
52 COMMUNICATIONS OF THE ACM | OCTOBER 2015 | VOL. 58 | NO. 10

practice
DOI:10.1145/2788399

 Article development led by
queue.acm.org

We have to choose to build a Web
that is accessible to everyone.

BY RICH HARRIS

A WAR IS being waged in the world of Web development.
On one side is a vanguard of toolmakers and tool users,
who thrive on the destruction of bad old ideas (“old,” in
this milieu, meaning anything that debuted on Hacker
News more than a month ago) and raucous debates
about transpilers and suchlike.

On the other side is an increasingly vocal contingent of
developers who claim—not entirely without justification—
the head-spinning rate of innovation makes it impossible
to stay up to date, and the Web is disintegrating into a
jumble of hacks upon opinions, most of which are wrong,
and all of which will have changed by the time hot-new-
thing.js reaches version 1.0.0.

This second group advocates a return to the
basics, eschewing modern JavaScript libraries and
frameworks in favor of untamed DOM APIs (the DOM
being the closest we unwashed Web developers ever
get to “bare metal”). Let’s call it the back-to-the-land
movement. The back-to-the-landers argue tools slow

the Web down, harm accessibility, and
increase fragility. You can often find
them linking to vanilla-js.com in the
comments of programming blogs.

Here is Peter-Paul Koch, the creator
of quirksmode.org, in a recent article6
(emphasis original):

“The movement toward toolchains
and ever more libraries to do ever less
useful things has become hysterical,
and with every day that passes I’m
more happy with my 2006 decision to
ignore tools and just carry on. Tools
don’t solve problems anymore, they have
become the problem.”

Setting aside the “get off my lawn”
tone of much of this commentary, the
movement does have valid concerns.
But we expect more of the Web than
we used to—real-time collaboration,
personalized apps, rich interactivity.

Dismantling
the Barriers
to Entry

OCTOBER 2015 | VOL. 58 | NO. 10 | COMMUNICATIONS OF THE ACM 53

I
M

A
G

E
 B

Y
 I

O
M

I
S

We cannot expect software engineers
to build those experiences without
tools any more than we expect civil en-
gineers to build suspension bridges by
hand. As Facebook’s Sebastian Mark-
båge says in a direct response to Koch,7
“the only time you can say that the
Web is “good enough” is when you are
building for yesterday’s Web.”

As in any war, there are false di-
chotomies (simplicity versus power),
hypocrisies (abandoning libraries then
writing acres of app code that do the
same thing, albeit without documen-
tation or tests), and casualties. It is the
casualties I want to talk about.

Front-Enders:
An Endangered Species?
Until relatively recently, “front end
developer” was a slightly derisive term

for someone who could cobble togeth-
er some HTML and CSS and sprinkle
some JavaScript on top of it, perhaps
after searching Stack Overflow for
“how to hide element with jQuery.”
The front-ender was responsible for
adding the Google Analytics script
snippet to the CMS article template,
and perhaps adding a carousel of slid-
ing images (the traditional cure for the
marketing department’s indecision
about what to put on the homepage),
but was never trusted with anything
particularly important.

Then along came Backbone,1 which
was the starting pistol in the race to-
wards ever more elaborate JavaScript
application frameworks. Many mod-
ern Web apps push almost all the logic
out to the client, the result being that
as applications become more sophisti-

cated, so must the tools—and the peo-
ple using them.

As a consequence, many com-
mentators have placed the traditional
front-ender on extinction watch. Trek
Glowacki, a core member of the Ember.
js team (Ember is one of the aforemen-
tioned client-side application frame-
works), wrote in response to a lament
about build tools:

“I know everyone on Ember core
sympathizes with Web developers
whose careers started during the
‘download a zip, add some script tags,
FTP into production’ era for the ‘front
end’ and now feel a bit startled that
all their favorite tools are becoming
increasingly complex. But, the fact re-
mains, that era is ending.”5

In other words, “get with the pro-
gram.” Glowacki is not wrong, just like

54 COMMUNICATIONS OF THE ACM | OCTOBER 2015 | VOL. 58 | NO. 10

practice

data, and serve the resulting HTML
to the client. But string templating is
a bad technique once you are in the
browser. Repeatedly generating HTML
and inserting it into the document
means trashing the existing DOM,
which taxes the garbage collector and
destroys state (such as which element
is focused, and where the cursor is).
Because of that, developers typically
break their applications apart into
microscopic chunks, with dedicated
custom Model and View classes tied
together with an events system. MVC
duct tape is the new jQuery spaghetti.

Ractive.js10 was designed to allow
developers to use the declarative pow-
er of templates to their fullest extent
without the sacrifices that come from
string-based templating systems. The
idea, novel at the time (though less
so now, as other tools have adopted a
similar approach), was that a template
parser that understood both HTML
and template tags could generate a tree
structure that a data-binding engine
could later use to manipulate the DOM
with surgical precision. The developer
need do nothing more than occasion-
ally provide new data.

This is not the virtual DOM diffing
technique used by React.js and other
similar libraries. That approach has
some deeply interesting properties,
but data-binding—that is, updating
the parts of the DOM that are known
to correspond to particular values that
have changed, rather than re-render-
ing everything and not updating the
bits that have not changed—is typically
a great deal more performant.

Since then, Ractive has added (and
in some cases pioneered) many new
features: a component system, declara-
tive animations and transitions, full
SVG support, encapsulated CSS, serv-
er-side rendering, and more. In terms
of mindshare, we are a minnow next
to the likes of Angular, Ember, Meteor
and React, even though we have con-
tributors from all around the world
and Ractive is used for all kinds of web-
sites, from e-commerce to enterprise
monitoring software.

But the thing the team and I are
most proud of is the way it has allowed
less experienced developers to bring
their ideas to life on the Web.

A magazine article is a suboptimal
place for code samples demonstrating

Koch isn’t wrong, but there is a prob-
lem with modern tools—newcomers
to the field, after they have been greet-
ed with an overwhelming number of
choices, are expected to learn a dizzy-
ing array of new concepts (insert joke
about “transclusion” here) before
they can actually build anything. The
incredible power of those tools is only
really available to a select few—those
with the determination to ascend a
steep learning curve, and the time and
inclination to keep pace with our com-
munity’s frantic innovation.

“Learn to Code” Is Not the Answer
Back when the Web was a simpler
place, it was a welcoming environment
for newbie programmers. There were
fewer tools, and the ones we had were
a good deal less sophisticated, but we
made up for it with the power of “view
source.” In those Wild West days, be-
fore we cared about best practices, it
was surprisingly easy to reverse engi-
neer a lot of Web software.

Web development has matured
spectacularly in a few short years. But
the tools that have supplanted “view
source” (which is useless in an age of
transpiled, minified code) are not ac-
cessible to the vast majority.

It is not simply a question of bet-
ter training for those who would be
professional software engineers. The
power and beauty of the Web was al-
ways that anyone could participate
as a creator as well as a consumer—
scientists, academics, artists, jour-
nalists, activists, entertainers, edu-
cators—most of whom have yet to
unlock the thrilling possibilities of
modern Web technologies.

One way we have tried to address
this problem is with the “learn to code”
movement, which has spawned an en-
tire industry of startups (startup cul-
ture itself being one of the prime driv-
ers of learn to code). Politicians love it
because it makes them look forward-
thinking, though no one is quite sure if
Michael Bloomberg ever did finish his
Codecademy course.2

There is plenty to admire about
learn to code, of course. Many people
have developed skills that would oth-
erwise have been out of reach. But the
movement rests on two odd assump-
tions—firstly our priority should be
to make more programmer talent

rather than making programming
more accessible, and secondly that
“learning to code” consists of absorb-
ing facts about programming lan-
guages and practicing the formation
of correct syntax.

In reality, learning how to program
is a process of developing the ability to
model problems in such a way that a
computer can solve them—something
that only happens through experience.
You do not learn a foreign language by
learning how to conjugate verbs and
pluralize nouns; you learn by picking
up phrases and practicing them, and
reading and listening to native speak-
ers until it becomes natural. Every lan-
guage teacher knows this, yet to a large
extent it is not how we teach program-
ming languages.

We do not need the 1,437th explana-
tion of prototypal inheritance or Java-
Script’s ‘this’ keyword. What we need
are tools that allow novices to express
their ideas without a complete knowl-
edge of the process by which it happens.

Enter Ractive.js
A few years ago I was in need of such a
tool, having recently joined the inter-
active news team at theguardian.com.
News interactives typically contain a
lot of state, represented in several dif-
ferent visually rich forms, and have
to handle many different modes of
user interaction—a recipe for buggy
code, especially when written against
news industry deadlines (we laugh at
the term “agile”). I was well aware my
jQuery spaghetti was always a few key-
strokes away from implosion, but more
advanced tools such as Angular were
both too intimidating and yet some-
how inadequate for the task at hand.

I had been looking forward to the
day when someone would let me in on
the secret to doing it properly, but that
day never came. There simply were not
any tools designed to make my job eas-
ier, so I resolved to create one myself.

Laid bare, the problem is relatively
simple to articulate. The state of a
Web app UI at any given moment can
be described as a function of applica-
tion state, and our task is to manipu-
late the DOM until the reality matches
the intention.

On the server, it is easy: write a tem-
plate, compile it to a function with a
templating engine, call it with some

OCTOBER 2015 | VOL. 58 | NO. 10 | COMMUNICATIONS OF THE ACM 55

practice

The question:
“Will this make
it easier or more
difficult for novice
developers to get
started?” is always
on our minds
when we are
building Ractive.

an interactive UI library, but if you are
curious you should visit http://learn.
ractivejs.org for an interactive tutorial.

Lessons Learned
The question: “Will this make it easier
or more difficult for novice developers
to get started?” is always on our minds
when we are building Ractive. Inter-
estingly, we have never found this
has required us to sacrifice power for
more experienced developers—there
is no “dumbing down” in software
development, only clear APIs versus
convoluted APIs. By focusing on the
beginner experience, we make life bet-
ter for all of our users.

Over the years, we have distilled
this mind-set into a toolmaker’s
checklist. Some of these points are,
frankly, aspirational. But we have
found them to be useful guidelines
even when we fall short, and they ap-
ply to tools of all kinds.

Readme-driven development. Often,
when we write code designed to be used
by other people, we focus on the imple-
mentation first, then slap an interface
on it as a final step. That is natural—fig-
uring out the right algorithms and data
structures is the interesting part, after
all—but completely backward.

When the API is an afterthought,
you are going to get it wrong nine times
out of ten. The same is true of the im-
plementation, but there is a crucial
difference—you can fix a lousy imple-
mentation in a subsequent release, but
changing an API means breaking every-
one else’s code and thereby discourag-
ing them from upgrading. (Worse, you
could try to accommodate both the old
and the new API, printing deprecation
warnings where necessary, and caus-
ing Zalgo to appear in your codebase
as a result. I speak from experience.)

Instead, try to write the first draft of
your README, code samples and all,
before writing any code. You will often
find that doing so forces you to articu-
late the problem you are trying to solve
with a great deal more clarity. Your
starting vocabulary will be richer, your
thoughts will be better arranged, and
you will end up with a more elegant API.

The Ractive API for getting and set-
ting data is a case in point. We were very
clear that we wanted to allow users to
use plain old JavaScript objects (POJOs),
rather than insisting they wrap values

in a Ractive-specific observable class
(think ‘Backbone.Model’ or ‘ko.observ-
able’). That posed some implementa-
tion challenges, but it was unquestion-
ably the right move. We are currently in
the process of overhauling the internal
architecture, which will deliver signifi-
cant performance boosts to many users
without breaking their apps.

The phrase “Readme-driven devel-
opment” was coined, or at least popu-
larized, by Tom Preston-Werner.9

Eliminate dependencies. Depen-
dency management in JavaScript is a
pain, even for experts—especially in
the browser. There are tools designed
to make the situation easier, such as
Browserify and RequireJS (or Webpack,
Esperanto, and JSPM, if you are part
of the revolutionary vanguard), but
they all have steep learning curves and
sometimes go wrong in ways that are
spectacularly difficult to debug.

So the silent majority of developers
use the tried-and-tested solution of
manually adding <script> tags. This
means that libraries must be included
on the page after their dependencies
(and their dependencies, and so on).
Forgot to include underscore.js before
backbone.js? Here you go n00b, have a
cryptic “Cannot read property ‘extend’
of undefined” error.

Often, the dependencies are not ac-
tually necessary—it is incredibly com-
mon to see libraries depend on jQuery
for the sake of one or two easy-to-im-
plement methods, for example. (Yes,
it is probably already on the page. But
which version?) When they are neces-
sary, library authors should provide a
version of the library with dependen-
cies bundled alongside the version
without. Do not worry about potential
duplication; that is the least of our wor-
ries at this stage.

Do not over-modularize. Since the
advent of node.js and npm, a vocal
group of developers has evangelized
the idea that code should only be re-
leased in the form of tiny modules that
do very specific jobs. This is at least
part of the reason npm has more pack-
ages than any other package manager.

On the face of it, this seems like an
excellent idea, and a good way to cut
down on the amount of imported-but-
unused code in an app or library. But
the end result is the burden of think-
ing rigorously about architectural

56 COMMUNICATIONS OF THE ACM | OCTOBER 2015 | VOL. 58 | NO. 10

practice

questions is pushed from toolmak-
ers to app authors, who must typically
write large amounts of glue code to
get the various tiny modules to talk to
each other.

No one is going to build the next
jQuery, because they would instantly
be subjected to modularity shaming
(an excellent phrase coined by Pete
Hunt, formerly of the React.js team).
And that is a crushing shame, because
it means we will not have any more li-
braries with the same level of learnabil-
ity and philosophical coherence.

In case you think I am overstating
things, there is literally a package on
npm called “no-op.” Its source code is
as follows:

module.exports = function noop() {}

It has had three releases. It has a test
suite! At least it does not use Travis-CI
for continuous integration, unlike the
“max-safe-integer” package, which ex-
ports the number 9007199254740991.
These packages are not jokes. They
were created unironically by leading
members of the JavaScript community.

Tiny modules can be just as bad
as monolithic frameworks. As usual,
there is a happy medium we should
aim for.

Universal module definition (UMD).
Speaking of modules, you should ide-
ally make your code consumable in as
many different ways as possible. The
three most common formats are AMD
(used via RequireJS and its various
clones), CommonJS (used in node.js,
or via Browserify), and browser globals.

The Universal Module Definition
lets you target all three of these envi-
ronments. There are a few different
versions, but the basic pattern is illus-
trated in Figure 1.

The first part detects a CommonJS
environment, the second detects AMD,
and if neither of those is found it falls
back to creating a browser global.

Prominent download links. It goes
without saying these days that if you
want to release an open source library,
it should exist in a public VCS reposito-
ry (GitHub being the de facto standard)
and be published to npm. Both of those
are true, but it is important to have a
download link available for users who
are not comfortable using git or npm,
or who want to quickly try out a library

without rigging up a new project with a
package.json and a build step.

This need not involve lots of manual
labor or complex automation (though
it is straightforward to set up with ser-
vices like cdnjs.com). One easy way to
provide a download link is to include
the built library in the GitHub repo (for
example, dist/my-library.min.js) and
tag specific commits so it is easy to link
to specific versions shown in Figure 2.

Good error messages. Error and
warning messages will never be a
source of joy, but they can at least be a
source of enlightenment. A well-craft-
ed error message is worth pages of doc-
umentation, because it appears exactly
when the developer needs it.

On the Ractive team, we decided
a few months ago that we were do-
ing more harm than good by trying
to shield developers from their mis-
takes. Now, we print verbose warnings
to the console explaining how they
can guard against common bugs and
make their applications more per-
formant. (This can be disabled if the
developer so wishes.) Where it makes
sense, we include links to relevant
documentation inside error messag-
es. In most browsers, these turn into
clickable hyperlinks.

At one stage, we had a class of bugs
that were very difficult to unravel. We
did not know quite what was causing
the problem, but we were able to de-
tect the state that gave rise to it, so we
started throwing errors when that state
was reached that included a friendly
“please raise an issue with a repro-
duction!” message, linking to our is-
sues page. Users felt empowered to
do something about what would oth-
erwise have been a highly frustrating
experience (in some cases becoming
first-time GitHub contributors), and
we gathered the test cases we needed
to solve the bug.

Avoid this command line. This
guideline only really applies to brows-
er-based tools, but it is an important
one: if your introductory instructions
involve using the command line, you
have already lost half your audience.

That might sound hyperbolic un-
less you have spent a lot of time with
novice developers. But try to remem-
ber how lost you felt the first time you
opened the terminal. GUIs make the
things we are working with—folders

The thing
the team and I
are most proud of
is the way [Ractive]
has allowed less
experienced
developers to
bring their ideas
to life on the Web.

OCTOBER 2015 | VOL. 58 | NO. 10 | COMMUNICATIONS OF THE ACM 57

practice

and files and drives and servers—into
almost physical, tangible things our
brains are well evolved to understand,
whereas the command line forces you
to build a complex mental model.

Have you ever taken a wrong turn on
the way to the restroom and ended up
backstage? That is how most people
feel when they open the terminal—like
they are behind the curtain, and not in
a good way.

Examples, examples, examples. In-
viting people to consult the API docu-
mentation is polite developer-speak
for “RTFM,” but no one wants to read
the “fine” manual. What people really
want—especially people who are not
yet experts in your domain, and have
not developed the right mental vocabu-
lary—are examples.

I cannot articulate it any better than
Mike Bostock, the creator of d34, so I
will not try. Instead I will just recom-
mend his article “For Example.”3 The
proliferation of copy-and-paste-able
examples is one of the main reasons
for d3’s massive success.

Eliminate jargon. Naming things is
difficult, so do not bother. As far as pos-
sible, stick to vocabulary people are al-
ready familiar with (but do not make any
assumptions about prior knowledge).
Favor the slightly wordy but universally
comprehensible over terse jargon.

You might need a more complex

vocabulary to describe the primitives
inside your tool, but the less you force
your users to become familiar with it,
the better.

Empathize. While this is most nebu-
lous item on the checklist, it is also the
most important. The motivation to go
the extra mile, and try to help people
you do not know get the most out of
your open source software, springs
from empathy.

If your empathy reserves need a top-
up, try reading a paper in a field with
which you are unfamiliar. For most
mortals, reading Communications front
to back should suffice; you, dear read-
er, may need something stronger. Try
Papers We Love.8 The bewilderment
you feel closely matches that of the av-
erage human trying to learn Web devel-
opment—or, for that matter, a highly
experienced developer coming to your
domain of expertise for the first time.

We Have to Build
the Future We Want
It is depressingly common to hear peo-
ple suggest the increasing complexity
of the Web platform is inevitable, the
price we pay for progress. This is a clas-
sic self-fulfilling prophecy—once we
decide it is true (or worse, right) that
Web development is best left to the pro-
fessionals, we will stop striving to make
it more accessible for everyone else.

This would be a tragedy of the high-
est order were it to come to pass. The
Web has been a gateway drug for an
entire generation of programmers
(your present correspondent includ-
ed), many of whom would never have
otherwise experienced the sheer joy of
computer science. There is no intrin-
sic reason it cannot continue to be. But
it is up to us: we have to choose to build
a Web that is accessible to everyone.

 Related articles
 on queue.acm.org

Debugging AJAX in Production
Eric Schrock
http://queue.acm.org/detail.cfm?id=1515745

The Story of the Teapot in DHTML
Brian Beckman and Erik Meijer
http://queue.acm.org/detail.cfm?id=2436698

Best Practices on the Move: Building Web
Apps for Mobile Devices
Alex Nicolaou
http://queue.acm.org/detail.cfm?id=2507894

References
1. http://backbonejs.org
2. Bloomberg, M. 2012; https://twitter.com/

mikebloomberg/status/154999795159805952
3. Bostock, M. 2013; http://bost.ocks.org/mike/example/
4. http://d3js.org/
5. Glowacki, T. Comment on ‘Will there be continued

support for people that do not want to use Ember-
CLI?’ (2015); http://discuss.emberjs.com/t/will-there-
be-continued-support-for-people-that-do-not-want-
to-use-ember-cli/7672/3

6. Koch, P.-P. Tools don’t solve the Web’s problems, they
are the problem. http://www.quirksmode.org/blog/
archives/2015/05/tools_dont_solv.html

7. Markbåge, S. Tooling is not the problem of the Web
(2015); https://medium.com/@sebmarkbage/tooling-
is-not-the-problem-of-the-Web-cb0ae1fdbbc6

8. http://paperswelove.org/
9. Preston-Werner, T. Readme driven development.

http://tom.preston-werner.com/2010/08/23/readme-
driven-development.html

10. http://ractivejs.org

Rich Harris is an interactive journalist at theguardian.
com, where he uses Web technologies to tell stories in
new ways through interactivity and data visualization.
He is the creator and lead author of a number of open
source projects.

Copyright held by author.
Publication rights licensed to ACM. $15.00

Figure 1. The Universal Module Definitiion ensures your library can be used anywhere.

(function (global, factory) {
typeof exports === ‘object’ && typeof module !== ‘undefined’ ? module.exports =

factory() :
typeof define === ‘function’ && define.amd ? define(factory) :
global.MyLibrary = factory()

}(this, function () {
var MyLibrary = {};
/* some code happens… */
return MyLibrary;

}));

Figure 2. npm and git are all you need to manage releases.

create the dist files (npm run is a great task runner!)
npm run build

create a version 0.2.0 tag and add it
to the ‘releases’ tab on the repo
git tag -a v0.2.0 -m ‘version 0.2.0’
git push origin v0.2.0

Copyright of Communications of the ACM is the property of Association for Computing
Machinery and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

