62, 68]).
Thus the effectiveness of choices about who ought to make what decisions is
intertwined with the architecture of the governed IT artifact, augmenting the
small stream on IS decision rights where properties of the governed IT artifact
are not yet considered (e.g., [42, 67]).
Although we did not hypothesize mediation under the premise that factors far

beyond coordination costs can influence platform desertion, given the structure of
our model we test and theoretically interpret it. Coordination costs mediated only
the (standardization*DR delegation) interaction term’s effect on platform desertion
(TSobel 1.67; p < .05; TGoodman 1.74; p < .05), but not that of decoupling DR
delegation (TSobel 1.52; TGoodman 1.61; ns). This suggests that the complementarity
between standardization of an app’s interfaces and DR delegation reduces the
likelihood of desertion of a platform by an app because it reduces coordination
costs borne by its developer. However, other causal pathways absent in our model
may be important for decoupling’s interplay with app decision rights. For example,
the latter interplay might affect the app developer’s ability to rapidly leverage the
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emerging platform’s capabilities, bolster its synergistic specificity with the platform
[58, 65], or weaken its lock-in to the platform.
However, since DR delegation has opposing interactions with app developers’

microarchitectural choices about app decoupling and interface standardization, in
which direction should they err when making choices about app microarchitecture
that are largely under their control? To assess this, we evaluated how simulta-
neously increasing both app interface standardization and DR delegation affects
coordination costs for high and low levels of app decoupling (±3 SD). The
corresponding interaction plot in Figure 7 illustrates that joint reliance on interface
standards and app DR delegation reduces coordination costs for lower levels of app
decoupling (the solid line) but not for higher levels of app decoupling (the dotted
line). This insight is absent in the modularity literature.
Second, the significant main effects of app decoupling and interface standardiza-

tion in Table 4, Step 2.1, imply that they independently lower coordination costs.
The microarchitecture of an app can thus preordain platform desertion. The inter-
vening coordination costs mechanism that links them to platform desertion plau-
sibly adds a missing “how” to Baldwin’s [9] finding that modular codebases induce
continued developer involvement in open-source software projects. However, coor-
dination costs mediated significantly only decoupling’s influence on platform
desertion (TSobel = 1.64; p < .05) but not interface standardization’s (TSobel =1.57;
ns). This implies that app decoupling reduces the likelihood of platform desertion
because it reduces coordination costs borne by the app’s developer. However,
interface standardization’s effects might operate through pathways other than coor-
dination costs, such as faster exploitation of new platform functionalities accessible
through new APIs to introduce new app features. For example, some iOS apps
could quickly switch from local to cloud-based storage of user files when Apple
introduced the iCloud API in 2014. This supports the premise of using modularity

Figure 7. Combining App DR Delegation with App Interface Standardization Decreases
Coordination Costs When App Decoupling Is Lower but Not When It Is Higher
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to reduce interfirm coordination costs, where many coordination mechanisms found
within firms are simply unavailable [60, 71]. These nuanced insights were absent
until we disaggregated the broad modularity concept into the two distinct micro-
architectural properties in this study.
Third, the significant relationship between coordination costs and platform deser-

tion implies that the coordination frictions that are important to app developers’
initial decision to join a platform (e.g., [36]) also remain important to sustain their
commitment to it. Microarchitectural choices in the design of an app can therefore
be viewed as enduring path-creating choices that simultaneously create and fore-
close future evolutionary trajectories of an app by altering the division of developer
effort between coordinating with the platform owner and in-app innovation. A
greater proportion of effort directed toward coordination takes away from effort
that could be expended on app innovation, exacerbating the likelihood of platform
desertion.

Implications for Practice

The implication for app developers is that they must choose the degree of app
decoupling and app interface standardization based on the expected pattern of app
decision rights in a specific platform ecosystem. If the platform owner retains app
decision rights, app developers can reduce their own coordination costs more by
increasing app decoupling than by standardizing app interfaces. If the platform
owner delegates decision rights to app developers, the latter can reduce their own
coordination costs more by standardizing app interfaces than by app decoupling.
For platform owners, our results emphasize that maintaining the brittle balance
between ecosystem-wide cohesion and app developers’ autonomy [1, 68] demands
attention to app microarchitecture, not just to platform macroarchitecture. Platform
owners can use best practice guidelines and reference designs to ensure that plat-
form APIs and prescribed app interface standards are understandable to app devel-
opers. Furthermore, they must strive to reduce app developers’ coordination costs—
for example, by investing in app development tools, templates, simulators, and test
automation tools.

Directions for Future Research

Future research can extend these findings in four fertile directions. First, modularity
decays over time [25] and potentially causes fragmentation of a platform, as the
Android platform anecdotally suggests. How do the coordination benefits of mod-
ularity change as a platform and apps age? Specifically, a longitudinal research
design can study how an app’s adoption of new APIs added after t1 might lead to
app redesign to reduce coordination costs. Second, how does decision rights
apportionment influence the evolution of ecosystem macroarchitecture over time?
What causes migration of app decision rights over time? Third, theoretically
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distinguishing app coordination costs from app development costs merits theoretical
development. The former is a type of opportunity cost—especially for commercial,
revenue-generating apps—that can squander resources that might be invested in
developing the app on another platform as well. Fourth, the understudied dynamics
in such ecosystems merit further attention.

Conclusion

Platforms are increasingly the core building blocks of new market offerings in the
software industry [24]. Their foremost challenge is to ensure interoperability among
apps produced by autonomous firms with diverse capabilities and interests.
Preventing existing app developers from deserting a platform deserves more atten-
tion than it has so far received. This study contributed new app-level insights into
why app developers desert a platform, complementing recent studies of why they
join a platform. Our insights into how micro-level architectural design choices can
preordain the IT artifacts to mortality also offer a starting point for thinking about
how they can also endow them with properties to live long and prosper.

NOTES

1. Firefox, for example, adopted a rapid release philosophy in 2011, whereby it releases
new version every few weeks; any such change can jeopardize an app’s interoperability with it.

2. A contrast of Apple’s iOS versus BlackBerry software platforms illustrates this point.
Apple provides a variety of developer-friendly tools including simulators, technical guide-
lines, APIs, and programming tools to make it easier for iOS app developers to take
advantage of the platform’s evolving capabilities and to ensure their apps’ interoperability
[16, 17]. In contrast, such integration is much more difficult for programmers developing
apps for BlackBerry, which in turn has an active app developer community about one-tenth
the size of Apple’s. This however is a cross-platform-level difference whereas our focus is
zoomed in on differences among apps within a single platform.

3. Prior empirical studies almost always aggregate decoupling and interface standardiza-
tion with little theoretical rationalization (e.g., [47, 66, 75]). For example, Tiwana and
Konsynski [69] ironically show these facets to be empirically distinct yet aggregate them
formatively and Nambisan [47] did not measure the underlying dimensions.

4. Fama and Jensen [27] refer to these collectively as decision management rights.
5. DR delegation at the app level represents organizational modularization, which

Sanchez [55] defines as the degree to which a party can function autonomously and
concurrently vis-à-vis another. This conceptualization using decision right structure to
represent organizational structure is consistent with others’ definitions of organizational
modularity such as unbundling of decision rights [38] and a “quasi independent” organiza-
tional structure [56].

6. For example, Apple emphasizes intuitive usability and minimal replication of function-
ality provided by the iOS platform’s APIs and native iOS apps. Similarly, BlackBerry
emphasizes tight integration of BlackBerryOS with apps targeted primarily to business
users; Firefox prioritizes end-user security and privacy above all other demands. An app
must be sufficiently consistent with the platform’s vision.

7. An example of this is the fragmentation of the Android platform into many inconsistent
and incompatible derivative versions of Android (“forks”) by Amazon, Samsung, LG, and
Sony [50].

8. We thank an anonymous reviewer for suggesting this point.
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9. This is akin to an astronomer concluding that Halley’s comet does not exist after
fruitlessly trying to observe it for 20 years (the observation interval), although it appears
once every 75 years (the phenomenon’s existence interval, in these authors’ language).
10. Using t1 ratings instead of t2 ratings produced consistent results.
11. Developers’ perceptions about the controlling nature of the platform owner are likely

heterogeneous, as its high variance also suggests.
12. Using these controls on coordination costs misspecifies the model [12]; the results,

however, were robust when controls were used in this manner.
13. A multistep test for mediated moderation met the conditions for interface standardiza-

tion, that is, (1) a significant relationship between the mediator and platform desertion (β =
.41; p < .05), (2) moderation of its effect on coordination costs (β = –.15; p < .01), (3)
mediation by coordination costs of this interaction term’s effect on platform desertion
(mediation test significant at p < .05), and (4) a drop in direct effect path from the moderator
when the interaction term is introduced. However, the corresponding test for decoupling
failed the third mediation-test step, providing no evidence to support mediated moderation
for it. The (app interface standardization * app decoupling) interaction term included in
Model 1.4 in Table 4 to avoid model underspecification was nonsignificant (β = .08, T =
1.46; ns), indicating that they play independent roles in reducing coordination costs.
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Appendix A: Construct Measures

All responses were anchored in an explicitly named extension. All principal con-
structs used multi-item seven-point Likert measures with strongly disagree–strongly
agree anchors unless otherwise indicated. The dependent variable and most control
variables used lagged archival, objective data from time t2 (2014) (superscripted
with ∇). All instruments used in endogeneity robustness checks use archival
objective data from time t1 (2009). The respondents were instructed that the term
extension referred to the specifically named Firefox add-on or extension that they
had developed, and the term Firefox Team referred to the core Mozilla team
responsible for developing and maintaining the Firefox browser platform.
Following Mozilla terminology, the app was referred to as a Firefox extension. (*
indicates dropped items.)
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Platform desertion∇ was a dummy set to 1 if the change in versions from t1 to t2
was zero; 0 if it was nonzero. As a robustness check, the model was retested using
ΔVersion numbert1→t2, a continuous alternative measure for platform nondesertion.
This was the difference between the extension’s version number at time t2 (June
2014) and t1 (May 2009).
Coordination costs between the app developer and the platform owner was

assessed using five items that assessed the degree to which the last major upgrade
of the extension: (1) “broke” Firefox, (2) caused unexpected interactions with
Firefox, (3) required changes in Firefox’s internal code, (4) required extensive
joint effort with the Firefox team, and (5) required extensive communication with
the Firefox team.
App decoupling was measured using three items that tapped into the degree to

which the relationship between the extension and the Firefox browser was char-
acterized by the following attributes: (1) plug-and-play*, (2) highly modular*, (3)
loosely coupled, (4) highly interoperable*, (5) small number of interdependencies,
and (6) minimal unnecessary interdependencies.
App interface standardization was measured using five items that assessed the

degree to which the extension interacted with Firefox using interface standards and
protocols that were: (1) clearly specified, (2) unambiguous, (3) stable, (4) well-
documented, and (5) standardized.
App decision rights delegation was measured using five items that tapped into

how the responsibility was distributed between the extension developer and the
Firefox team (the platform owner) for making decisions about that Firefox exten-
sion’s: (1) features, (2) functionality, (3) design, (4) implementation, and (5) user
interface. The anchors were 1: Primarily Mozilla’s Firefox team; 4: both jointly; 7:
Primarily the extension developer.
Control variables
ΔDownloadst1→t2

∇ was the increase in the extension’s lifetime downloads over a
six-year span from time t1 to t2.
ΔRatingst1→t2

∇ was the change in the mean end-user ratings of the extension over
a six-year span from time t1 to t2.
App age∇ was measured as the time lapsed in years since the extension was first

released.
App complexity was measured using four items that assessed the focal Firefox

extension, compared to other Firefox extensions that the extension developer was
familiar with: (1) was relatively complex, (2) was technically complex to develop,
(3) required pioneering innovations, and (4) used a complex development process.
App ratings∇ were the averaged lifetime ratings by its users at time t2 on a five-

point scale (on average 109 independent ratings).
Category∇: Dummies were used to represent 13 mutually nonexclusive extension

categories, based on Mozilla’s records. An extension could belong to more than one
category. The dummy variables were alerts and updates; appearance; bookmark
management; download management; feeds, news, and blogging; photos, music,

70 TIWANA



video; privacy and security; search tools; social and communication; tab manage-
ment; toolbars; and web development. The omitted reference category was other.
Commitment to platform was measured using three items that assessed (1) con-

tinue developing this extension*, (2) remain committed to Firefox, (3) continue
supporting Firefox extension development, (4) spend more time on this extension’s
future development*, and (5) discontinue development for Firefox (reversed).
Cross-app coordination costs were assessed using four items that assessed the

degree to which recent changes in other extensions: (1) “broke” this extension, (2)
caused unexpected interactions with this extension, (3) caused integration problems
with this extension, (4) required changes in this extension’s internal code.
Functional enhancement was measured using four items that tapped into the

developer’s perception of how the extension, since its first release, compared to
other Firefox extensions in terms of: (1) release of new versions, (2) addition of
new features, (3) addition of new functionality, and (4) overall pace of develop-
ment. The anchors were 1: much slower; 4: about the same; 7: much faster.
Multihoming intent was measured using three items that assessed the likelihood

that the extension’s developer, in the near future, planned to: (1) port this extension
to another open-source browser (e.g., Google Chrome), (2) port this extension to
another commercial browser (e.g., Opera or Apple Safari), and (3) support other
browsers.
Open-source∇ was dummy coded as 1 if the extension was open-source; 0 if it

was proprietary.
Other apps count∇ was the objective count of other Firefox extensions by the

same developer at time t1. (Only one extension was included in the study for
developers who had more than one extension.)
Platform decision rights concentration was measured using six items that

assessed the how the responsibility for making the following decisions about the
Firefox platform itself were shared between Mozilla’s Firefox browser team (the
platform owner) and Firefox extension developers: (1) Firefox features, (2) Firefox
functionality, (3) Firefox design, (4) Firefox implementation, (5) Firefox user
interface, and (6) which standards to comply with (e.g., Javascript, CSS, DOM,
XML, XUL, XHTML). The anchors were 1: primarily extension developers; 4:
both jointly; 7: primarily Mozilla’s Firefox team.
Version number∇ was the extension’s version number at time t2 rounded to two

decimal points.
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Appendix B

Table B1. Exploratory Factor Analysis

1 2 3 4 5 6 7 8 9 10

Cross-app coordination
costs 2

.91 .04 .02 .13 .00 .12 –.03 .04 .05 –.07

Cross-app coordination
costs 1

.90 .05 –.01 .15 .04 .03 –.02 –.03 .00 –.04

Cross-app coordination
costs 4

.90 .10 .04 .08 .02 .09 –.04 .02 .05 –.05

Cross-app coordination
costs 3

.88 .07 .00 .18 –.03 .06 –.10 –.03 .04 .00

Platform decision rights
concentration 3

.05 .93 .02 –.01 –.03 .00 –.09 –.02 –.03 –.03

Platform decision rights
concentration 5

.05 .90 –.02 –.02 .01 –.03 –.09 –.04 .02 –.02

Platform decision rights
concentration 4

.07 .90 .05 –.02 –.02 –.02 –.10 –.05 –.05 –.02

Platform decision rights
concentration 2

.08 .90 .03 .01 –.05 .04 –.05 .02 .02 .01

Platform decision rights
concentration 1

.12 .88 .01 –.01 .00 .00 –.06 –.03 .03 .05

Platform decision rights
concentration 6

.09 .80 .03 –.04 –.05 –.01 –.07 –.13 .04 .03

App decision rights
delegation 3

.02 .06 .92 –.07 –.02 –.02 .02 –.07 –.02 –.04

App decision rights
delegation 2

.03 .01 .92 –.08 .00 –.02 .04 –.07 –.01 –.03

App decision rights
delegation 1

.03 –.01 .91 –.05 –.04 .00 .00 –.06 –.04 –.02

App decision rights
delegation 5

–.01 .00 .90 –.03 .00 –.04 .00 –.01 –.02 .02

App decision rights
delegation 4

.02 .05 .89 –.02 .01 .00 –.02 –.02 –.05 .02

Coordination costs 5 .19 –.06 –.06 .90 .04 .03 .01 .04 .03 –.03
Coordination costs 4 .15 –.02 –.03 .85 .04 .08 –.06 .00 –.03 –.04
Coordination costs 1 .20 .03 –.09 .83 –.03 .07 –.03 .11 .07 –.05
Coordination costs 6 .17 –.06 –.10 .82 .07 .14 –.08 .03 .01 –.07
Coordination costs 2 .31 .01 .00 .61 –.07 .16 –.13 .06 .00 –.02
Functional enhancement 2 .03 –.02 .00 –.02 .90 .24 .03 .15 –.10 –.04
Functional enhancement 3 .01 –.03 .00 –.06 .90 .24 .00 .13 –.07 –.06
Functional enhancement 4 .02 –.03 –.03 .09 .86 .15 .03 .15 –.07 –.06
Functional enhancement 1 –.02 –.06 –.02 .05 .86 .07 –.03 .12 –.14 –.02
Relative complexity 2 .13 .02 .01 .06 .18 .89 –.12 .00 –.03 –.05
Relative complexity 1 .14 .01 .00 .10 .20 .89 –.07 .04 .00 –.08
Relative complexity 3 .11 –.03 –.01 .16 .18 .85 –.05 .10 –.01 –.07

(continues)
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Appendix C: Endogeneity and Robustness Analyses

The three predictors in our model might be endogenous, requiring a careful assessment
of selection bias as well as reciprocal causality in the analyses. Endogeneity implies
that a predictor’s value is not given but rather deliberately chosen based on the app
developer’s and the platform owner’s expectations of what will produce more desirable
outcomes from their perspective. For example, if an app developer rationally chooses a
level of app decoupling that he/she expects will maximize its survival prospects,
empirical models using app decoupling as a predictor that do not account for endo-
geneity lead to biased results and incorrect conclusions. Incorrect estimates result from
the violation of the ordinary least squares regression assumption that the error term is
uncorrelated with the predictors.
We therefore econometrically tested for endogeneity in our model Garen’s [30]

two-step econometric method before testing the hypotheses. We first estimated a
reduced form model to compute endogeneity correcting ηs corresponding to the
three potentially endogenous predictors (Step 1), which are then included in the
subsequent model involving the potentially endogenous predictors (Step 2). A small
set of instruments—ideally guided by theoretical considerations should be used in

Table B1. Continued

1 2 3 4 5 6 7 8 9 10

Relative complexity 4 .13 –.02 –.07 .14 .13 .84 –.08 .13 –.05 –.04
App interface

standardization 1
–.08 –.10 –.01 –.04 .06 –.15 .84 .06 –.03 .04

App interface
standardization 4

–.05 –.07 –.01 –.03 .00 –.05 .82 .04 –.02 .16

App interface
standardization 2

.01 –.05 .03 –.03 –.06 .02 .82 –.03 –.06 .02

App interface
standardization 3

–.11 –.10 .00 –.13 .05 –.13 .69 .13 –.16 –.02

App interface
standardization 5

–.10 –.12 .04 –.05 .00 .00 .69 .16 –.14 .13

Multihoming intent 3 .00 –.09 –.06 .08 .13 .09 .13 .88 –.04 –.02
Multihoming intent 1 .02 –.04 –.14 .02 .20 .06 .13 .86 –.03 –.01
Multihoming intent 2 –.03 –.12 –.04 .12 .18 .10 .07 .82 –.02 .05
Commitment to platform 3 .06 .03 –.02 .03 –.14 –.05 –.21 .00 .89 –.03
Commitment to platform 2 .09 .04 –.08 –.04 –.05 –.03 –.17 .11 .87 –.01
Commitment to platform 5 .06 –.04 –.03 .07 –.18 .00 –.02 –.22 .60 –.11
App decoupling 6 –.07 –.01 –.01 –.12 .01 –.12 –.01 –.09 –.03 .77
App decoupling 5 –.13 –.06 .02 –.06 –.02 –.20 .16 .09 .00 .76
App decoupling 3 –.05 .12 –.06 .00 –.17 .11 .20 .03 –.12 .68
Eigenvalue 6.85 4.85 4.22 3.60 3.43 3.42 3.31 2.47 2.04 1.75
% variance explained 14.90 10.54 9.17 7.82 7.47 7.42 7.20 5.37 4.44 3.81

Bold numbers highlight factor patterns.
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Step 1; using too many instruments can create a “cure that is worse than the
disease,” replacing the risk of Type I error with Type II error [59]. Given scant
empirical research on apps in platforms to guide us, our choice of instruments is
guided by conceptual logic. A battery of econometric tests for instrument suffi-
ciency complements it. All instrument data is from time t1.

a. Instruments for app microarchitecture. As instruments for app decoupling
and app interface standardization, we used app age, the total number of
Firefox extensions developed by the app developer, and the number of years
lapsed since the developer joined the platform. The logic for using app age is
that as apps get older, more violations of modularization principles creep
into their code as developers resort to workarounds [25]. (App A in Figure 2
illustrates this.) On the other hand, developers might also become more
experienced as an app ages, potentially leading to the opposite effect. The
total number of Firefox extensions developed by the developer is appropriate
because the more experience Firefox developers have with creating multiple
extensions, the more likely they are to follow more sophisticated best
practices of loose coupling and Firefox-specific standards compliance.
Finally, an extension’s microarchitectural properties are likely affected by
the number of years lapsed since the developer joined the platform because
developers with more experience with a specific platform can plausibly
make better technical design decisions.

b. Instruments for app decision rights delegation. As instruments for app
decision rights delegation, we used the number of years lapsed since the
developer joined the platform and the category of the app. The theoretical
rationale for the former is that the platform owner is more likely to have
greater confidence in more experienced developers’ decisions, and hence
to grant them greater autonomy. The rationale for the latter is that plat-
form owners might systematically grant lesser freedom to apps in cate-
gories that are strategically important to it or to apps similar to ones that
are already native to the platform but more to others (e.g., Mozilla gives
lesser leeway to security and privacy related apps). There is little theore-
tical reason to believe that by themselves and without influencing the
predictors, any of the instruments would affect platform desertion; the
low correlations in Table 3 confirm this.

Endogeneity test results

The results for Step 1, which appear in Table C1a and C1b, show that none of the
instruments has a significant relationship with the predictors. This hints at the
absence of endogeneity, which is confirmed in Step 2 with the inclusion of the η
terms estimated in Step 1. Step 2 (Table C2) predicts coordination costs (the
mediator) using as regressors the three predictors and their Garen ηs estimated in
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Step 1. The nonsignificant values of ηapp decoupling, ηinterface standardization, and
ηapp DR delegation (highlighted with Ψ) in Table C2 indicates the absence of
endogeneity. We complemented this analysis with the Durbin–Wu–Hausman
endogeneity test. The Hausman f-statistic was nonsignificant for app decou-
pling (.35; ns), app interface standardization (.0004; ns), and app decision

Table C1b. Step 1 of the Garen Procedure to Evaluate Endogeneity in App
Decision Rights Delegation

Instruments
App decision rights delegation (Potentially

endogenous variable)

Developer tenure (years)t1 .09(1.59)
Category: Alerts and updates .09(1.41)
Category: Appearance .02(.28)
Category: Bookmark

management
–.05(–.87)

Category: Download
management

–.01(–.08)

Category: Feeds, news, and
blogging

–.03(–.56)

Category: Photos, music,
video

.05(.90)

Category: Privacy and security –.01(–.24)
Category: Search tools .05(.87)
Category: Social and

communication
.03(.52)

Category: Tab management –.01(–.17)
Category: Toolbars .03(.43)
Category: Web development .01(.14)
Constant (26.06***)

* p < .05; ** p < .01; *** p < .001; β(t-value).

Table C1a. Step 1 of the Econometric Procedure to Evaluate Endogeneity in App
Decoupling and App Interface Standardization

Potentially endogenous variable

Instruments App decoupling App interface standardization

App aget1 .00(–.05) –.04(–.51)
Developer tenure (years)t1 –.03(–.33) –.05(–.64)
Number of apps by developert1 .00(.01) –.08(–1.36)
Constant (23.95***) (29.36***)

* p < .05; ** p < .01; *** p < .001; β(t-value).
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rights delegation (0.27; ns), suggesting that they are likely exogenous given
this set of instrumental variables.

Econometric diagnostics for instrument sufficiency, validity, and
model identification

We also evaluated econometrically: (a) instrument sufficiency and validity, (b) the
validity of the model’s overidentifying restrictions, (c) that the instruments are not
strongly correlated with platform desertion, and (d) model sensitivity.

a. Instrument sufficiency. We used Anderson–Rubin’s [3] test for instrument
sufficiency, whose null hypothesis is that the excluded instruments are
uncorrelated with the error term and correctly excluded from the estimated
equation. A significant Anderson–Rubin χ2 test statistic demonstrates that
the set of instruments used is collectively insufficient. Anderson–Rubin χ2

was 0.2 (p = .91; ns) suggesting that the set of instruments used are valid and
sufficient. A Sargan test (χ2 = .39, p = 0.8; ns) also independently confirmed
the adequacy the instruments used in the model.

b. Model validity. For model validity, we used Basmann’s [11] test of model
overidentifying restrictions. Its null hypothesis is that the overidentifying
restrictions in the model are valid. The Basmann χ2 was .39 (p = .82; ns) and
nonsignificant, suggesting that the model is overidentified (as is appropri-
ate). The Hansen J-test also separately confirmed this (χ2 = .41, p = 0.81;
ns).

c. Correlation between the instruments and platform desertion. Finally, the
correlation between the dependent variable and the instruments should be
low to demonstrate that the instruments do not directly affect it. Rather they
affect it by endogenizing the suspected-endogenous predictors. As the low
correlations in Table 3 show, none of the instruments had significant

Table C2. Step 2 of the Garen Procedure to Check Endogeneity in the Model’s
Three Predictors

Coordination costs

ηapp decoupling
Ψ

–1.43(–.46)
ηinterface standardization

Ψ .36(.52)
ηapp DR delegation

Ψ .29(.69)
App Decoupling 1.28(.41)
App interface standardization –.50(–.71)
App Decision Rights Delegation –.41(–.94)
Constant (.16)

Ψ Nonsignificant ηs for the three predictors indicate the absence of endogeneity; * p < .05; ** p <
.01; *** p < .001.
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correlations with the two microarchitectural properties or with app decision
rights delegation. They also had low correlations, ranging respectively from
–.02 to .17 and –.01 to .10. Therefore, the instruments used to evaluate
endogeneity are appropriate. Collectively, these analyses show that endo-
geneity is not a concern in the model and that using traditional ordinary least
squares regression is appropriate to test the hypotheses.

d. Robustness of results with and without Garen ηs. Adding the three Garen ηs
to Model 2 in Table 4 produced consistent main effects and interaction
effects. This is consistent with the Durbin–Wu–Hausman test, which also
independently indicates the absence of endogeneity. The results are therefore
robust.
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