
NOVEMBER 2015 | VOL. 58 | NO. 11 | COMMUNICATIONS OF THE ACM 55

DOI:10.1145/2814338

 Article development led by
 queue.acm.org

We may be on the cusp of a new
revolution in Web development.

BY TAYLOR SAVAGE

THERE IS N O task in software engineering today quite
as herculean as Web development.

A typical specification for a Web application might
read: The app must work across a wide variety of
browsers. It must run animations at 60fps. It must be
immediately responsive to touch. It must conform to

a specific set of design principles and
specs. It must work on just about every
screen size imaginable, from TVs and
30-inch monitors to mobile phones and
watch faces. It must be well engineered
and maintainable in the long term.

With the latest Web technologies,
this list grows: the Web application
must work offline. It must be able to
send push notifications. It must sync
in the background.

Of course, not all new Web proj-
ects must meet this complete set of
requirements—some may be more
full-fledged single-page apps, others
more publishing- or e-commerce-
focused—but this diversity of applica-
tions makes the Web developer’s job
even more difficult.

The real challenge arises when the
expectations of the Web application
meet the realities of the Web platform.
The raw materials that are available
to build Web applications have not re-
motely kept up. The building blocks
of HTML—such as “<div>,” “<p>,”
“<h1>,” and “”—are great for doc-

ument markup, but they are not suffi-
cient to build today’s complex, app-like
interfaces and websites.

As a result, the Web development
community has evolved a vast array
of frameworks to tackle the problem
of building sane interfaces out of the
basic elements the platform provides.
The scope and diversity of available
Web frameworks is immense—a thriv-
ing ecosystem that only a platform as
powerful and flexible as the Web could
support. As of this writing, more than
60 frameworks are listed on TodoMVC
(Figure 1),10 a showcase for framework
usage. This flourishing framework eco-
system is truly amazing.

Or is it?
Though many Web frameworks are

incredible feats of engineering, are ex-
traordinarily popular, and have large
ecosystems in their own right, there
are a few key problems with the multi-
framework model that limit Web devel-
oper productivity.

Frameworks are wide-reaching,
hard dependencies. The inherently

Componentizing
the Web

http://dx.doi.org/10.1145/2814338

56 COMMUNICATIONS OF THE ACM | NOVEMBER 2015 | VOL. 58 | NO. 11

practice

new framework might be today’s old
news, and the massive investment a
company makes in a technology can
quickly become out of date. To stay
relevant in the job market, Web de-
velopers must keep up with the latest
technologies, running on an ever-ac-
celerating treadmill of Hacker News
framework announcements, tutori-
als, and starter kits.

Lack of interoperability. A sane com-
ponent model is critical to scalable
interface development. Frameworks
typically define their own component
models for organizing and rendering
interfaces. Angular has directives, and
React and Ember each have their own
notion of “Component.” Yet a compo-
nent built in one framework’s model
has no meaning outside that frame-
work—you cannot use an Angular com-
ponent in an Ember application, short
of including multiple overlapping and
redundant dependencies. Coupled
with the lock-in that frameworks of-
ten require, the lack of interoperability
makes writing universally reusable, en-
capsulated components nearly impos-
sible on the Web.

The holy grail, the “Goldilocks”
solution, would be if Web developers
could pick the application architec-
ture best suited for the problem they
were trying to solve, and could reuse
interface components across projects.
The Web development community
could have thriving ecosystems for
each framework and organizational

global nature of HTML, CSS, and
JavaScript is one of many factors
that have driven frameworks to be
all-encompassing factories, rather
than pay-as-you-go toolkits. Choos-
ing a Web framework is typically the
first major technological decision in
a new Web project. Because frame-
works tend to be overarching, almost
every line of code or item of markup
must be written with the framework
in mind. Angular, for example, pro-
vides complex view management and
routing, dependency injection, inter-
nationalization and accessibility fea-
tures, low-level animation support,
and more. Meteor provides entire
frontend and backend stacks, from a
UI library down to database drivers.
These are incredibly full-featured ap-
plication platforms in and of them-
selves, but they lead to lock-in from
day one and are extremely challeng-
ing to migrate off of. If you choose to
switch frameworks, you will probably
be starting from scratch.

Fashionability. Web frameworks
come and go like seasons. Figure 2
shows the rise and fall in popularity
of five JavaScript libraries, according
to Google Trends. The Web develop-
ment community is constantly crav-
ing the next new thing, and rightly
so—Web application requirements
and device and browser capabilities
are evolving so rapidly the tools must
evolve rapidly to keep up. Unfortu-
nately this means yesterday’s hot

Figure 1. Partial list of frameworks show-
cased in TodoMVC.

Figure 2. Changing interest in various frameworks over time.

0

20

40

60

80

100

mootools.js react.jsangular.js knockout.jsember.js

1/1/151/1/141/1/131/1/121/1/111/1/101/1/091/1/08

Month

Fr
am

ew
or

k
In

te
re

st
 O

ve
r

T
im

e

...

agularjs

ariatemplates

atmajs

backbone

backbone_marionette

batman

canjs

chaplin-brunch

closure

componentjs

cujo

derby

dijon

dojo

duel

durandal

emberjs

enyo_backbone

epitome

exoskeleton

extjs_deftjs

firebase-

 angular

flight

foam

gwt

jquery

kendo

knockback

knockoutjs

lavaca

maria

meteor

mithril

montage

mozart

...

NOVEMBER 2015 | VOL. 58 | NO. 11 | COMMUNICATIONS OF THE ACM 57

practice

philosophy, as well as a shared, uni-
versal ecosystem of components that
could be used in any Web application
regardless of framework. Large or-
ganizations could share sets of glob-
ally maintained components that con-
formed to a consistent style, but that
all teams could use regardless of their
stacks.

This Web development utopia
seems impossible to achieve, or at least
technically infeasible, because it would
require broad agreement among dif-
ferent frameworks on a consistent
treatment for components. The Web,
however, has precedent for these uni-
versal components—HTML elements
themselves.

Consider the <Select> Element
The <select> element provides a simple
dropdown menu. All frameworks un-
derstand and can leverage <select>—
it is baked right into the platform. It
works across all browsers with a gener-
ally predictable interface. It does one
job, and does it well.

Moreover, <select> has an API sur-
face area that makes it particularly easy
to work with and valuable to use, as
shown in Figure 3a–f.

It is composable (Figure 3a). <se-
lect>, composed with “<option>” for its
items, generates a fully formed drop-
down menu.

It is completely declarative (3b). A
wide variety of different features can be
applied using attributes in the markup.

It is flexible (3c). Depending on its
children and attributes, it can provide
different interfaces and functionality.

It is forgiving (3d). An incorrect child
does not crash the application, but is
simply ignored.

It is internally accessible (3e). Once
focused, it provides all the necessary
handles in order to be accessible.

Beyond what it provides declaratively,
<select> can be scripted (3f). It emits
events that can be listened to and acted
on, and it has an imperative API that
can be leveraged.

Finally, <select> is extremely sim-
ple to use, and can be used in just
about any context. With minimal de-
clarative markup, a developer gets
this extremely powerful behavior.
Regardless of the framework, this
simple markup and DOM API are well
understood and usable.

Figure 3. (a) A composable select element. (b) Declarative attributes. (c) Flexible interface.
(d) Forgiving syntax. (e) Accessibility to styles. (f) Scriptable events.

(b)

(c)

(a)

(d)

(e)

(f)

58 COMMUNICATIONS OF THE ACM | NOVEMBER 2015 | VOL. 58 | NO. 11

practice

uteChangedCallback,” called when
an attribute of the element is set,
changed, or removed.

Between the second document.reg-
isterElement argument and the attrib-
uteChangedCallback, element authors
can specify an element’s imperative
and declarative APIs.

Define its template: Many elements
have some included UI, such as but-
tons, inputs, selects, headers, and
lists. To build a truly platform-level
element, element authors should be
able to specify the UI for their own el-
ement. Rather than define a new DSL
or expose C++ hooks, Web developers
should be able to use the language of
the Web itself—HTML and CSS—to
define an element’s template.

True templates have a few key prop-
erties. The template’s mere existence
should not have side effects for the
document, the template should have
to be explicitly selected in order to be
used and so should be encapsulated
away from the main document, and
it should be inert until it is actually
cloned and used.

The problem of templating on the
Web is one all UI frameworks face. A
number of workarounds have evolved
to provide this behavior, but none
meet all the criteria for a true tem-
plate. Some attempts at templating
use a block of markup in the main
document with “display: none;” to
hide it until it is cloned and used, but
this can have layout and performance
side effects. Sticking HTML inside
a <script> tag is another common
approach for templating, but this
can lead to security issues with “.in-
nerHTML” and is clunky to manipu-
late prior to being actually initialized
as DOM.

The HTML5 <template> element9
provides the complete set of features
one would expect for a true template.
It is parsed but not rendered, and in-
ert until used, and its contents are
encapsulated from the main docu-
ment in the form of a document frag-
ment. This allows element authors
to use a true template to define the
look and feel of a custom element, to
be cloned and used each time a cus-
tom element is created and inserted
into a document.

Encapsulate it from the document:
Templates give element authors a

The “<select>” element is certainly
useful, but the platform only provides
a limited set of such elements, and
that set is woefully out of date. There
are two potential ways to expand this
power: increasing the number of plat-
form-defined elements, or providing
the primitives for developers to create
their own elements, with all the power
of native elements.

With the Extensible Web Mani-
festo,14 browser vendors decisively
landed on the latter approach, favor-
ing providing the primitives needed
to expand Web platform features over
providing higher-level abstractions di-
rectly in the platform.

What would it take to build an el-
ement like this? What sort of primi-
tives and features of the platform
might a developer need in order to
build as eminently reusable an ele-
ment as <select>?

A few key pieces of <select> make
it useful. It has a declarative API in
the form of attributes, an imperative
API off its DOM node, a composi-
tion model in terms of the child el-
ements it supports, and a standard
visual interface.

Thus, to create a similar custom ele-
ment, a developer would need to:

Define its API: Give the element a
name, and give it imperative methods
as well as declarative attributes that
can be used to affect its behavior.

Define its template: Provide the ele-
ment with some basic visual layout if it
requires any local UI.

Encapsulate it from the document: The
element’s internals should be invisible
from the document. That is, adding an
element to a document should not have
unintended side effects.

Define its composition model: Specify
what kind of children the element can
accept and how it manages its children.

Manage its dependencies: A custom
element should be able to use other el-
ements in its local UI, and so should be
able to specify and load the definitions
of any elements it depends on.

Of course, you could build such en-
capsulation and template features at
the framework level, and many frame-
works do. But to realize the dream of
broadly interoperable components,
these features need to be provided
at the platform level, so components
built with them can be reused, just
like <select>.

Enter Web Components
Web Components is the umbrella
term for a handful of new W3C specs
that give developers the primitives
needed to build such interoperable,
platform-level features. The indi-
vidual specs that make up Web Com-
ponents map almost directly to the
specific features needed to create a
truly interoperable element.

Define Its API: The Custom Ele-
ments spec2 describes how an ele-
ment might be given a name, define
an API surface area, and respond to
different events in its life cycle. The
registration of a custom element boils
down to a simple call as illustrated in
Figure 4.

This allows the developer to speci-
fy a tag for the element and pass in a
prototype for all instances of the el-
ement. At this point, all instances of
“<my-element>” in the document are
upgraded from HTMLUnknownEle-
ment to the prototype of the element
that was passed in. Note the specific
syntax may evolve slightly from the
time of writing—for the latest spec,
see http://w3c.github.io/webcompo-
nents/spec/custom/.

Life-cycle callbacks defined in the
custom elements spec give the ele-
ment author more granular control
over the element at particular stag-
es of its life cycle. These callbacks
include “createdCallback,” called
when the element is created and has
been registered; “attachedCallback,”
called when the element is inserted
into the document; “detachedCall-
back,” called when the element is re-
moved from a document; and “attrib-

Figure 4. A simple call for a custom element spec.

var MyElement = document.registerElement(‘my-element’, {
 prototype: Object.create(HTMLElement.prototype)
});

NOVEMBER 2015 | VOL. 58 | NO. 11 | COMMUNICATIONS OF THE ACM 59

practice

The scope and
diversity of
available Web
frameworks is
immense—a
thriving ecosystem
that only a platform
as powerful and
flexible as the Web
could support.

way to associate markup with an el-
ement, but once the element and its
associated markup are inserted into
a page, there should be a way to keep
them isolated from the document it-
self. For example, an HTML5 <video>
tag has a play button associated with
it, but the user of the tag should not
have to worry about accidentally styl-
ing or selecting the play button when
using CSS or “document.querySelec-
tor” within their main document.

The Shadow DOM spec7 provides
the mechanism for this crucial encap-
sulation. It introduces the notion of a
“Shadow Root”—a separate, scoped
tree that lives in the DOM but is pro-
tected from accidental interference
by CSS selectors or DOM manipula-
tion methods. Shadow DOM is the
encapsulation primitive that lets ele-
ments be used without fear of side ef-
fects—either the element accidental-
ly leaking style to its host document,
or the host document accidentally
leaking effects or style to the element.

Shadow DOM is a subtle and com-
plex but incredibly important primi-
tive. Fortunately, as of this writing,
all major browser vendors either have
shipped or are working on imple-
menting Shadow DOM.

Define its composition model: To
work like a native HTML element, a
custom element must be able to ac-
cept and manipulate children. The
Shadow DOM specification introduc-
es the concept of “Distribution”8—
the ability to specify insertion points
within a shadow root where specific
children can be “distributed” into
the main document.

This allows a custom element
author to define what kinds of chil-
dren an element accepts and how it
interacts with them. Authors can use
this to specify how a “select” element
might look for and project its “op-
tion” children. Distribution essen-
tially provides another API surface
area for an element, in the form of
children it accepts.

Manage its dependencies: With
the ability to define its own internal
markup via a template and shadow
root, one could imagine a custom
element relying on other custom
elements for its internal UI. Since
multiple elements may depend on
the same custom element, there

must be some way for elements to
declare their dependencies and for
the browser to load and de-duplicate
such shared dependencies.

The HTML Imports specification3
provides this mechanism—a way for
an element author or Web developer
to load HTML-based dependencies
in HTML. As of this writing, the spec
authors are working to reconcile this
HTML loading and de-duping mecha-
nism with the forthcoming ES6 module
loading and de-duping mechanism.

With these four crucial new fea-
tures—Custom Elements, Tem-
plates, Shadow DOM, and HTML Im-
ports—Web developers finally have
the platform-level primitives needed
to create truly reusable custom ele-
ments, with all the power of native
HTML elements.

How to Leverage Web Components
The question remains: How can in-
dividuals and organizations benefit
from the capabilities provided by
Web Components?

The most immediate use case for
Web Components is in building user
interfaces. General best practice in
software engineering dictates that sys-
tems be isolated and componentized.
This guideline can now be directly ap-
plied to building Web UI at the plat-
form level, with custom elements as
the components.

The first step in building a new
Web-based product that uses Web
components as interface elements
would naturally be to build the set
of custom elements the whole prod-
uct would share. Because custom el-
ements can encapsulate their own
look and feel, this element-creation
step might include building a visually
consistent set of buttons, data tables,
menus, layout templates, and other
UI components as elements to be
used across the application or suite
of applications.

Considering the unit of work for
a frontend engineering team to be a
component, rather than defining the
unit of work as a screen or flow, starts
to unlock the organizational power of
Web Components. By freeing up each
individual to focus on a single custom
element at a time, teams can mini-
mize both visual inconsistency and
duplicate work. All appearances of an

60 COMMUNICATIONS OF THE ACM | NOVEMBER 2015 | VOL. 58 | NO. 11

practice

investment in the custom element
that benefits all future users. If raw
layout code needs to be updated, it
often becomes one additional hack
on top of a patchwork of non-sys-
tematic edits that rapidly decays into
spaghetti code.

A single consistent set of UI ele-
ments also helps ensure synergy and
efficiency between design and en-
gineering teams. Reused elements
ensure brand consistency, guaran-
teeing the exact same look and feel
everywhere. A visual brand will thus
be enforced not only at the design
level but also at the implementa-
tion level. A set of elements provides
a living style guide, and makes it
much easier to align engineering
with design: design no longer occurs
in a vacuum, as each visual piece
and tweak can be quickly incorpo-
rated into a component and tested
in situ. Visual design overhauls are
also much easier to achieve. Custom
elements only have to be redesigned
once and the new style can be quickly
implemented everywhere, often with
a straightforward upgrade to the ele-
ment definition.

Organizations also benefit from
separating custom element creation
from element usage. Some engi-
neers will simply be better suited to
achieving pixel-perfect designs for
elements, because they have an eye
for animation, knowledge of the plat-
form quirks, and a passion for visual
detail. By having these engineers fo-
cus on creating custom elements to
be used in many applications, their
skill can be leveraged companywide.

Good UI design and performance
is often as much art as science, and
can take an artist’s touch to get just
right. Custom UI elements allow this
artistic achievement to be broadly
shared and utilized. Custom ele-
ments help make easy things easier,
and difficult things easily repeat-
able. The broad and long-term ad-
vantage to having a single aligned
set of UI elements makes it an ob-
vious early investment for an engi-
neering organization.

Perhaps most important, because
custom elements based on the Web
Component specs are built with the
platform rather than with a specific
framework, they can be reused regard-

element within an interface—all the
buttons used in an application, for ex-
ample—are reuses of a single custom
element, and are consistent in terms
of look and feel.

Individual engineers also may
benefit from minimizing the cost of
switching context between building
application logic and UI. By spend-
ing the time up front to ensure per-
fect element design independent of
how the application works, pixel-per-
fection goes from being last-minute
polish to being a necessary stage in
application development. The app
creation stage that follows this com-
ponent creation stage is also much
more streamlined. From the first
line of app logic code written, the ap-
plication looks and feels complete. It
becomes much easier to get a sense
of the final application throughout
the development process, helping
catch user experience flaws and be-
gin useful QA processes early in the
development cycle.

The efficacy of the custom-ele-
ment-based interface model is felt
even more strongly on a team’s sec-
ond project. Since they have already
spent the time to construct a pixel-
perfect set of interface elements,
the costs of building the second in-
terface are dramatically lowered.
This frees the team to focus on new
features and overall performance,
rather than reinventing UI. Any im-
provements to the elements that
come out of the second project can
be seamlessly incorporated into the
first project. Each product becomes
a capital investment that pays divi-
dends over the entire lifetime of the
custom element set.

The engineering practice of reus-
ing elements is also innately differ-
ent than copying and pasting front-
end layout from an old project into a
new one. Custom elements, designed
in isolation from the beginning, are
specifically meant to be flexibly re-
used. Raw layout code or markup in
old projects was rarely designed to be
used in a different context, and it can
be full of bugs and quirks. Overarch-
ing stylesheets lack encapsulation,
and can quickly build up cruft and
become difficult to maintain. If an
element needs to be updated to fit a
new use case that becomes a capital

A single
consistent set of
UI elements helps
ensure synergy
and efficiency
between design
and engineering
teams. Reused
elements ensure
brand consistency,
guaranteeing
the exact
same look and feel
everywhere.

NOVEMBER 2015 | VOL. 58 | NO. 11 | COMMUNICATIONS OF THE ACM 61

practice

less of what structural framework the
next project is built with. The capital
investment in a set of visually consis-
tent elements persists far longer than
a set of components built for one spe-
cific framework technology.

Of course, with great power comes
great responsibility. Native HTML
elements, built by browser vendors,
have accessibility features baked in.
The responsibility to make a custom
element accessible falls on the ele-
ment author. Just as a native HTML
element would be incomplete if it
was not naturally accessible, a cus-
tom element must bake in accessi-
bility features as much as possible.
To a certain extent, ecosystem dy-
namics should reward elements that
are naturally accessible, but the el-
ement author community has a re-
sponsibility to explicitly prioritize
accessibility from day one. Custom
elements are not a magic accessibil-
ity wand—high-quality elements will
be internally accessible, but applica-
tion authors must also get accessibil-
ity right at the application level.

The Web Component Ecosystem
Beyond the benefits for a single team
or organization, one can imagine the
network effects that might be pos-
sible with an ecosystem of fully in-
teroperable Web components.

Suites of custom elements could be
created to make building full-fledged
applications on the Web easier: dif-
ferent “UIKits” for different types of
Web applications. Custom elements
could be built for specific use cases,
such as elements that make blogs
easier to create, or e-commerce sites
more effective and easier to use, or
data visualization easier to achieve.
Custom elements could breathe new
life into the movement for a truly se-
mantic Web, by making it possible to
intertwine form and function into a
single element. Catalogs could help
organize a burgeoning ecosystem of
elements, crowdsourcing element rat-
ings, and reviews.

Such an ecosystem, predicated
on platform-level interoperability,
would require broad adoption of plat-
form-level APIs that give Web devel-
opers the ability to create custom ele-
ments. The Web Components specs
are a substantial undertaking. Since

their introduction in 2011 they have
generated lively discussion and have
evolved based on feedback. Though
there is general agreement on the
value of Web components, there are
two important contentious pieces
of the specs being worked out by
implementers—reconciling HTML
Imports with the forthcoming ES6
module system, and ironing out spe-
cifics of Shadow DOM behavior. You
can follow and join the conversation
on the public-webapps mailing list.6

Currently, the Template element
is part of the living HTML spec9 and is
broadly supported by modern brows-
ers. HTML Imports, Shadow DOM,
and Custom Elements have been
seeing growing cross-browser enthu-
siasm, especially after recent meet-
ings to address the more contentious
pieces. They have been shipped in
their entirety beginning with Chrome
36. Microsoft Edge recently an-
nounced12 it is starting development
on the HTML Template element, and
stated positive views on the latest
evolutions of the remaining specs.
Firefox is shipping implementations
under a flag, and recently published
an in-depth article13 on the history
of Web components, with the hope-
ful conclusion we are nearing broad
cross-browser support.

Fortunately, developers can start
building with the complete Web
Components APIs today, using the
comprehensive set of Web compo-
nents polyfills.4 These JavaScript im-
plementations support Custom Ele-
ments, HTML Imports, and Shadow
DOM across the last two versions of
major browsers starting with IE10,
Safari 7, and the evergreen brows-
ers Chrome and Firefox. Web Com-
ponents-based libraries such as X-
Tag,11 Polymer,5 and Bosonic1 rely
on some of the polyfills for broad
browser support, and include opti-
mizations around the heavier parts
of the polyfills to achieve production-
ready performance.

Web developers today have it
tough. But with the consistency of
a sane, platform-level component
model coupled with the wild, expan-
sive power of the Web ecosystem, we
might be on the cusp of a revolution
in Web development. Happy compo-
nentizing!	

 Related articles
 on queue.acm.org

Web Services: Promises and Compromises
Ali Arsanjani, Brent Hailpern, Joanne
Martin,and Peri Tarr
http://queue.acm.org/detail.cfm?id=639315

From COM to Common
Greg Olsen
http://queue.acm.org/detail.cfm?id=1142043

A Conversation with Roger Sessions and
Terry Coatta
http://queue.acm.org/detail.cfm?id=1095416

References
1.	 http://bosonic.github.io/.
2.	 http://w3c.github.io/webcomponents/spec/custom/.
3.	 http://w3c.github.io/webcomponents/spec/imports/.
4.	 https://github.com/webcomponents/

webcomponentsjs.
5.	 https://www.polymer-project.org/1.0/.
6.	 https://lists.w3.org/Archives/Public/public-webapps/.
7.	 https://w3c.github.io/webcomponents/spec/shadow/.
8.	 https://w3c.github.io/webcomponents/spec/

shadow/#distributions
9.	 http://www.w3.org/TR/html5/scripting-1.html#the-

template-element.
10.	 https://github.com/tastejs/todomvc.
11.	 http://x-tags.org/.
12.	 Leithead, T. and Eicholz, A. Microsoft Edge and Web

Components; https://blogs.windows.com/
msedgedev/2015/07/15/microsoft-edge-and-web-
components/.

13.	 Page, W. The state of Web Components; https:// hacks.
mozilla.org/2015/06/the-state-of-web-components/

14.	 W3C Extensible Web Community Group. Extensible Web
Manifesto, 2013; https://extensiblewebmanifesto.org/.

Taylor Savage is a product manager on the open Web
platform team and lead PM on the Polymer project
at Google. Prior to Polymer, he worked as project manager
on new features for Google search.

Copyright held by author.
Publication rights licensed to ACM. $15.00

Copyright of Communications of the ACM is the property of Association for Computing
Machinery and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

