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SCANRAW: A Database Meta-Operator for Parallel In-Situ Processing
and Loading

YU CHENG and FLORIN RUSU, University of California, Merced

Traditional databases incur a significant data-to-query delay due to the requirement to load data inside the
system before querying. Since this is not acceptable in many domains generating massive amounts of raw
data (e.g., genomics), databases are entirely discarded. External tables, on the other hand, provide instant
SQL querying over raw files. Their performance across a query workload is limited though by the speed of
repeated full scans, tokenizing, and parsing of the entire file.

In this article, we propose SCANRAW, a novel database meta-operator for in-situ processing over raw files
that integrates data loading and external tables seamlessly, while preserving their advantages: optimal
performance across a query workload and zero time-to-query. We decompose loading and external table pro-
cessing into atomic stages in order to identify common functionality. We analyze alternative implementations
and discuss possible optimizations for each stage. Our major contribution is a parallel superscalar pipeline
implementation that allows SCANRAW to take advantage of the current many- and multicore processors by
overlapping the execution of independent stages. Moreover, SCANRAW overlaps query processing with loading
by speculatively using the additional I/O bandwidth arising during the conversion process for storing data
into the database, such that subsequent queries execute faster. As a result, SCANRAW makes intelligent use of
the available system resources—CPU cycles and I/O bandwidth—by switching dynamically between tasks to
ensure that optimal performance is achieved. We implement SCANRAW in a state-of-the-art database system
and evaluate its performance across a variety of synthetic and real-world datasets. Our results show that
SCANRAW with speculative loading achieves the best-possible performance for a query sequence at any point
in the processing. Moreover, SCANRAW maximizes resource utilization for the entire workload execution while
speculatively loading data and without interfering with normal query processing.
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1. INTRODUCTION

In the era of data deluge, massive amounts of data are generated at an unprecedented
scale by applications ranging from social networks to scientific experiments and per-
sonalized medicine. The vast majority of these read-only data are stored as application-
specific files containing hundreds of millions of records. Due to the upfront loading cost
and the proprietary file format, databases are rarely considered as a storage solution,
even though they provide enhanced querying functionality and performance [Idreos
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et al. 2011a; Alagiannis et al. 2012]. Instead, the standard practice is to write dedi-
cated applications encapsulating the query logic on top of generic file access libraries
that provide instant access to data through a well-defined API. While a series of ap-
plications for a limited set of parametrized queries are provided with the library, new
queries typically require the implementation of a completely new application, even
when there is significant logic that can be reused. Relational databases avoid this
problem altogether by implementing a declarative querying mechanism based on SQL.
This requires data representation independence, though, achieved through loading and
storing data in a proprietary format.

External tables [Witkowski et al. 2011] combine the advantages of file access libraries
and the declarative query execution mechanism provided by SQL: data can be queried
in the original format using SQL. Thus, there is no loading penalty and querying does
not require the implementation of a complete application. There is a price, though.
When compared to standard database query optimization and processing, external
tables use linear scan as the single file access strategy since no storage optimizations
are possible, as data are external to the database. Every time data are accessed, they
have to be converted from the raw format into the internal database representation. As
a result, query performance is both constant and poor. Databases, on the other hand,
trade query performance for a lengthy loading process. Although time consuming, data
loading is a one-time process, amortized over the execution of a large number of queries.
The more queries are executed, the more likely that the database outperforms external
tables in response time.

Motivating Example. To make our point, let us consider a representative example
from genomics. SAM/BAM files1—SAM [Li et al. 2009] are text, BAM [Barnett et al.
2011] are binary—are the standard result of the next-generation genomic sequence
aligners. These files consist of a series of tuples—known as reads—encoding how frag-
ments of the sequenced genome align relative to a reference genome. There are hun-
dreds of millions of reads in a standard SAM/BAM file from the 1000 Genomes project.2
Each read contains 11 mandatory fields and a variable number of optional fields. There
is one such read on every line in the SAM file, as the fields are tab-delimited.

A representative type of processing executed over SAM/BAM files is variant3, that is,
genome mutation responsible for causing hereditary diseases, identification. It requires
computing the distribution of the CIGAR field across all the reads overlapping a position
in the genome, where certain patterns occur in at least one read. This can be expressed
in SQL as a standard group-by aggregate query and executed inside a database using
the execution plan selected by the query optimizer based on data statistics. Geneticists
do not use databases, though. Their solution to answer this query (and any other query
for that matter) is to write application programs on top of generic file access libraries,
such as SAMtools4 and BAMTools5, that provide instant access to the reads in the
file through a well-defined API. Overall, a considerably more intricate procedure than
writing a SQL query.

Problem Statement. We consider the general problem of executing SQL-like queries
in-situ over raw files, for example, SAM/BAM, with a database engine. Data converted
to the database processing representation at query time can be loaded into the database.
Our objective is to design a solution that provides instant access to data and also

1http://samtools.sourceforge.net/SAMv1.pdf.
2http://www.1000genomes.org/data.
3http://www.nih.gov/news/health/sep2013/nhgri-25.htm.
4http://samtools.sourceforge.net/.
5http://sourceforge.net/projects/bamtools/.
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achieves optimal performance when the workload consists of a sequence of queries.
There are two aspects to this problem. First, methods that optimize the execution
time of a single query over raw files have to be developed. These can be applied both
to external table processing as well as standard data loading. Second, a mechanism
for query-driven gradual data loading has to be devised. This mechanism interferes
minimally (if at all) with normal query processing and guarantees that converted data
are loaded inside the database for every query. If a large-enough number of queries are
executed, all data get loaded into the database. We assume the existence of a procedure
to extract tuples with a specified schema from the raw file and to convert the tuples
into the database processing format.

Contributions. The major contribution we propose in this paper is SCANRAW—a novel
database meta-operator for in-situ processing over raw files that integrates data load-
ing and external tables seamlessly, while preserving their advantages: optimal perfor-
mance across a query workload and zero time-to-query. SCANRAW has a parallel super-
scalar pipeline architecture that overlaps data reading, conversion into the database
representation, and query processing. SCANRAW implements speculative loading as a
gradual loading mechanism to store converted data inside the database. The main idea
of speculative loading is to find those time intervals during raw file query processing
when there is no disk reading going on and use them for database writing. The intuition
being that query processing speed is not affected since the execution is CPU-bound and
the disk is idle.

Our specific contributions can be summarized as follows.

—Design SCANRAW, the first parallel superscalar pipeline meta-operator for in-situ pro-
cessing over raw data. The stages in the SCANRAW pipeline are identified following a
detailed analysis of data loading and external table processing.

—Investigate how all the available forms of parallelism supported by modern CPUs can
be applied to raw file data processing. Integrate data partitioning, task parallelism
and pipelining, and vectorized instructions in SCANRAW, and assess their performance
benefits for raw file data processing.

—Design an adaptive scheduling strategy for dynamically assigning worker threads
to raw file extraction tasks. The goal of adaptive scheduling is to optimize resource
utilization in the system and minimize query execution time while maximizing the
amount of data loaded into the database.

—Design the merge read mechanism for reading data from multiple sources. Merge
read groups multiple requests corresponding to the same data source and schedules
them together.

—Design speculative loading as a gradual data loading mechanism that dynamically
and adaptively takes advantage of the disk idle intervals arising during data con-
version and query processing.

—Design the multistep loading mechanism for storing raw data into the database,
without immediate conversion to the internal format. Since data are converted into
binary lazily, a significant improvement is achieved in CPU-bound tasks by elimi-
nating parsing of unnecessary columns.

—Implement several instances of the SCANRAW meta-operator (e.g., SCANRAW-CSV,
SCANRAW-SAM, SCANRAW-BAM, SCANRAW-FITS) in a state-of-the-art multithreaded
database system [Arumugam et al. 2010; Cheng et al. 2012; Cheng and Rusu
2014a] and evaluate its performance across a variety of synthetic and real-world
datasets and data formats. Compare SCANRAW against raw data processing operators
in MySQL6 and Impala [Kornacker et al. 2015]—two other data processing systems

6http://dev.mysql.com/doc/refman/5.7/en/csv-storage-engine.html.
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Fig. 1. Query processing over raw files.

with support for external tables. Our results show that SCANRAW with speculative
loading achieves the best-possible performance for a query sequence at any point in
the processing and outperforms the other systems considerably.

Roadmap. In Section 2, we provide a formal characterization for in-situ data pro-
cessing over raw files. The forms of parallelism supported by modern computer archi-
tectures and how they can be applied to raw file in-situ processing are discussed in
Section 3. The SCANRAW architecture and operation—including the thread scheduling
algorithms and the merge read mechanism—are introduced in Section 4, while specu-
lative loading is presented in Section 5. The multistep loading mechanism is presented
in Section 6. Detailed experimental results targeting all the aspects of the SCANRAW
operator are presented in Section 7. We conclude with a detailed look at related work
(Section 8) and plans for future work (Section 9).

2. RAW FILE QUERY PROCESSING

Figure 1 depicts the generic process that has to be followed in order to make querying
over raw files possible. The input to the process is a raw file, (SAM/BAM in our running
example) a schema, and a procedure to extract tuples with the given schema from the
raw file. The output is a tuple representation that can be processed by the execution
engine. For each stage, we introduce trade-offs involved and possible optimizations.
Before discussing in detail the stages of the conversion process though, we emphasize
the generality of the procedure. Stand-alone applications and databases alike have to
read data stored in files and convert them to an in-memory representation suitable for
processing. They all follow some or all of the stages depicted in Figure 1.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 19, Publication date: October 2015.
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2.1. READ

The first stage of the process requires reading data from the original flat file. Without
additional information about the structure or the content (stored inside the file or in
some external structure), the entire file has to be read the first time it is accessed.
This involves reading the lines of the file one by one and passing them to EXTRACT. As
an optimization (already implemented by the file system) multiple lines colocated on
the same page are read together. An additional optimization (also implemented by the
file system) is the caching of pages in memory buffers such that future requests to the
same page can be served directly from memory without accessing the disk. Thus, while
the first access is limited by the disk throughput, subsequent accesses can be much
faster as long as data are already cached.

Further reading optimizations beyond the ones supported by default by the file
system aim at reducing the amount of data (i.e., the number of lines) retrieved from
disk and typically require the creation of auxiliary data structures (i.e., indexes). For
example, if the tuples are sorted on a particular attribute range, queries over that
attribute can be answered by reading only those tuples that satisfy the predicate and
a few additional ones used in the binary search to identify the range. Essentially,
any type of index built inside a database can be also applied to flat files by incurring
the same or higher construction and maintenance costs. In the case of our genomic
example, BAI files [Barnett et al. 2011] are indexes built on top of BAM files. Columnar
storage [Abadi et al. 2013] and compression [Raman et al. 2008] are other strategies for
minimizing the amount of data read from disk, which is orthogonal to our discussion.

2.2. TOKENIZE

Abstractly, EXTRACT transforms a tuple from text format into the processing representa-
tion based on the schema provided and using the extraction procedure given as input to
the process. We decompose EXTRACT into three stages—TOKENIZE, PARSE, and MAP—with
independent functionality.

Taking a text line corresponding to a tuple as input, TOKENIZE is responsible for
identifying the attributes of the tuple. To be precise, the output of TOKENIZE is a vector
containing the starting position for every attribute in the tuple. This vector is passed
along with the text into PARSE. The implementation of TOKENIZE is quite simple. Iterate
over the text line character by character, identify the delimiter character that separates
the attributes, and store the corresponding position in the output vector. To avoid
copying, the delimiter can be replaced with the end-of-string character. Overall, a
linear scan over the text line with little opportunities for optimization.

A first optimization is aimed at reducing the size of the linear scan and is applicable
only when a subset of attributes have to be converted in the processing representation,
that is, selective tokenizing and parsing [Idreos et al. 2011a]. The idea is to stop the
linear scan over the text as soon as the end of the last attribute to be converted is
identified. Maximum reductions are obtained when the length of the text is large and
the attributes are located at the edges (we can go for a backward scan if the length is
shorter).

A second optimization is targeted at saving the work done, that is, the vector of
positions or positional map [Alagiannis et al. 2012], from one conversion to another.
Essentially, when the vector is passed to PARSE, it is also cached in memory. The posi-
tional map can be complete or partially filled, when combined with adaptive tokenizing.
While a complete map allows for immediate identification of the attributes, a partial
map can provide significant reductions even for the attributes whose positions are not
stored. The idea is to find the position of the closest attribute already in the map and
scan forward or backward from there.
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2.3. PARSE

In PARSE, attributes are converted from text format into the binary representation
corresponding to their type. This typically involves the invocation of a function that
takes as input a string parameter and returns the attribute type (e.g., atoi). The input
string is part of the text line. Its starting position is determined in TOKENIZE and passed
along in the positional map. Intuitively, the higher the number of function invocations,
the higher the cost of parsing.

Since the only direct optimization (implement faster conversion functions) is a well-
studied problem with clear solutions, alternative optimizations target other aspects
of parsing. Selective parsing [Idreos et al. 2011a] is an immediate extension of se-
lective tokenizing aimed at reducing the number of conversion function invocations.
Only the attributes required by the current processing are converted. If processing
involves selections, the number of conversions can be reduced further by first pars-
ing the attributes which are part of selection predicates, evaluating the condition,
and, only if satisfied, parsing the remaining attributes. In the case of highly-selective
predicates and queries over a large number of attributes, this push-down selection
technique [Alagiannis et al. 2012] can provide significant reductions in parsing time.
The other possible optimization is to cache the converted attributes in memory such
that subsequent processing does not require parsing anymore since data are already
in memory in binary format.

2.4. MAP

The last stage of extraction is MAP. It takes the binary attributes converted in PARSE
and organizes them in a data structure suitable for processing. In the case of a row-
store execution engine, the attributes are organized in a record. For column-oriented
processing, an array of the corresponding type is created for each attribute. Although
not a source of significant processing, this reorganization can become expensive if
not implemented properly. Copying data around has to be avoided and replaced with
memory mapping whenever possible.

At the end of EXTRACT, data are loaded in memory and ready for processing. Multiple
paths can be taken at this point. In external tables, data are passed to the execution
engine for query processing and discarded afterwards. In NoDB [Alagiannis et al.
2012] and in-memory databases, data are kept in memory for subsequent processing.
READ and EXTRACT do not have to be executed anymore as long as data are already
cached. In standard database loading, data are first written to disk and only then can
query processing begin. This typically requires reading data again (from the database
though). It is important to note that these stages have to be executed for any type
of processing and for any type of raw data, not only text. In the case of binary raw
data though, the bulk of processing is very likely to be concentrated in MAP instead of
TOKENIZE and PARSE.

2.5. WRITE

WRITE is present only in database loading. Data converted in the processing representa-
tion is stored in this format such that subsequent accesses do not incur the tokenization
and parsing cost. The price is the storage space and the time to write data to disk. Since
READ and WRITE contend for I/O throughput, their disk access has to be carefully syn-
chronized in order to minimize the interference. The typical sequential solution is to
read a page, convert the tuples from text to binary, write them as a page, and then re-
peat the entire process for all the pages in the input raw file. This READ-EXTRACT-WRITE
pattern guarantees nonoverlapping access to disk. An optimization that is often used
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in practice is to buffer as many pages with converted tuples as possible in memory and
to flush them at once when the memory is full.

The interaction between WRITE and the various optimizations implemented in
TOKENIZE and PARSE raises some complex trade-offs. If query-driven partial loading is
supported, the database has to provide mechanisms to store incomplete tuples inside a
table. A simple solution—the only available in the majority of database servers—is to
implement loading with INSERT and UPDATE SQL statements. The effect on performance
is extremely negative though. The situation gets less complicated in column-oriented
databases (e.g., MonetDB [Idreos et al. 2012]), which allow for efficient schema ex-
pansion by adding new columns. Loading new attributes reduces to writing the pages
with their binary representation in this case. Push-down selection in PARSE complicates
everything further since only the tuples passing the selection predicate end up in the
database. To enforce that a tuple is processed only once (either from the raw file or from
the database), detailed bookkeeping has to be set in place. While the effect on a single
query might be positive, it is very likely that the overhead incurred across multiple
queries is too high to consider push-down selection in PARSE as a viable optimization.
This is true even without loading data into the database.

3. PARALLEL RAW FILE QUERY PROCESSING

Parallel computing is a form of computation in which many calculations are carried
out simultaneously, operating on the principle that large problems can often be divided
into smaller ones which are then solved concurrently. In this section, we present how
to utilize parallelism to speed up in-situ data processing. We recognize three general
types of parallelization [DeWitt and Gray 1991]: data parallelism, task parallelism,
and pipelining. In the following sections, we introduce these parallelization methods
and show how they apply to in-situ data processing and loading.

3.1. Data Parallelism

Data parallelism is a form of parallelization across multiple processors or cores in
parallel computing environments. Data parallelism focuses on distributing the data
across different processors or cores. It emphasizes the distributed nature of the data
as opposed to processing.

Data Partitioning. Horizontal data partitioning or chunking is one strategy of data
parallelism. When executing a query, the partitions are independently assigned to
different execution entities for processing. Since each processing entity works on a
considerably smaller dataset, a speedup proportional to the number of processing work-
ers can be obtained. Data partitioning can be applied both to the raw files as well as to
the internal processing representation. We apply the simple data partitioning strategy
described in DeWitt and Gray [1991] by breaking the raw file into multiple segments
of fixed size—in the order of tens to hundreds of megabytes. This has the potential
to increase the length of sequential scans and reduce the number of disk seeks. The
segment, that is, chunk, is both the read/write and processing unit.

Figure 2 depicts the generic structure of an internal chunk containing metadata
to support range-based data partitioning. The metadata contains the minimum and
maximum values for each attribute and are stored in the system catalog. They represent
a primitive form of indexing. Besides, we further apply column-based storage inside
chunks. This type of storage structure vertically partitions columns inside chunks,
associated with an array of pointers to all the columns. The actual data are vertically
partitioned, with each column stored in a separate set of disk blocks. This design
can improve the performance for accessing selective attributes and allows only for
the required columns to be read for each query, thus minimizing the I/O bandwidth.
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Fig. 2. Chunk structure for internal processing.

However, the impact of the (Min, Max) ranges on attributes is not always significant
since there is no guarantee that attribute values are clustered.

Vectorization. Modern CPUs are highly parallel processors with different levels of
parallelism, from the parallel execution units in a CPU core, up to the SIMD (Sin-
gle Instruction Multiple Data) instruction set, and the parallel execution of multiple
threads across cores. Vectorization is the representative instance of SIMD data par-
allelism. Vectorized instructions operate on multiple data elements in one instruction
and make use of wide registers to store both the operands and the result. The Intel
SSE instruction set7, which is an extension to the x86 architecture, is the standard for
vectorized processing. SSE 4.2 includes byte-comparison instructions for string and
text processing, which can be used to accelerate string operations.

How is vectorization supported by modern compilers? It is the unrolling of a loop
combined with the generation of packed SIMD instructions by the compiler. Because
the packed instructions operate on more than one data element at a time, the loop can
be executed more efficiently. Modern compilers, such as GCC8 and LLVM9, detect vector-
ization opportunities automatically whenever default optimization (-O2 or higher) is
enabled. However, the compiler is not always capable of taking advantage of the SIMD
instructions without the programmer having to explicitly rewrite the code following
specific criteria.

Vectorization can be used to speed up the tokenization process, as shown
in Mühlbauer et al. [2013]. The SSE 4.2 instruction set works on 128-bit registers and
contains instructions for the comparison of two 16-byte operands of explicit or implicit
lengths. Instead of finding the delimiter character by character, the mm cmpistrm
intrinsic can be applied to check 16 bytes at a time. Algorithm 1 illustrates the method.
input contains the string that needs to be handled. A 128-bit register, denoted as SC,
is used to store the delimiters. At each iteration, 16 bytes of data from input are loaded
into another 128-bit register and are checked whether any is equal to a delimiter in
SC. The return value of the mm cmpistrm intrinsic indicates the result. If a delimiter
is found, the return value equals its index position. Otherwise, the return value is 0.

7https://software.intel.com/en-us/articles/extending-the-worlds-most-popular-processor-archit
ecture.
8https://gcc.gnu.org/.
9http://www.llvm.org/.
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ALGORITHM 1: Find Next Delimiter
Input: source string input; delimiters SC
Output: index of next delimiter in input
searchIdx = 0;
mode = SIDD CMP EQU AL ANY ;

m128i data;
m128i pattern = mm set epi8(SC);

while !IsEnd(input) do
data = mm loadu si128(input);
searchIdx = mm cmpistri(pattern, data, mode);
if (searchIdx < 16) then

//processing delimiter
end
input = input + 16;

end

3.2. Task Parallelism

Task parallelism10, also known as function parallelism or control parallelism, is a form
of parallelization of computer code across multiple processors in parallel computing en-
vironments. Task parallelism focuses on distributing execution processes, or threads,
across different parallel computing nodes. Task parallelism can be applied to raw file
query processing by assigning the stages identified in Figure 1—READ, TOKENIZE, PARSE,
MAP, and WRITE—to separate processes or threads. In modern multicore CPUs, different
stages (and multiple instances of the same stage) can be executed concurrently. More-
over, query processing can be viewed as another task that can be also included in the
parallel task assignment process.

3.3. Pipelining

Pipeline parallelism is a special form of task parallelism where a problem is divided
into subproblems, which can each be operated on independently, and where there
are multiple problem instances to be solved at a given instant in time. Compared
to data parallelism, this approach causes shorter latency, less buffering, and good
locality. The potential benefits of pipeline parallelism are easy to quantify. Assuming
an application is divided into n stages, let ti denote the processing time for each stage.
Then, the execution time and throughput for a nonpipelined program are Tno-pipeline =∑n

i=1 ti and 1/Tno-pipeline, respectively. When pipeline parallelism is active, suppose tm =
max{t1, t2, . . . , tn} represents the execution time of the slowest stage in the pipeline.
Then, the pipeline throughput is 1/tm, since a result is produced at every Tpipeline = tm
time instances. When executing a set of L tasks, the speedup rate is given by

η = L · Tno-pipeline

Tno-pipeline + (L − 1) · tm
. (1)

When the number of tasks L is extremely large (i.e., L → ∞), the speedup approaches
Tno-pipeline/tm, which means the pipeline throughput is decided entirely by the slowest
stage.

As shown in Figure 1, raw file query processing has been split into multiple stages
which are of high cohesion and low coupling. Pipeline parallelism can be exploited by
mapping clusters of producers and consumers to different stages, connected through
buffers. Buffering allows storing results of a stage temporarily before forwarding them

10http://en.wikipedia.org/wiki/Taskparallelism.
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to the subsequent stages. It is essential in smoothing out the flow of a computational
process when the timing for each stage is variable.

4. THE SCANRAW OPERATOR

In this section, we consider single query execution over raw data. Given a set of raw
files and an SQL-like query, the objective is to minimize query execution time. The fun-
damental research question we ask is how to design a parallel in-situ data processing
operator targeted at the current many- and multicore processors? What architectural
choices to make in order to take full advantage of the available parallelism? How to
integrate the operator with a database server?

We propose SCANRAW, a novel meta-operator implementing query processing over
raw data based on the decomposition presented in Section 2 and implementing the
parallelization techniques discussed in Section 3. Our major contribution is a parallel
superscalar pipeline architecture [Patterson et al. 1996] that allows SCANRAW to overlap
the execution of independent stages. SCANRAW overlaps reading, tokenizing, and parsing
with the actual processing across data partitions in a pipelined fashion, thus allowing
for multiple partitions to be processed in parallel both across stages and inside a
conversion stage. Each stage can itself be sequential or parallel.

To the best of our knowledge, SCANRAW is the first operator that provides generic
query processing over raw files using a fully parallel superscalar pipeline implemen-
tation. The other solutions proposed in the literature are sequential or, at best, use
data partitioning parallelism [DeWitt and Gray 1991]—also implemented in SCANRAW.
Some solutions follow the principle READ-EXTRACT-PROCESS (e.g, external tables and
NoDB [Idreos et al. 2011a; Alagiannis et al. 2012]), while others [Abouzied et al. 2013]
operate on a READ-EXTRACT-LOAD-PROCESS pattern. In SCANRAW, the processing pattern is
dynamic and is determined at runtime based on the available system resources. By de-
fault, SCANRAW operates as a parallel external table operator. Whenever I/O bandwidth
becomes available during processing—due to query execution or to conversion into the
processing representation—SCANRAW switches automatically to partial data loading by
overlapping conversion, processing, and loading. In the extreme case, all data accessed
by the query are loaded into the database, that is, SCANRAW acts as a query-driven data
loading operator.

4.1. Architecture

The superscalar pipeline architecture of SCANRAW is depicted in Figure 3. Although
based on the abstract process representation given in Figure 1, there are significant
structural differences. Multiple TOKENIZE and PARSE stages are present. They operate on
different portions of the data in parallel, that is, data partitioning parallelism [DeWitt
and Gray 1991]. MAP is not an independent stage anymore. In order to simplify the
presentation, we consider it is contained in PARSE. The scheduling of these stages is
managed by a scheduler controlling a pool of worker threads. The scheduler assigns
worker threads to stages dynamically at runtime. READ and WRITE are also controlled
by the scheduler thread in order to coordinate disk access and avoid interference.
The scheduling policy for WRITE dictates the SCANRAW behavior. If the scheduler never
invokes WRITE, SCANRAW becomes a parallel external table operator. If the scheduler
invokes WRITE for every chunk, SCANRAW converts into a parallel Extract-Transform-
Load (ETL) operator. While both these scheduling policies are supported in SCANRAW,
we propose a completely different WRITE behavior—speculative loading (Section 5). The
main idea is to trigger WRITE only when READ is blocked due to the text chunks buffer
being full. Remember that our objective is to minimize execution time, not to maximize
the amount of loaded data.
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Fig. 3. SCANRAW architecture.

One potential problem with the superscalar pipeline architecture is that chunks
can be passed to the execution engine in a different order than the raw file. This is
possible because of the multiple parallel paths a chunk can take. While not a problem
in the relational data model, this can be an issue if strict ordering is required. SCANRAW
can handle this scenario using a similar approach to CPUs—reordering at the binary
chunks buffer. Chunks read from the raw file are stamped with a sequential identifier
when they are inserted into the text chunks buffer and reordered based on it once they
hit the binary chunks buffer. They are subsequently passed to the execution engine in
the order they appear in the file.

Dynamic Structure. The structure of the superscalar pipeline can be static, as is the
case in CPU design, or dynamic. In a static structure, the number of stages and their
interconnections are set ahead of operation and do not change. Since the pipeline struc-
ture is different across datasets, each SCANRAW instance has to be configured accordingly.
For example, a file with 200 numeric attributes per tuple requires considerably more
PARSE stages than a file with 200 string attributes per tuple. SCANRAW avoids this prob-
lem altogether since it has a dynamic pipeline structure [Avnur and Hellerstein 2000]
that configures itself according to the input data. Whenever data become available in
one of the buffers, a thread is extracted from the thread pool and is assigned the cor-
responding operation and the data for execution. The maximum degree of parallelism
that can be achieved is equal to the number of threads in the pool. The number of
threads in the pool is configured dynamically at runtime for each SCANRAW instance.
Data that cannot find an available thread are stored in the corresponding buffer until
a thread becomes available. This effect is back-propagated through the pipeline struc-
ture downto READ which stops producing data when no empty slots are available in the
text chunk buffer.

Buffers. Buffers are characteristic to any pipeline implementation and operate using
the standard producer-consumer paradigm. The stages in the SCANRAW pipeline act as
producers and consumers that move chunks of data between buffers. The entire process
is regulated by the size of the buffers which is determined based on memory availability.
The text chunk buffer contains text fragments read from the raw file. The file is logi-
cally split into horizontal portions containing a sequence of lines (i.e., chunks). Chunks
represent the reading and processing unit. The position buffer between TOKENIZE and
PARSE contains the text chunks read from the file and their corresponding positional
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map computed in TOKENIZE. Finally, a binary chunks buffer contains the binary repre-
sentation of the chunks. This is the processing representation used in the execution
engine as well as the format in which data are stored inside the database. In binary
format, tuples are vertically partitioned along columns represented as arrays in mem-
ory. When written to disk, each column is assigned an independent set of pages which
can be directly mapped into the in-memory array representation. It is important to
emphasize that not all the columns in a table have to be present in a binary chunk.

Caching. While each of the buffers present in the SCANRAW architecture can act as
a cache if the same instance of the operator is employed across multiple query plans,
the only buffer that makes sense to operate as a cache is the binary chunks buffer.
There are two reasons for this. First, caching raw file chunks takes memory space from
the binary chunks cache. Why not cache more binary chunks, if possible? Moreover, the
file system buffers act as an automatic caching mechanism for the raw file. Second, the
other entity that can be cached is the positional map generated by TOKENIZE and stored
in the position buffer. While this also takes space from the binary chunks cache, the
main reason it has little impact for SCANRAW is that it cannot avoid reading the raw
file and parsing. These two stages are more likely to be the bottleneck than TOKENIZE,
which requires only an adequate degree of parallelism to be fully optimized.

The binary chunks buffer provides caching for the converted chunks. Essentially, all
the chunks in the raw file end up in the binary chunks cache, though not necessarily at
the same time. From there, the chunks are passed into the execution engine (external
tables processing) or to WRITE for storing inside the database (data loading). What
makes SCANRAW special is that, in addition to executing any of these tasks in isolation,
it can also combine their functionality. The binary chunks cache plays a central role in
configuring the SCANRAW functionality. By default, all the converted binary chunks are
cached, that is, they are not eliminated from the cache once passed into the execution
engine or WRITE. If all the chunks in the raw file can be cached, SCANRAW simply delivers
the chunks to the execution engine and the database becomes an in-memory database.
Chunks are expelled from the cache using the standard LRU cache replacement policy,
biased toward chunks loaded inside the database, that is, chunks that have already
been written to the database are more likely to be replaced.

Prefetching. SCANRAW functions as a self-driven asynchronous process with the objec-
tive of producing chunks for the execution engine as fast as possible. It is not a pull-
based operator that strictly satisfies requests. Essentially, SCANRAW starts to prefetch
chunks as soon as the query is compiled and caches them in the binary chunks buffer.
The goal is to guarantee that the execution engine is fed continuously with data and
the delay introduced by the I/O is minimized. Prefetching stops only when the buffer
is full with chunks not already processed by the execution engine. Processed chunks
are replaced using the cache replacement policy. They can be either dropped altogether
or stored in the database, if the necessary I/O throughput is available. Notice that
prefetching works both for raw chunks as well as for chunks already loaded in the
database and is regulated by the operation of the binary chunks cache, that is, SCANRAW
and the execution engine synchronize through the binary chunks cache.

Metadata. SCANRAW extracts valuable metadata while converting raw chunks into bi-
nary. These metadata are stored in the catalog to be used for processing subsequent
queries. They also represent an important source in query optimization. The extracted
metadata include the position in the raw file where each chunk begins and for every
attribute the minimum and maximum value in the chunk. While the starting position
provides direct access to a chunk, the minimum/maximum values allow us to identify
the chunks required by a given query by evaluating the selection predicates before
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Fig. 4. SCANRAW threads and control messages.

reading the data. In the best case when data in a column are range-partitioned across
chunk, this results in significant I/O and CPU savings—no tokenizing and parsing.
The positional map computed in TOKENIZE can also be considered metadata. Its size
is considerably larger though and its usage is limited to avoiding tokenizing—reading
and parsing are still required. The metadata also contains the information about load
status. When a chunk has been loaded into the database, the metadata not only record
the general information of chunk ID but also remembers the critical content of corre-
sponding columns. Therefore, when a query requires a list of attributes, the metadata
manager could indicate how many chunks are loaded or not. Besides, for a loaded
chunk, it could distinguish the columns already in database with other columns that
resides in raw files.

4.2. Operation

Given the architectural components introduced previously, in this section, we present
how they interact with each other. At a high level, SCANRAW consists of a series of asyn-
chronous stand-alone threads corresponding to the stages in Figure 3. The stand-alone
threads, depicted in Figure 4 by ovals, communicate through control messages (arrows)
while data are passed through the architectural buffers. The communication patterns
involve exactly two threads and consist of at most three steps. The order is given by
the number on the arrow. Notice that these threads—READ, WRITE, TOKENIZE, PARSE, and
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SCHEDULER—are separate from the thread pool which contains worker threads (circles
in Figure 4) that are configured dynamically with the task to execute.

4.2.1. Stand-Alone Threads. In the following, we first present each of the stand-alone
threads and their operation. Then we discuss the types of work performed by the
thread-pool workers.

READ Thread. The READ thread reads chunks asynchronously from the raw file and
deposits them in the text chunks buffer. READ stops producing chunks when the buffer
is full and restarts when there is at least an empty slot. The scheduler can force
READ to stop/resume in order to avoid disk interference with WRITE. These are the
only two control messages corresponding to READ. If the raw file is read for the first
time, sequential scan is the only alternative. If the file was read before, a series of
optimizations can be applied. First, chunks can be read in other order than sequential
or they can be ignored altogether if the selection predicate cannot be satisfied by any
tuple in the chunk. This can be checked from the minimum/maximum values stored
in the metadata. Second, cached chunks can be processed immediately from memory.
And third, chunks loaded inside the database can be read directly in the binary chunks
buffer without any tokenizing and parsing. When all the optimizations can be applied,
SCANRAW delivers the chunks to the execution engine in the following order: First, the
cached chunks, followed by the chunks loaded in the database, and finally the chunks
read from the raw file.

WRITE Thread. The WRITE thread is responsible for storing binary chunks inside
the database. Essentially, WRITE extracts chunks from the binary chunks buffer and
materializes them to disk in the database representation. It also updates the catalog
metadata accordingly. SCANRAW has to enforce that only one of READ or WRITE accesses
the disk at any particular instant in time. This is necessary in order to reduce disk
interference and maximize I/O throughput. The SCHEDULER identifies when writing can
occur by monitoring the text chunks buffer and triggers the action by sending the write
control message. WRITE extracts a chunk from the binary chunks buffer—the default is
the LRU algorithm for chunk replacement—and stores it inside the database. When
writing finishes, the control message done is sent back to the SCHEDULER.

Consumer Threads. A consumer thread monitors each of the internal buffers in the
SCANRAW architecture. TOKENIZE consumer monitors the text chunks buffer while PARSE
consumer monitors the position buffer, respectively. Whenever a chunk becomes avail-
able in any of these buffers, work has to be executed by one of the workers in the thread
pool. The consumer thread is responsible for acquiring the worker thread, scheduling
its execution on a chunk, and moving the result data in the subsequent buffer. It is im-
portant to emphasize that chunk processing is executed by the worker thread, not the
consumer thread. For example, the TOKENIZE consumer makes a request to the thread
pool whenever a chunk is ready for tokenizing (control message get worker). Multiple
such requests can be pending at the same time. Once a worker thread is allocated (con-
trol message assign worker), the requesting chunk is extracted from the buffer and sent
for processing. This triggers READ to produce a new chunk if the buffer is not full. When
the processing is done, the TOKENIZE consumer receives back the worker thread and
the chunk and its corresponding positional map. It releases the worker thread (control
message done) and inserts the result data into the position buffer. PARSE consumer
follows similar logic.

Scheduler Thread. The scheduler thread is in charge of managing the thread pool
and satisfying the requests made by the consumer threads monitoring the buffers.
Whenever a request can be satisfied, the scheduler extracts a thread from the pool and
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returns it to the requesting consumer thread. Notice that even if a thread is available,
it can only be allocated if there is empty space in the destination buffer. Otherwise, the
result chunk cannot move forward. For example, a request from the PARSE consumer
can be accomplished only if there is empty space in the binary chunks buffer. The
scheduler requires access to all the buffers in the architecture in order to take the
optimal decision in assigning worker threads. The objective is to have all the threads
in the pool running while moving chunks fast enough through the pipeline such that
the execution engine is always busy. At the same time, the scheduler has to make
sure that progress is always possible and the pipeline does not stall. While designing
a scheduling algorithm that guarantees progress is an achievable task, designing an
optimal algorithm is considerably more complicated. For this reason, it is common to
develop heuristics that guarantee only correctness. In Section 4.3, we discuss in detail
the strategies used to schedule worker threads in SCANRAW.

4.2.2. Worker Threads. Stand-alone threads are static. The task they perform is fixed
at implementation. Worker threads, on the other hand, are dynamically configured at
runtime with the task they perform. As a general rule, stand-alone threads perform
management tasks that control the dataflow through the pipeline while worker threads
perform the actual data processing. Since the entire process of assigning threads incurs
overhead, it has to be the case that the time taken by data processing offsets the
overhead. This is realized by making tasks operate over chunks or vectors of tuples
rather than individual tuples. As depicted in Figure 3, two types of tasks can be
assigned to worker threads: TOKENIZE and PARSE. They correspond to the stages of the
pipeline architecture. The operations that are executed by each of them and possible
optimizations are discussed in Section 2. The scheduler selects the task to assign to
each worker from a set of requests made by the corresponding consumer threads.

4.3. Worker Thread Scheduling

SCANRAW can be viewed as a pipeline parallelism structure. The extraction process is
expressed as a set of explicitly divided, concurrent, and independent stages, that is,
READ, TOKENIZE, PARSE, and WRITE, with producer-consumer communication between
stages through data queues. Each of these stages has a unique task queue to which it
enqueues newly produced tasks and from which it dequeues tasks to be executed. For
instance, the text chunks buffer and position buffer are two respective task queues for
the TOKENIZE and PARSE stages, respectively. The pipeline structure has several advan-
tages. Parallelism can be exploited at multiple levels, which allows the programmer
to tolerate different dependence patterns. Communication is deterministic, following a
producer-consumer pattern between the stages.

If the execution is I/O-bound, applications parallelized using the pipeline structure
can achieve minimum execution time (assuming the overhead introduced by moving
data between pipeline stages is negligible), since the execution time is determined en-
tirely by the read/write components which cannot be improved by any scheduling algo-
rithm. However, when the execution turns out to be CPU-bound, an efficient scheduling
strategy is critical to effective application execution, since such applications are sen-
sitive to load balancing. For maximum efficiency, pipelines must avoid “bubbles”, that
is, all the stages must process data at all times. Load imbalance is usually caused
by workload variation across stages. When the number of threads for every stage is
the same, the stage with the largest amount of workload becomes the bottleneck. To
address load imbalance, two orthogonal approaches are possible: (1) collapse all the
parallel stages into one; (2) use dynamic scheduling to share the load among different
stages. Collapsing pipeline stages is applicable only when all the intermediate stages
are parallel. Dynamic scheduling is a more general solution. An optimal scheduler

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 19, Publication date: October 2015.



19:16 Y. Cheng and F. Rusu

satisfies three desirable requirements. First, it keeps the execution units well utilized,
performing load balancing if and when needed. Second, it guarantees bounds on re-
source utilization. In particular, bounding the memory footprint is especially important
to avoid out-of-memory conditions. Third, the scheduling overhead is minimal.

According to these requirements, we design and implement two scheduling strategies
in SCANRAW: best-effort and adaptive, respectively. They are both based on the dynamic
pipeline structure. While these strategies are not novel from a scheduling perspec-
tive [Blumofe and Leiserson 1999; Sanchez et al. 2011], their application to a database
operator for raw file processing is new. In order to clearly present the scheduling strate-
gies, we formalize the SCANRAW resources as follows. There are N worker threads, and
the available memory is M. The operator has k stages. The workload, processing time,
and memory consumption are denoted as wi, ti, and mi, respectively. At any time,
the number of worker threads assigned to different stages is expressed as ni, where
1 ≤ i ≤ k. Then, the expected processing time for a stage i is t̄i = ti/ni. In the fol-
lowing, we present the two scheduling policies and their implementation. We provide
experimental results to compare their performance in Section 7.

Best-Effort Scheduling. In best-effort scheduling, processing is expressed as a graph
of stages which communicate explicitly via data streams. The scheduler assigns a
worker thread to a task based on the first-come first-serve (FCFS) mechanism. The
main idea of this strategy is that all the tasks are viewed equal to each other, so when
two different tasks are ready and ask for resources, the scheduler simply chooses one of
them randomly, without any calculation to make the decision. Best effort can be viewed
as a stateless mechanism, since it does not need any data or status information to make
the assignment. The scheduling overhead is zero, and the scheduler implementation
is straightforward. Therefore, best effort is typically used as a preliminary heuristics
choice. Best-effort scheduling works well in most situations and has the potential to
maximize resource utilization. It guarantees that all the available threads are work-
ing in parallel as much as possible, particularly for computation-intensive tasks, since
the system assigns threads without delay. However, it also has weaknesses. Since the
scheduler never considers the system status at runtime, it can introduce load imbal-
ance in general-purpose multicore CPUs, where the workload can vary significantly at
runtime, especially when the data footprint is constrained.

As an example, take a query A which has to process C chunks in total. During query
execution, SCANRAW has to allocate memory in READ and TOKENIZE to store the raw data
from the file and produce the positional map. Although PARSE requires memory for the
binary chunk, it releases the memory allocated in the former stages, which is consid-
erably larger. Therefore, the memory consumption of READ and TOKENIZE is positive,
while it is negative for PARSE. If the scheduler assigns worker threads to TOKENIZE, the
memory consumption increases. On the other hand, if PARSE receives worker threads,
there is memory that can be released. Too many TOKENIZE being processed concurrently
can cause the memory usage to go out of the bounds. If most of the threads are in PARSE
stages, the throughput of this stage can become larger than that of the query execution
engine, which introduces stalls between PARSE and the execution engine.

Adaptive Scheduling. Unlike the stateless best-effort scheduling, the adaptive strat-
egy assigns worker threads according to the runtime system state, which includes the
available resource status and statistics on current and past workloads. The resource
status includes the number of available worker threads and the used memory capacity.
The running time, that is, the main statistic used by the scheduler, is recorded for
each chunk in each stage. A timer is started when a worker thread is assigned to the
stage and stopped when the thread is reclaimed. Initial values for the parameters are
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extracted from the historical workload. Once the execution starts, the parameter values
are measured for every chunk and updated accordingly.

When the scheduler has to decide to which stage to assign the next available worker
thread, it calculates a priority value for all the stages, and the candidate with the high-
est value receives the thread. Moreover, the scheduler aims to fill the pipeline within
the available resource restrictions. It is well known that the pipeline performance is
determined by the most time-consuming stage. We use function f ′(i) = ti ·ni

N to express
the expected running time for stage i. The stage having the largest f ′ value requires
more time to finish the total work without adding additional system resources. Based
on this function, the pipeline stages can be ordered and compared to each other. The
stage with the lowest f ′ value has the highest priority. Therefore, adaptive scheduling
can be expressed as the following optimization formulation:

minimize max
1≤i≤k

f ′(i) − min
1≤ j≤k

f ′( j)

subject to
k∑

i=1

mi ≤ M.
(2)

Adaptive scheduling not only guarantees balanced system utilization but can also
adapt automatically to workload imbalance. In order to solve the imbalanced workload
problem, the execution time for all the stages has to dynamically change in a short time
interval. To detect this situation, when the average execution time is calculated, we
assign different weights based on previous stage executions. The degree of responsive-
ness to the workload can be controlled by the assignment of weight values. If the more
recent executions receive higher weight, the faster the adaptation to changes. If the
weights of past executions are higher, the scheduler is more conservative. For example,
assume the execution times for stage i in the last l executions are {t1, t2, . . . , tl} and
the corresponding weights are {w1, w2, . . . , wl}, respectively. The condition w j > w j−1
holds for every j such that 1 < j ≤ l. Then, the average execution time for stage i is
calculated as follows:

Ti =
l∑

i=1

wi · ti. (3)

If the workload does not change much, then the Ti values also stay stable. However,
when the workload varies suddenly, the scheduler can quickly update the Ti values
since the latest executions have the highest weight. Thus, Ti can quickly react to
changes in the workload.

4.4. Merge Read Mechanism

An interesting situation arises when only some of the columns required for query pro-
cessing are loaded either in cache or in the database. Since raw file access is required
in this case to read the remaining columns, SCANRAW has to decide what is more appro-
priate: using extra CPU cycles to tokenize and parse all the required columns, called
raw read, or reading the already-loaded columns from the database and converting
only the additional columns, called merge read.

To analyze this problem, we introduce the following notation. The size of the raw file
is defined as S. There are n attributes in the raw file. The read throughput is r, while
the processing rate is denoted as p. The query requires y attributes from the raw file
and z attributes already loaded in the database. Then, the query workload consists of
the following components. Let function f (n, y) represent the cost to process attributes
from the raw file. The values of function f can be computed from previous accesses to
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the raw file. Remember that this is not the first time we access the file, since some of the
data have already been loaded into the database. The workload for data loaded into
the database (denoted R(z)) is only from reading, without any extraction operation.
For simplicity, the workload to access cached attributes is neglected. Therefore, the
execution time for raw read, that is, Traw read, can be expressed as the following equation:

Traw read = max
(

S
r

,
f (n, y + z)

p

)
. (4)

Since SCANRAW is a parallel pipeline operator that supports concurrent reading and
extraction, query execution time is decided by the most time-consuming part. This rule
is applied in Eq. (4) to obtain the execution time for the query under the assumption
that the entire raw file has to be read in order to extract the required attributes. Using
the same notation, the execution time for merge read, that is, Tmerge read, is calculated
in Eq. (5). Compared to raw read, merge read has to generate data both from the raw
file as well as the database. δt represents the overhead caused by the interference
introduced by reading from two sources.

Tmerge read = max
(

S + R(z)
r

+ δt,
f (n, y)

p

)
. (5)

According to which part of the execution is more time consuming, we classify queries
into two categories. When the execution time is dominated by the I/O performance, then
the query is I/O-bound. Opposite, if processing takes most of the execution time, the
query is CPU-bound. Based on this categorization, the answer to the question which
reading strategy is better? is determined as follows. The main difference between the
two strategies is that a portion of the raw read computation is transformed into I/O
work in merge read. Therefore, if the execution is I/O-bound for raw read, it is still I/O-
bound for merge read, which incurs even more I/O work. If the system has plenty of CPU
resources to support the extra tokenize and parse tasks while still fully overlapping
with the I/O operation, then raw read is the better choice. Similarly, if the execution
is CPU-bound for merge read, then it is also CPU-bound for whole read, which incurs
even more work, that is, f (n, y + z) > f (n, y). This situation corresponds to a system
with a fast I/O component, where most of the time is spent for processing. In-memory
databases are a good example, for illustrating this scenario. The most complex situation
arises when the execution is CPU-bound for raw read and I/O-bound for merge read. In
this case, the answer is determined by comparing f (n,z)

p and R(z)
r + δt. The overhead δt is

hard to measure, since it depends on the system configuration and data organization. A
simple solution is to switch to merge read whenever the execution in raw read is CPU-
bound. Hence, merge read is more likely to be chosen when a large part of the required
columns are loaded in the database. However, this imposes severe restrictions on cache
operation, since that is where chunks are assembled. Then, the question becomes can
SCANRAW efficiently support merge read? We argue that the answer is yes and provide
the details of our solution in the following.

Workflow. When SCANRAW receives a query with the list of attributes for a relation,
the first optimization mechanism is to utilize the range index pair (Min, Max) to
eliminate the unnecessary chunks. A list of chunks that have to be read is generated.
Since the loading status for every chunk is different, when reading a chunk, SCANRAW
inspects the metadata to divide the list of attributes into two sets. One set contains the
columns that are loaded into the database, while the other set contains the remaining
columns that can be accessed only from the raw file. Figure 5 shows the merge read
workflow in SCANRAW. This workflow is based on the chunk structure and column-based
storage schema depicted in Figure 2. Chunks that have columns loaded in the database
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Fig. 5. Merge-read mechanism workflow.

generate two types of read requests—one request to the database and another to the
raw file. The cost to execute these requests is quite different. Generating data from the
database requires only reading, since data are already in binary format. Extracting
data from the raw file, is a complicated process with multiple stages, as shown in
Figure 1. Therefore, when the READ thread receives these two requests, it first starts
to read data from the raw file, since the conversion to binary format can be overlapped
with data reading from the database. Columns are cached in memory until all the
columns corresponding to the chunk are read from disk. Moreover, the columns from
the raw file are soft-copied by SCANRAW, as shown in Figure 5, and are sent to the WRITE
thread for speculative loading.

Chunk Map Data Structure. All the threads are executed concurrently and asyn-
chronously in SCANRAW, hence chunk requests having multiple data sources have to be
synchronized. The memory-resident chunk map data structure (Figure 6) is designed
in order to synchronize these requests and trace the status of each chunk. It consists
of two entities: the request index and the chunk list. The request index is used to trace
the completion status of every chunk and test whether the chunk is ready to be sent to
the execution engine for processing. The chunk list is used to store the chunk columns.
All the columns have to be loaded into the chunk list before the chunk can be processed.
When generating a chunk, a key-value item is created in the request index. The key
is the chunk ID, while the value is the number of data sources containing data for
this particular chunk. If the value is initialized with value 1, it means the chunk does
not require synchronization, since it is stored either into the database or the raw file.
However, if the value is set to 2, it indicates that the chunk has to wait and merge
data both from the database and the raw file. When either of the requests is returned,
SCANRAW first finds the corresponding item, then updates the value, and lastly checks
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Fig. 6. Example of a chunk map instance in merge read.

whether the chunk is complete. For example, in Figure 6, the index value of chunk3 is
1, which means chunk3 only needs one step to be generated. When Req < 3 > arrives,
the value for chunk3 drops to 0. The chunk is complete, thus both the index request
and the chunk can be removed from the chunk map. The chunk is further sent to the
execution engine for processing.

Group Reading. It is well known that sequentially scanning large amounts of data
maximizes the disk I/O throughput. However, in the case of merge read, when many
chunks have more than one data source, SCANRAW has to read data from noncontiguous
disk blocks. If the chunks are generated sequentially, the disk driver cannot utilize
the sequential reading pattern. Hence, we design the group reading mechanism which,
instead of generating chunk requests sequentially, splits the chunk list into multiple
groups having similar size. For every group, columns from different chunks are gen-
erated together, according to their data source. The chunks are generated group by
group. Since all the chunks in a group have to reside in memory before they are sent to
the execution engine, the size of the group is determined by the capacity of the system
memory. Take the query shown in Figure 6 as an example and consider that all the
chunks have two data sources. The overall number of chunks is 100, with 500MB per
chunk. Moreover, the memory capacity is 10GB. Then, the maximum number of chunks
residing in memory at the same time is 10,000/500 = 20, which is the group size. Thus,
for every 20 chunks, SCANRAW generates two lists of requests. One request is for reading
the columns corresponding to all the chunks in the group from the raw file, while the
other request is responsible for retrieving the remaining columns from the database.
Notice that this separation is not essential, since the disk controller already optimizes
concurrent requests. In order to minimize memory consumption, the requests are or-
dered based on the size of the retrieved data. The requests with smaller data footprint
are processed first since this minimizes the duration of the memory occupancy.
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4.5. Integration with a Database

Query Processing. At a high level, SCANRAW is similar to the database heap scan
operator. Heap scan reads the pages corresponding to a table from disk, extracts the
tuples, and maps them in the internal processing representation. Relative to the process
depicted in Figure 1, the extract phase in heap scan consists of MAP only. There is no
TOKENIZE and PARSE. It is natural then for the database engine to treat SCANRAW similar
to the heap scan operator and place it in the leaves of query execution plans. Moreover,
SCANRAW morphs into heap scan as data are loaded in the database. The main difference
between SCANRAW and heap scan though (and any other standard database operator for
that matter) is that SCANRAW is not destroyed once a query finishes execution. This
is because SCANRAW is not attached to a query but rather to the raw file it extracts
data from. As such, the state of the internal buffers is preserved across queries in
order to guarantee improved performance, which is not the case for the standard heap
scan. When a new query arrives, the execution engine first checks the existence of a
corresponding SCANRAW operator. If such an operator exists, it is connected to the query
execution plan. Only otherwise it is created. When is a SCANRAW instance completely
deleted then? Whenever it loads the entire raw file into the database.

Generalization to Any Raw File Format. In order to add support for processing any
type of raw file in SCANRAW, all that is required to implement are new TOKENIZE and
PARSE functions (and MAP when the separation makes sense) specific to that file type.
Everything else can be kept the same. Only in the extreme case of an empty task—for
example, binary raw files such as BAM do not require TOKENIZE, and PARSE becomes
exclusively MAP, thus transforming data from the format returned by the file access
library to the internal processing format—are architectural modifications required,
that is, the corresponding buffer and the consumer thread monitoring are removed
from the pipeline altogether. It is this generalization to any type of raw data that
gives SCANRAW its meta-operator characteristic. While the optimizations in TOKENIZE
and PARSE are not applicable to binary data, the optimizations in all the other pipeline
stages are still applicable—prefetching in READ and caching in MAP. Moreover, the SQL-
like interface for processing raw data without loading is probably the most important
benefit of SCANRAW compared to file access libraries which require writing an entirely
new program for every query.

Query Optimization. To effectively use SCANRAW in query optimization, additional
data, that is, statistics, have to be gathered. This is typically done as a stand-alone pro-
cess executed at certain time intervals. In the case of SCANRAW, statistics are collected
while data are converted in the database representation which is triggered in turn by
query processing. Statistics are stored in the metadata catalog. The types of statistics
collected by SCANRAW include the position in the raw file where each chunk starts and the
minimum/maximum value corresponding to each attribute in every chunk. More ad-
vanced statistics, such as the number of distinct elements and the skew of an attribute
(or even samples), can be also extracted during the conversion stage. The collected
statistics are later used for two purposes. First, the number of chunks read from disk
can be reduced in the case of selection predicates. For this to be effective though, data
inside the chunk have to be clustered. While WRITE can sort data in each chunk prior to
loading, SCANRAW does not address the problem of completely sorting and reorganizing
data based on queries, that is, database cracking [Idreos et al. 2011b]. The second use
case for statistics is cardinality estimation for traditional query optimization.

Resource Management. SCANRAW resources are allocated dynamically at runtime by
the database resource manager in order to better control the operation and to optimize
system utilization. For this to be possible though, measurements accounting for CPU
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usage and memory utilization have to be taken and integrated in the resource allocation
procedure. The scheduler is in the best position to monitor resource utilization since it
manages the allocation of worker threads from the pool and inspects buffer utilization.
These data are relayed to the database resource manager as requests for additional
resources or are used to determine when to release resources. For example, if the
scheduler assigns all the worker threads in the pool for task execution but the text
chunks buffer is still full, that is, SCANRAW is CPU-bound, additional CPUs are needed
in order to cope with the I/O throughput. With respect to memory utilization, it makes
sense to allocate more memory to SCANRAW instances that are used more often, since
this increases the rate of data reuse across queries.

5. SPECULATIVE LOADING

By default, SCANRAW operates as a parallel external table operator. It provides instant
access to data without preloading. This results in zero time-to-query for the first query
accessing the raw data. What about a workload consisting of a sequence of queries?
What is the SCANRAW behavior in that case? The default external table regime is subop-
timal, since tokenizing and parsing have to be executed again and again. Ideally, only
useful work, that is, reading and processing, should be performed starting with the
second data access. Traditional databases achieve this by preloading the data in their
processing format. They give up instant data access, though.

Is it possible to achieve both minimum execution time for all the queries in a sequential
workload and instant data access for the first query? This is the research question
we ask in this section. Our solution is speculative loading. In speculative loading,
instant access to data is guaranteed. It is also guaranteed that subsequent queries
accessing the same data execute faster and faster, achieving database performance
at some point—the entire data accessed by the query are read from the database at
that time. Moreover, speculative loading achieves database performance the earliest
possible while preserving the original execution time for all the queries in between.
In some cases, this is realized from the second query. The main idea in speculative
loading is to find those time intervals during raw file query processing when there is no
disk reading going on and use them for database writing. The intuition is that query
processing speed is not affected since the execution is CPU-bound and the disk is idle.
Notice though that a highly-parallel architecture consisting of asynchronous threads
capable of detecting free I/O bandwidth and overlap processing with disk operations
is required in order to implement speculative loading. SCANRAW accomplishes these
requirements.

There are several solutions in the literature that are related to speculative loading.
In invisible loading [Abouzied et al. 2013], a fixed amount of data (specified as a
number of chunks) are loaded for every query even if that slows down the processing.
In fact, invisible loading increases execution time for all the queries accessing raw
data. NoDB [Alagiannis et al. 2012] minimizes the execution time for all the queries
in a workload only when all the accessed data fit in memory. Loading is not considered
in NoDB, only in-memory caching. A possible extension to NoDB, explored in Idreos
et al. [2011a] is to flush data into the database when the memory is full. This results in
oscillating query performance, that is, whenever flushing is triggered query execution
time increases.

How does Speculative Loading Work. The central idea in speculative loading is to let
SCANRAW decide adaptively at runtime what data to load, how much, and when, while
maintaining the best-possible query execution performance. These decisions are taken
dynamically by the scheduler in charge of coordinating disk access between READ and
WRITE. Since the scheduler monitors the utilization of the buffers and assigns worker
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Fig. 7. Detection mechanism for triggering speculative loading.

threads for task execution, it can identify when READ is blocked (Figure 7). This can
happen for two reasons. First, conversion from raw format to database representation,
that is, tokenizing and parsing, is too time consuming. Second, query execution is the
bottleneck. In both cases, processing is CPU-bound. At that time, the scheduler signals
WRITE to load chunks in the database. While the maximum number of chunks to be
loaded is determined by the scheduler based on the pipeline utilization, the actual
chunks are strictly determined by WRITE based on the catalog metadata. In order to
minimize the impact on query execution performance, only the “oldest” chunk in the
binary cache that was not previously loaded into the database is written at a time. This
increases the chance to load more chunks before they are eliminated from the cache.
It is important for the scheduler not to allow reading to start before writing finishes
in order to avoid disk interference. This is realized with the resume control message
(Figure 4) whenever worker threads become available and WRITE returns.

Why does Speculative Loading Interfere Minimally with Query Execution. Specula-
tive loading is triggered only when there is no disk utilization. Rather than let the
disk idle, this “dead” time is used for loading—a task with minimal CPU usage that
has little to no impact on the overall CPU utilization, especially for the modern multi-
core processors with a high degree of parallelism. What about memory interference in
the binary chunks cache? Something like this can happen only when the chunk being
written to disk has to be expelled from the cache. As long as there is at least one other
chunk already processed, that chunk can be eliminated instead. The larger the cache
size, the higher the chance to find such a chunk.

How do We Guarantee that New Chunks are Loaded for Every Query. Since spec-
ulative loading is entirely driven by resource utilization in the system, there is no
guarantee that new chunks will get loaded for every query. For example, if I/O is
the bottleneck in query processing, no loading is possible whatsoever. Thus, we have
to develop a safeguard mechanism that enforces a minimum amount of loading but
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without decreasing query processing performance. Our solution is based on the fol-
lowing observation. At the end of a scan over the raw file, the binary chunks cache
contains a set of converted chunks that are kept there until the next query starts scan-
ning the file. These chunks are the perfect candidates to load in the database. Writing
can start as soon as the last chunk is read from the raw file—not necessarily after
query processing finishes. Moreover, the next query can be admitted immediately since
it can start processing the cached chunks first. Only the reading of new chunks from
disk has to be delayed until flushing the cache to disk. This is very unlikely to affect
query performance though. If it does, an alternative solution is to delay the admission
of the next query until flushing the cache is over—a standard procedure in multiquery
processing. It is important to emphasize that the safeguard mechanism is the norm
for invisible loading [Abouzied et al. 2013], while in speculative loading, it is invoked
only in rare circumstances. There is nothing stopping us to invoke it for every query
though.

How does Speculative Loading Improve Performance for a Sequence of Queries. The
chunks written to the database do not require tokenization and parsing. This guaran-
tees improved query performance as long as new data are loaded for every query. The
safeguard mechanism enforces chunk loading independent of the system resource uti-
lization. In order to show how speculative loading improves query execution, we provide
an illustrative example. Since the amount of data loaded due to resource utilization is
nondeterministic and thus hard to illustrate, we focus on the safeguard mechanism.
For the purpose of this example, we assume that the safeguard is invoked after every
query. Consider a raw file consisting of eight chunks. The binary cache can contain
two chunks. The first query that accesses the file reads all the data and converts them
to binary representation. For simplicity, assume that chunks are read and processed
in sequential order. At the end of the first query, chunks 7 and 8 reside in the cache.
Thus, the safeguard mechanism flushes them to the database. Query 2 processes the
chunks in the order {7, 8, 1, 2, 3, 4, 5, 6}, with chunks 7 and 8 delivered from the cache.
Since fewer chunks are converted from raw format, query 2 runs faster than query 1.
At the end of query 2, chunks 5 and 6 reside in the cache, and they are flushed to the
database. Query 3 processes the chunks in the order {5, 6, 7, 8, 1, 2, 3, 4}. The first two
chunks are in the cache, the next two are read from the database without tokenizing
and parsing, while only the remaining four are converted from the raw file. This makes
query 3 execute faster than query 2. Repeating the same process, chunks 3 and 4 are
loaded in the database at the end of query 3, and by the end of query 4, all data are
loaded. Since the number of chunks that have to be converted from raw format into
the database representation decreases with each query, subsequent queries run faster
than the previous ones until all data are loaded into the database.

6. MULTISTEP LOADING (MSL)

Using speculative loading, SCANRAW could instantly access data and utilize the spare
I/O resource to load data into database without affecting the query execution.

Is it possible to find another solution even faster than speculative loading. This is the
research question we ask in this section. Our solution is multistep loading. It contains
many advantages just like speculative loading, such as instant access to the data,
speeding up the subsequent queries over the same dataset. But in some cases, MSL
could achieve better execution time. The main idea in MSL is to find the computation
bottleneck and try to postpone unnecessary workload in order to speed up the current
query execution. The intuition is that query processing time is decided by the size of
computation workload when the execution is CPU-bound.
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Fig. 8. Detection mechanism for triggering multistep loading.

How does Multistep Loading Work. To MSL, the concerning attributes in a query are
not the same. Those involving numerical operations, such as +, -, *, /, or aggregate
functions, such as SUM, AVG, MIN, MAX, are viewed as “binary columns,” which means
they have to be transformed into binary format before query execution. All the other
attributes, even though their type is not string, can be represented as text in the final
query result. Thus, we call them text attributes since they do not require parsing. The
central idea in multistep loading is to let SCANRAW decide adaptively at runtime the
access plan for these “text columns.”

In order to illustrate the MSL workflow, let us consider an example based on table
lineitem in the TPC-H benchmark. lineitem has 16 attributes with different data
types, such as integer, decimal, and string. Consider the following two queries exe-
cuted over raw text data generated by the TPC-H generator.

Q1. SELECT l commitdate, l orderkey, l linenumber, l discount, l extendedprice, l tax
FROM lineitem

Q2. SELECT l commitdate, l orderkey, (l extendedprice ∗ l discount ∗ (1 + l tax))
FROM lineitem WHERE l linenumber ≥ 3

Attributes in Q1 are all text columns, since there is no numerical operation on any
columns. However, in Q2, l extendedprice, l linenumber, l discount, and l tax, are binary
columns and they have to be parsed before query execution.

How does Multistep Loading Work for the First Query. MSL supports instant access to
the data. Since the scheduler monitors the utilization of the buffers and assigns worker
threads for task execution, it can identify the status of READ through text chunks buffer
(Figure 8). When the buffer is empty, the processing is I/O-bound, the execution time
is decided entirely by the read/write throughput. In this case, all the attributes in the
query would be parsed due to the plenty of CPU resources. MSL works exactly the same
as speculative loading. When the READ is blocked, the processing becomes CPU-bound.
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At this time, MSL generate the query access plan to delay parsing work as much as
possible. In our example, if Q1 is the first query to be processed, MSL reads, tokenizes,
and stores the six attributes in the database as string, without parsing them at all.
However, if Q2 becomes the first query, only columns l commitdate and l orderkey can
be delayed for parsing, since l linenumber, l discount, and l tax are all binary columns.
Both in Q1 and Q2, some parsing workload could be delayed to subsequent queries,
which improves the execution time for the current query. A possible question is how
many columns should be delayed for parsing? This is dynamically controlled by SCANRAW.
Either no other columns can be delayed for, or the query becomes I/O-bound. If all text
columns have been delayed for parsing and the query is still CPU-bound, then MSL
can use the spare I/O resource to load data into the database, similar to speculative
loading. But text attributes are loaded as string, even though they have a different
type. The more attributes that are loaded into the database, the higher the probability
that SCANRAW can avoid reading the raw file.

How does Multistep Loading Process Subsequent Queries. After the first query has
been processed, some data are loaded into the database. However, the format of the data
in the database is not fixed. There are attributes loaded in binary format and attributes
loaded in text format. How to generate the optimal access plan for subsequent queries
is the problem to solve. In multistep loading, data can be in three formats: text format
in the raw file, text format in the database, and binary format in the database. Let us
assume that Q1 is executed first and consider the access plan for Q2. If all the attributes
can be retrieved from the database in binary format, then Q2 is executed as a standard
database query. In this situation, SCANRAW has no additional work to execute. Another
possibility is that all the attributes are retrieved from the database, but not all of
them are in binary format. For example, assume attributes l linenumber, l discount,
and l tax are stored as text inside the database. Then, when SCANRAW starts to process
Q2, it should read data from the database since it has smaller size. However, these
attributes have to be parsed before they can be processed by the execution engine. The
same conversion pipeline is used for this purpose, albeit with a different data source.
After the attributes are transformed into binary format, they can be loaded into the
database in binary format to replace the former text representation, following the
speculative loading mechanism. In the last scenario, columns are distributed across all
the formats. For instance, in Q2, l linenumber is loaded as integer into the database;
l orderkey and l discount are saved as text; and l tax is still in the raw file. At this point,
reading the raw file and tokenizing and parsing l tax is inevitable. If the extraction
process is I/O-bound, then we can extract more attributes instead of reading them from
the database, until the processing reaches a balance between CPU and I/O utilization.
If the extraction is CPU-bound, then reading binary data decreases the tokenizing
and parsing work, while reading only text from database eliminates tokenizing. These
dynamic changes can move the execution between CPU-bound and I/O-bound status.
SCANRAW can adapt to the changes through the thread pool mechanism.

7. EXPERIMENTAL EVALUATION

The objective of the experimental evaluation is to investigate the SCANRAW performance
across a variety of datasets (synthetic and real) and workloads, including a single
query as well as a sequence of queries. Additionally, the sensitivity of the operator is
quantified with respect to many configuration parameters. Specifically, the experiments
we design are targeted to answer the following questions.

—How is parallelism improving SCANRAW performance? What speedup does SCANRAW
achieve?
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—What is the performance of speculative loading and multistep loading compared to
external tables and database loading and processing, respectively, for a single query?
For a sequence of queries?

—Where is the time spent in the pipeline? How does the dynamic SCANRAW architecture
adapt to data characteristics? Query characteristics?

—How fast can SCANRAW extract tuples from the raw file?
—How does the scheduling algorithm affect query execution performance?
—What resource utilization does SCANRAW achieve?
—How does the SCANRAW performance compare to other file access libraries and systems

that support raw file processing?

Implementation. SCANRAW is implemented as a C++ prototype. Each stand-alone
thread as well as the workers are implemented as pthread instances. The code con-
tains special function calls to harness detailed profiling data. In the experiments, we use
SCANRAW implementations for CSV and tab-delimited flat files, as well as SAM and BAM
files. Adding support for other file formats requires only the implementation of specific
TOKENIZE and PARSE workers without changing the basic architecture. We integrate
SCANRAW with a state-of-the-art multithread database system [Arumugam et al. 2010;
Cheng et al. 2012; Cheng and Rusu 2014a] shown to be I/O-bound for a large class of
queries. This guarantees that query processing is not the bottleneck, except in rare situ-
ations, and allows us to isolate the SCANRAW behavior for detailed and accurate measure-
ments. Notice though that integration with a different database requires only mapping
to a different processing representation, without changes to the SCANRAW architecture.

System. We execute the experiments on a standard server with 2 AMD Opteron 6128
series 8-core processors (64 bit) (16 cores) 64GB of memory, and four 2TB 7200RPM SAS
hard drives configured RAID-0 in software. Each processor has 12MB L3 cache, while
each core has 128KB L1 and 512KB L2 local caches. The storage system supports 240,
436, and 1,600MB/second minimum, average, and maximum read rates, respectively,
based on the Ubuntu disk utility. According to hdparm, the cached and buffered read
rates are 3GB/second and 565MB/second, respectively. Ubuntu 12.04.3 SMP 64-bit with
Linux kernel 3.2.0-56 is the operating system.

Methodology. We perform all experiments at least three times and report the average
value as the result. If the experiment consists of a single query, we always enforce data
to be read from disk by cleaning the file system buffers before execution. In experiments
over a sequence of queries, the buffers are cleaned only before the first query. Thus, the
second and subsequent queries can access cached data.

7.1. Micro-Benchmarks

Data. We generate a suite of synthetic CSV files in order to study SCANRAW sensitivity
in a controlled setting. There are between 220 and 228 lines in a file in powers of four
increments. Each line corresponds to a database tuple. The number of columns in a
tuple ranges from 2 to 256 in powers of two. Overall, there are 40 files in the suite, that
is, 5 numbers of tuples times 8 numbers of columns. The smallest file contains 220 rows
and 2 columns (20MB) while the largest is 638GB in size—228 rows with 256 columns
each. The value in each column is a randomly-generated unsigned integer smaller
than 231. The dataset is modeled based on Alagiannis et al. [2012] and Alagiannis et al.
[2013]. While we execute the experiments for every file, unless otherwise specified, we
report results only for the configuration 226 × 64—40GB in text format.

Query. The query used throughout experiments has the form SELECT SUM(
∑K

j=1 Cij)
FROM FILE, where K columns Cij are projected out. By default, K is set to the number
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Fig. 9. Execution time (a) and speedup (b) as a function of the number of worker threads.

of columns in the raw file (e.g., 64 for the majority of the reported results). This simple
processing interferes minimally with SCANRAW, thus allowing for exact measurements
to be taken.

7.1.1. Parallelism and Speedup. Figure 9 depicts the effect the number of workers in the
thread pool has on the execution of speculative loading, query-driven loading and exe-
cution, that is, load all data into the database only when queried, and external tables.
Notice that these three regimes are directly supported in SCANRAW with simple modifi-
cations to the scheduler writing policy. Zero worker threads correspond to sequential
execution, that is, the chunks go through the conversion stages one at a time. With
one or more worker threads, READ and WRITE are separated from conversion—TOKENIZE
and PARSE. Moreover, their execution is overlapped. While the general trend is stan-
dard, thus increasing the degree of parallelism results in better performance, there
are multiple findings that require clarification. The execution time (Figure 9(a)) and
the speedup (Figure 9(b)) level off beyond six workers. The reason for this is that pro-
cessing becomes I/O-bound. Increasing the number of worker threads does not improve
performance anymore. As expected, loading all data during query processing increases
the execution time. What is not expected though is that this is not the case when the
number of worker threads is 1, 2, and 4. In these cases, full loading, speculative loading,
and external tables have identical execution time. The reason for this behavior is that
processing is CPU-bound, and (due to parallelism) SCANRAW manages to overlap conver-
sion to binary and loading into the database completely. Essentially, loading comes for
free since the disk is idle. In Figure 9(a), the curves for external tables and speculative
loading are always overlapped for more than one thread. Independent of the number of
workers, SCANRAW minimizes query execution time. All the unique SCANRAW features—
superscalar pipeline, asynchronous threads, dynamic scheduling—combine together to
make loading and processing as efficient as external tables. We are not aware of any
other raw file processing operator capable of achieving this performance.

7.1.2. Percentage of Loaded Data. The effect of parallel processing on speculative loading
is illustrated in Figure 10. As long as the execution is CPU-bound, speculative loading
operates as full loading, writing (almost) all the converted chunks into the database.
This happens for a small number of worker threads, that is, less than six. As soon as
there are enough workers (six or more) to handle all data read from disk (the execution
becomes I/O-bound), SCANRAW switches to external tables and does not load any chunks
at all, that is, there is no speculative loading.
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Fig. 10. Percentage of loaded data as a function of the number of worker threads.

Fig. 11. The effect vectorization has on tokenization (a) and overall query execution time (b).

7.1.3. Vectorization. Figure 11(a) depicts the comparison for tokenizing a chunk be-
tween an implementation with SSE vectorized instructions and a standard nonvector-
ized implementation. As the number of worker threads increases, the performance of
the vectorized version stays constant and outperforms the nonvectorized implementa-
tion by a factor of 2. Figure 11(b) depicts the overall query execution time for the two
mechanisms. When the number of worker threads increases, the difference in execution
time drops to the point where they are identical—for 12 or more threads. There are two
reasons for this. First, the advantages of vectorization are diluted by multithreading
execution. Assume s to be the time for tokenizing a chunk. Then, when processing n
chunks with a single thread, the vectorization mechanism can save at most (n − 1) · s
time from execution. However, if there are m threads working in parallel, the overall
execution time reduces by a factor of m. The savings due to vectorization are upper
bounded by the number of chunks assigned to a thread—only n/m in this case. The
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Fig. 12. Pipeline execution time: (a) absolute; (b) relative.

second reason is that tokenization is a relatively small portion from the overall query
execution time, as proved by the detailed pipeline analysis presented in the following.

7.1.4. Pipeline Analysis. Figure 12 depicts the duration of each stage in the SCANRAW
pipeline for all column sizes considered in the experimental dataset (i.e., 2 to 256 in
powers of 2 increments). The number of lines in all the files is 226. The WRITE time is
included in these measurements, since the experiment is executed with full data load-
ing. We report the average time per chunk in each stage over all the chunks in the file.
The absolute time to process a chunk is shown in Figure 12(a). As expected, when the
number of columns increases, so does the chunk processing time. Specifically, the time
doubles with the doubling in the number of columns. For more than 16 columns, PARSE
is by far the most time-consuming stage. This is where database processing over binary
data outperforms standard external tables. This is also the operation regime targeted
by SCANRAW with massive parallelism supported by the modern many- and multicore
processors. Essentially, SCANRAW transforms this CPU-bound task into typical database
I/O-bound processing (Figure 9(a)) over raw files, thus making data loading obsolete.
Figure 12(b) gives the relative distribution of the data in Figure 12(a). The relative
significance of I/O operations—READ and WRITE—drops from 45% for two columns to
approximately 20% for 256 columns. PARSE doubles from 30% to 60%. This experiment
illustrates two important aspects. First, it proves that PARSE is the stage to optimize
in order to make raw file processing efficient. And second, the workload distribution
across the extraction stages varies significantly with the number of attributes required
by the query. SCANRAW avoids the problems generated by this imbalance by using a
dynamic superscalar pipeline architecture.

7.1.5. Position and Number of Columns. Figure 13 depicts the effect of two parameters on
the SCANRAW performance, that is, the number of columns projected by the query and
the starting position of the first column. In this experiment, we consider that only a
continuous subset of the 64 columns are required in the query. The starting position of
the subset—the first column—is also a parameter. The purpose is to measure the effect
of selective tokenizing and parsing on SCANRAW performance. SCANRAW is configured with
eight worker threads. Increasing the number of columns required in the query results
in a slight increase in the conversion time—less than 5%. This is expected since the
number of function calls in PARSE increases. PARSE becomes the most time-consuming
stage in the extraction and determines the overall pipeline performance. The position
of the first column in the subset does not impact performance at all. The reason for this
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Fig. 13. Position and number of columns. Fig. 14. Chunk size.

is that the minimal increase in tokenization time is completely hidden in the parallel
execution with pipeline structure. These results confirm once more that PARSE is the
stage to optimize in raw file processing.

7.1.6. Chunk Size. The chunk size, that is, number of lines in the file processed as
a unit, has a dramatic impact on the pipeline efficiency (depicted in Figure 14). The
chunk size has to be in the proper range. If the size is not large enough, the overhead
introduced by the dynamic allocation of tasks to worker threads heavily impacts the
performance. If too large, it takes longer to fill and free the pipeline since the amount
of overlap is limited. While the actual chunk size is dependent on the data, we find
that between 217 and 219 tuples per chunk are optimal for our datasets. The chunk size
used throughout the experiments is 219 ≈ 500K.

7.1.7. Thread Scheduling. In this experiment, we compare the performance of the two
scheduling algorithms introduced in Section 4.3: best effort and adaptive. We vary
the number of worker threads in the pool from 2 to 16. The execution migrates from
CPU-bound to I/O-bound accordingly. The goal of the experiment is to investigate the
behavior of the two scheduling algorithms under the two types of execution regimes.
During query processing, the chunk size changes when converting from text to binary,
which causes the imbalanced workload. Thus, we also evaluate the amount of memory
saved by employing the adaptive algorithm when compared to the best-effort strategy.

The results are depicted in Figure 15. In Figure 15(a), on the left, the vertical axis
is the execution time, while in Figure 15(b), on the right, the vertical axis represents
the memory usage in GB. When the number of worker threads is less than 8, the
execution is CPU-bound. While the processing speed of adaptive is slightly faster, its
memory usage is considerably smaller than for best effort. The reason being that the
adaptive algorithm changes its assignment configuration dynamically, according to the
imbalanced workload, in order to guarantee that the pipeline is fully utilized. Moreover,
the adaptive algorithm optimizes memory consumption at the same time. However,
when the number of worker threads increases beyond 8, the execution becomes I/O-
bound, which means the workload can always be processed immediately. Thus, there
is no difference between the two algorithms according to both comparison criteria.
Notice also that the workload can be processed efficiently and with minimal memory
consumption.

7.1.8. Merge Read Mechanism. The merge read mechanism (Section 4.4) is used to merge
necessary query data from the database and the raw file. Database data are in the
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Fig. 15. Thread scheduling algorithm comparison: (a) execution time; (b) memory usage.

internal processing format and do not require conversion. Raw file data have to be
extracted and mapped into the internal processing representation. In this experiment,
we investigate the performance of merge read. In particular, we investigate how the
behavior of merge read changes as the processing workload varies and when merge
read is the best choice. In order to illustrate the characteristics of the merge read
mechanism, we run the raw read strategy as a comparison.

The experiments presented in this section use a dataset of 40GB containing 226 tu-
ples. Each tuple contains 64 attributes with integers distributed randomly in the range
[0−109). Half of the dataset, that is, attributes 1−32, are also loaded into the database.
The experimental setup is as follows. We create nine SELECT-PROJECT queries, denoted
{Q1, Q2, . . . , Q9}. The queries access 32 columns grouped into continuous ranges. Se-
lectivity is 100% for all the queries, as there is no WHERE clause. However, the starting
column index is different for each query. Q1 retrieves attributes from index 1 to 32. The
starting position for Q2 is 5. The starting position for subsequent queries increases in
increments of 4 (e.g., 9 for Q3, 13 for Q4, and so on). The queries can be divided into
three categories based on the source of their data. The first type is Q1, which can get
all the data directly from the database, since all the accessed attributes are loaded.
The second type is Q9, which accesses data exclusively from the raw file. For these
two queries, merge read works the same as raw read, therefore, their execution time
should be almost identical. The last category contains the remaining seven queries,
Q2 through Q8. Along with the increase of the starting column index, the proportion
of loaded data decreases, from 87.5% for Q2, to 12.5% for Q8. Therefore, the workload
of PARSE and TOKENIZE increases from Q1 to Q9. Additionally, we vary the number of
worker threads used for data extraction in order to change the processing type from
CPU-bound into I/O-bound. We execute the queries using merge read and raw read and
monitor the performance across the two mechanisms.

The results are shown in Figure 16. Figure 16(a) depicts the result when there
is a single worker thread dedicated for chunk extraction. In this configuration, the
extraction stages are sequentially run, hence the running time is the sum of the times
spent in each stage. That is why the execution time increases both for merge read and
raw read. We can see that the execution time for these two methods is almost the
same both in Q1 and Q9, as expected. However, merge read is always faster in this case
since the cost of reading additional columns from the database is less than the cost
of extracting them from the raw file. From the figure, we observe that the larger the
number of columns read from the database, the more gains merge read provides. The
maximum gain corresponds to Q2, which accesses 87.5% of the loaded data.
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Fig. 16. Comparison between merge read and raw read as a function of the number of worker threads used
for data extraction: (a) one thread; (b) two threads; (c) three threads; (d) four threads.

Figure 16(b) depicts the results for two worker threads. In this situation, TOKENIZE
and PARSE can be executed in parallel. That is the reason for the reduction in execution
time by almost half for raw read, when compared to Figure 16(a). When the starting
column index increases, the workload for TOKENIZE and PARSE augments as well. Hence,
the running time for raw read increases smoothly. The behavior of merge read is more
interesting. For Q2, the running time is nearly the same for both methods, which means
that the time for extracting the additional columns is nearly equal to the time spent
for reading the columns from the database. From Q3 to Q6, the running time decreases
steadily, since these queries are I/O-bound. Thus, there exist spare computational
resources to execute more work without affecting the running time. Moreover, the less
data are read from the database, the better the performance. However, for Q7 and Q8,
which are CPU-bound, the running time increases proportionally with the number of
additional columns that have to be extracted from the raw file.

Figures 16(c) and 16(d) depict the results when the number of worker threads in-
creases to three and four, respectively. For these two configurations (and any number of
worker threads larger than 4), raw read is always faster than merge read. The reason
is that the queries become I/O-bound; thus, the running time is determined exclusively
by the additional reading from the database. Reading less amount of data is the strat-
egy to decreasing the execution time in this situation. Since the amount of data read
by raw read is the same for queries Q2 to Q8, the execution time is nearly constant.
The running time increases slightly only for Q9, which is CPU-bound. The merge read
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Fig. 17. Execution time for query i.

Fig. 18. Overall execution time up to query i.

execution time drops smoothly because the additional data read from the database
decreases as well. When the number of worker threads reaches four, all the queries
become I/O-bound, both for merge read, as well as for raw read. In this case, raw read
is the better choice.

7.1.9. Speculative Loading for a Query Sequence. Figures 17 and 18 depict the SCANRAW
performance for a query sequence consisting of six standard queries, that is, SELECT
SUM(

∑64
i=1 Ci) FROM 226 × 64. Executing instances of the same query guarantees that

the same data are accessed in every query. This allows us to detect and quantify the
effect the data source has on query performance. The methods we compare are database
loading, buffered loading (i.e., data are written to the database only when the binary
cache buffer is full), external tables, and speculative loading. The size of the binary
cache used in buffered and speculative loading, respectively, is 32 chunks. Since SCANRAW
is configured with 16 worker threads, speculative loading behaves similarly to external
tables. This allows us to verify the effectiveness of the safeguard mechanism. Since
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the number of chunks loaded during query processing is nondeterministic, it is more
difficult to observe. Figure 17 shows the execution time for every query in the sequence.
As expected, this is (almost) constant for external tables. Data are always read from
the raw file, tokenized, and parsed before being passed to the execution engine. The
same is true for database execution starting from the second query—the first query
incurs the entire loading time; thus, it takes significantly longer. The difference is
that database execution is considerably faster than external tables—a factor of 2.5. In
SCANRAW, this is entirely due to the difference in size between text and binary format—
40GB and 16GB, respectively. Buffered loading distributes the loading time over the
first two queries since not all data fit in memory. Every chunk expelled from the cache is
automatically written to the database. As a result, there is a decrease in runtime for the
first query when compared to standard loading. For the second query though, execution
time is larger. Speculative loading exhibits a considerably more interesting behavior. It
has exactly the same execution time as external tables for the first query—this is the
absolute minimum that can be achieved—and then converges to the database execution
time after a number of queries. According to Figure 17, it takes only five queries. This
is expected since the size of the cache is 1/4th the number of chunks accessed by the
query. Even though speculative loading operates in external table mode, it manages
to load additional chunks (2–4 chunks to be precise) into the database in the interval
between reading finishes and query execution completes. This is possible only because
of the asynchronous multithread SCANRAW architecture.

Figure 18 shows the overall execution time after i queries in the sequence, where i
goes from 1 to 6. At least two important observations can be drawn. First, after only two
queries, data loading already pays off since the database performance is equal to that
of external tables. Second, speculative loading is always more efficient than database
processing. This is somehow unexpected since database processing is supposed to be
optimal when a large enough number of queries are executed. The reason this is
happening is because even though speculative loading goes multiple times to the raw
file, it only reads data not cached or loaded. The difference becomes even larger when
the text file has a size comparable to the binary format. Moreover, speculative loading
achieves the best performance at any point in the query sequence—including the first
query. This is not true for buffered loading even though not all data are loaded into
the database. It is important to notice that speculative loading has similar behavior as
buffered loading when all data fit in memory. The only difference is that speculative
loading materializes cached data into the database proactively, when resources are
available.

7.1.10. Multistep Loading for a Query Sequence. We compare the performance of MSL
against speculative loading using two different query sequences. The first sequence
consists of four identical queries, that is, SELECT

∑15
i=1 Ci, C16, C17, . . . , C31 FROM TABLE

WHERE C32 < 10, executed over a file with 226 tuples and 32 columns, all of which are
represented as floating point numbers. Only half of the attributes are required to do
the computation, that is, have binary type, while the other half are used for printing.
This query allows us to detect and quantify the effect of the input data source on query
performance. Figure 19(a) depicts execution time for the two loading approaches when
SCANRAW is configured with two worker threads. The processing is CPU-bound in this
case. Multistep loading runs faster than speculative loading for the first query because
SCANRAW postpones parsing of half the attributes. Moreover, SCANRAW is also capable of
speculatively loading all the accessed columns during query execution. At the end of
Q1, all 32 attributes are loaded into the database. However, their format is different.
While all the attributes are binary in speculative loading, half of them are text in
multistep loading. In subsequent queries, data are read exclusively from the database.
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Fig. 19. Multistep loading for a sequence of identical queries: (a) 2 threads; (b) 16 threads.

Fig. 20. Multistep loading for a sequence of different queries: (a) 2 threads; (b) 16 threads.

The execution time is similar for the two loading methods since the processing is I/O-
bound. Speculative loading becomes standard database processing since there is no
extraction work to execute. The only difference in multistep loading is that half of the
attributes are treated as string, even though they are decimal. As long as they are not
involved in arithmetic operations, this is perfectly fine. When the number of worker
threads is 32, query processing is I/O-bound, even for the first query. Figure 19(b)
depicts the results in this case. As expected, the two loading strategies are identical.
Their execution time is similar to the execution time for queries Q2–Q4 in the case of
two threads since the same amount of data is read from disk.

The second sequence contains nine queries. All attributes are accessed by every
query. The number of binary attributes is 4 in the first two queries, 8 in the following
two, 16 in Q5 and Q6, and 32 in the last three queries. Figure 20 depicts the results.
We follow the same method to measure execution time when the processing is CPU-
bound and I/O-bound, respectively. Figure 20(a) corresponds to CPU-bound processing,
that is, two worker threads. As before, MSL runs faster than speculative loading for
the first query and is similar for Q2. When executing Q3 and Q4, MSL has to parse
four additional attributes, loaded as string in the database. Nonetheless, the two
methods have almost identical execution time. This is because MSL processing is still
I/O-bound, even with the additional parsing. When the number of binary attributes
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Fig. 21. Resource utilization in SCANRAW.

increases to 16 (Q5 and Q6), though, the additional parsing required in MSL results
in a slight increase in execution time. The reason being that parsing turns the process
from I/O-bound into CPU-bound. While MSL parses the attributes into binary format,
it speculatively replaces the corresponding text content with binary. Therefore, after
several queries, the execution converges to speculative loading, which is I/O-bound. The
results for I/O-bound execution, that is, 16 worker threads, are shown in Figure 20(b).
They confirm that MSL and speculative loading are identical even for this workload.

7.1.11. Resource Utilization. In Figure 21, we display the SCANRAW CPU and I/O utiliza-
tion for processing a 256-column raw file with speculative loading. In this situation, the
execution is CPU-bound even for eight worker threads—the reason why CPU utiliza-
tion goes to 800. The interesting aspect to observe here is how the SCANRAW scheduler
alternates between READ and WRITE in order to minimize resource utilization. Whenever
the CPU is fully utilized and no reading is executed, WRITE is triggered to load data into
the database. This results in a temporary decrease in disk utilization since writing is
done one chunk at a time. As soon as worker threads become available, the scheduler
resumes reading and disk utilization goes back to 100%, since a sequence of chunks is
typically read at a time.

7.2. Real Data

In order to evaluate SCANRAW on a real dataset, we use genomic sequence alignment
data from the 1000 Genomes project.11 These data come in two formats—SAM is text
while BAM is compressed binary. We use the file corresponding to individual NA12878
containing more than 400 million reads. SAM is 145GB in size while BAM is 26GB.
As for processing, we compute the distribution of the CIGAR field at positions in the
genome where reads exhibit a certain pattern. The SQL equivalent is a group-by ag-
gregate query with a pattern matching predicate. Table I shows the results we obtain
for different SCANRAW configurations. In all queries over SAM files, we use a SCANRAW
implementation for processing tab-delimited text files. Tokenizing and parsing are han-
dled inside SCANRAW. For BAM file processing, we use BAMTools to extract the tuples
from binary and implement only MAP in SCANRAW. There is a single operation executed
in MAP—convert the BAMTools internal representation to SCANRAW. While the results
are standard—database processing is fastest, followed by external tables, and data
loading—the comparison between SAM and BAM processing is surprising. SCANRAW
takes more than seven times less to process a file more than five times larger. After
careful investigation, we find the problem to be BAMTools. The SAM implementation in
SCANRAW parallelizes tokenizing and parsing such that processing becomes I/O-bound.

11http://www.1000genomes.org/data.
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Table I. SCANRAW Execution Time (Seconds) for Real Data

Method SAM (145 GB) BAM (26 GB) FITS (8.1 GB)

External tables 370 2,714 220
Data loading 945 2,722 224
Database processing 122 122 29
Speculative loading 370 2,717 223

For BAM, file data access and decompression are sequential and handled inside BAM-
Tools. The process is heavily CPU-bound. While we did not modify the BAMTools code,
we parallelize MAP without any performance gains.

FITS is a common binary format which is widely used in astronomy to store, transmit,
manipulate, and archive data. For instance, Sloan Digital Sky Survey (SDSS)12 data
are available in FITS format. Besides the image data, FITS files can also store tables,
either in ASCII or binary. A widely used tool to handle FITS files is the C library
CFITSIO13, developed by NASA. CFITSIO provides a rich API to manipulate data in
FITS files. SCANRAW can execute queries on FITS files containing binary tables directly.
We enable SCANRAW to access FITS files by replacing TOKENIZE and PARSE with CFITSIO
API function calls. To make FITS data available for processing by the execution engine,
SCANRAW has only to map them to the binary chunk structure. This is a simple memory
mapping operation that incurs no overhead.

Table I displays the results for processing aFITS binary table with 64 integer at-
tributes and 67 million rows. The total size is 8.1GB. All the raw data processing
methods investigated in this article are compared. As in the case of BAM data, there is
minimal difference between external tables and loading. This is because the file access
library has major inefficiencies in retrieving data from the raw file. It turns out that
reading the data is not the problem, but rather creating the processing data structures.
As a result, the spare I/O throughput can be used for loading data into the database.
This is exactly what SCANRAW achieves through speculative loading. Based on these
results, we conclude that, for binary data, SCANRAW operates in a regime that is closer
to data loading. But this is due entirely to the file access library performance.

7.3. SCANRAW vs. Impala vs. MySQL

In this experiment, we compare the SCANRAW external table functionality against state-
of-the-art data processing systems that support raw file execution. We include MySQL
(5.1.73) and Impala (2.1.0) in the comparison since these are the only two freely avail-
able systems we are aware of. MySQL provides external table functionality through
the CSV storage engine, which enables direct querying over text CSV files, without
loading. Impala accesses data stored in the HDFS14 distributed file system. HDFS
splits files into chunks that can be retrieved and processed independently. Impala uses
task parallelism for processing multiple chunks concurrently, as long as they are read
fast enough from HDFS. In order to let Impala read directly from the local file sys-
tem, HDFS is configured in “short-circuit” mode. The experiments are executed on a
dedicated server with an Intel(R) Core(TM) i7-4770 CPU, 32GB of RAM, 2TB of disk
storage, and using CentOS 6.6. The system is different because Impala requires CPUs
with support for vectorized instructions (e.g., SSE4 or above).

We run experiments over three CSV files, containing 4, 16, and 64 integer attributes,
respectively. There are 226 rows in each file. Their sizes are 2.5GB, 10GB, and 40GB,
respectively. The query computes the average of the sum of all the attributes across all

12http://www.sdss3.org.
13http://heasarc.gsfc.nasa.gov/fitsio.
14https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html.
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Fig. 22. Comparison of external table mechanisms.

the tuples. Pure external tables access the entire file. Figure 22 depicts the execution
time across the three systems; SCANRAW achieves the best performance in all the cases.
The difference increases with the number of attributes. MySQL is almost as efficient
as SCANRAW for four attributes, but the lack of multithread parallelism becomes dom-
inant for a larger number of attributes, since more computation is required for the
conversion. The same trend can be observed for Impala. However, since Impala sup-
ports task parallelism, we find the problem to be the inefficient data access through
HDFS. The “short-circuit“ read mechanism does not seem to have a significant impact
in our experimental setting.

7.4. Discussion

The experimental results confirm the benefits of the SCANRAW superscalar pipeline ar-
chitecture for in-situ data processing. Parallel execution at chunk granularity results
in linear speedup for CPU-bound tasks. While additional improvements can be ob-
tained through the use of vectorized SIMD instructions, their impact is minimal if they
are applied only for tokenizing—this is the case in the literature [Mühlbauer et al.
2013]. SCANRAW with speculative loading achieves the best-possible performance across
a sequence of queries at any point in the execution. It is similar to external tables
for the first query and more efficient than database processing in the long run. More-
over, SCANRAW makes full data loading efficient to the point where database processing
(with pre-loading) achieves better overall execution time than external tables even for
a two-query sequence. While the time distribution is split almost equally between I/O,
and CPU-intensive pipeline stages when the number of columns in the file is small,
CPU-intensive stages (TOKENIZE and PARSE) account for more than 80% of the time
to process a chunk when the raw file contains a large number of numeric attributes.
By overlapping processing across multiple chunks and between stages, SCANRAW makes
even this type of execution I/O-bound. This guarantees optimal resource utilization in
the system, facilitated by an adaptive scheduling algorithm that provides a significant
reduction in memory usage when compared to the best-effort alternative. Due to paral-
lel conversion from text to binary, SCANRAW outperforms BAMTools by a factor of seven,
while processing a file five times larger. Data extraction for all the accessed attributes
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is the optimal strategy whenever the raw file has to be read. Merging data from the
database and the raw file proves effective only when the number of threads allocated
to data extraction is one, at most two.

8. RELATED WORK

Several researchers [Gray et al. 2005; Ailamaki et al. 2010; Stonebraker et al. 2009;
Kersten et al. 2011] have recently identified the need to reduce the analysis time
for processing tasks operating over massive repositories of raw data. In-situ process-
ing [Lorincz et al. 2003] has been confirmed as one promising approach. At a high
level, we can group in-situ data processing into two categories. In the first category, we
have extensions to traditional database systems that allow raw file processing inside
the execution engine. Examples include external tables [Witkowski et al. 2011; Alur
et al. 2008] and various optimizations that eliminate the requirement for scanning the
entire file to answer the query [Idreos et al. 2011a; Alagiannis et al. 2012; Ivanova
et al. 2012]. The second category is organized around the MapReduce programming
paradigm [Dean and Ghemawat 2008] and its implementation in Hadoop. While some
of the data extraction is implemented by adapters that convert data from various rep-
resentations into the Hadoop internal format15, the application is still responsible for
a significant part of the conversion, that is, the Map and Reduce functions contain
large amounts of tokenizing and parsing code. The work in this category focuses on
eliminating the conversion code by caching the already converted data in memory or
storing it in binary format inside a database [Abouzied et al. 2013].

SCANRAW [Cheng and Rusu 2014b]. The SCANRAWmeta-operator is introduced in Cheng
and Rusu [2014b]. The superscalar pipeline architecture is designed following a de-
tailed analysis of the conversion process from the raw file representation to the pro-
cessing format. Speculative loading is proposed as an adaptive mechanism to load data
into the database whenever there is spare disk I/O throughput, and without inter-
fering with query processing. In this work, we bring three novel contributions that
enhance the functionality of the SCANRAW meta-operator significantly and provide a
deeper understanding of how to process raw files efficiently on modern computer ar-
chitectures. First, in addition to data partitioning parallelism and pipelining, we also
integrate vectorized SIMD instructions, as a new form of parallelism supported by the
instruction sets of modern CPUs, in SCANRAW. After carefully considering all the stages
of the extraction process, we identify TOKENIZE as the only stage where vectorization
provides a significant performance boost. Second, we design two scheduling strategies
for assigning worker threads to tasks. Best-effort scheduling satisfies the requests in
the order in which they are received by the scheduler, without considering additional
data. Adaptive scheduling takes into consideration the state of the entire system when
assigning worker threads. The goal is to optimize resource utilization in the system and
minimize query execution time while maximizing the amount of data loaded into the
database. And finally, we consider alternative strategies for processing queries when
the same data are stored both in the raw file as well as inside the database. We design
the merge read strategy which combines reading data from two sources by grouping
multiple requests corresponding to the same source and scheduling them together. In
addition to formalizing the concepts introduced by each of the proposed contributions,
we also present extensive experimental results that quantify their relevance across the
overall SCANRAW architecture.

External Tables. Modern database engines (e.g., Oracle and MySQL) provide exter-
nal tables as a feature to directly query flat files using SQL without paying the upfront

15https://github.com/julianhyde/optiq.

ACM Transactions on Database Systems, Vol. 40, No. 3, Article 19, Publication date: October 2015.



SCANRAW 19:41

cost of loading the data into the system. External tables work by linking a database
table with a specified schema to a flat file. Whenever a tuple is required during query
processing, it is read from the flat file, parsed into the internal database representation,
and passed to the execution engine. Our work can be viewed as a parallel pipelined
implementation of external tables that takes advantage of the current multicore pro-
cessors for improving performance significantly when mapping data into the processing
representation is expensive. As far as we know, SCANRAW is the first parallel pipelined
solution for external tables in the literature. Moreover, SCANRAW goes well beyond the
external tables functionality and supports speculative loading, tokenizing, and parsing.

Adaptive Partial Loading [Idreos et al. 2011a]. The main idea in adaptive partial
loading is to avoid the upfront cost of loading the entire data into the database. In-
stead, data are loaded only at query time and only the attributes required by the query
(i.e., push-down projection). An additional optimization aimed at further reducing the
amount of loaded data is to push the selection predicates into the loading operator (i.e.,
push-down selection) such that only the tuples participating in the other query opera-
tors are loaded. The proposed adaptive loading operator is invoked whenever columns
or tuples required in the current query are not stored yet in the database. It is impor-
tant to notice that the operator executes a partial data loading before query execution
can proceed. While SCANRAW supports adaptive partial loading, it avoids loading all the
data into the database the first time they are accessed. Query processing has higher
priority. Data are loaded only if sufficient I/O bandwidth is available.

NoDB [Alagiannis et al. 2012]. NoDB never loads data into the database. It always
reads data from the raw file, thus incurring the inherent overhead associated with
tokenizing and parsing. Efficiency is achieved by a series of techniques that address
these sources of overhead. Caching is used extensively to store data converted in the
database representation in memory. If all data fit in memory, NoDB operates as an
in-memory database, without accessing the disk. Whenever data have to be read from
the raw file, tokenizing and parsing have to be executed. This is done adaptively
though. A positional map with the starting position of all the attributes in all the
tuples completely eliminates tokenizing. The positional map is built incrementally,
from the executed queries. Moreover, only the attributes required in the current query
are parsed. When the positional map, selective parsing, and caching are put together,
NoDB achieves performance comparable (if not better) to executing queries over data
stored in the database. This happens though only when NoDB operates over cached
data, as an in-memory database. The main difference between SCANRAW and NoDB is
that SCANRAW still loads data into the databases, without paying any cost for it though.
Additionally, SCANRAW implements a parallel pipeline for data conversion. This is not
the case in NoDB, which is implemented as a PostgreSQL extension.

Data Vaults [Ivanova et al. 2012]. Data vaults apply the same idea of query-driven
just-in-time caching of raw data in memory. They are used in conjunction with scien-
tific repositories though, and the cache stores multidimensional arrays extracted from
various scientific file formats. Similar to NoDB, the cached arrays are never written
to the database. The ability to execute queries over relations stored in the database,
cached arrays, and scientific file repositories using SciQL as a common query language
is the main contribution brought by data vaults.

Invisible Loading [Abouzied et al. 2013]. Invisible loading extends adaptive partial
loading and caching to MapReduce applications which operate natively over raw files
stored in a distributed file system. The database is used as a disk-based cache that
stores the content of the raw file in binary format. This eliminates the inherent cost
of tokenizing and parsing data for every query. Notice though that processing is still
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executed by the MapReduce framework, not the database. Thus, the database acts
only as a more efficient storage layer. In invisible loading, data converted into the
MapReduce internal representation are first stored in the database and only then are
passed for processing. While this is similar to adaptive partial loading [Idreos et al.
2011a], an additional optimization is aimed at reducing the storing time. Instead of
saving all the data into the database, only a predetermined fraction of a file is stored for
every query. The intuition is to spread the cost of loading across multiple queries and to
make sure that loaded data are indeed used by more than a single query. The result is a
smooth decrease in query time instead of a steep drop after the first query—responsible
for loading all the required data. The proposed speculative loading implemented in
SCANRAW brings two novel contributions with respect to invisible loading. First, the
amount of data loaded for every query changes dynamically based on the available
system resources. Speculative loading degenerates to invisible loading only in the case
when no I/O bandwidth is available. And second, speculative loading overlaps entirely
with query processing without having any negative effects on query performance. This
is the result of the SCANRAW pipelined architecture.

Instant Loading [Mühlbauer et al. 2013]. Instant loading proposes scalable bulk
loading methods that take full advantage of the modern superscalar multicore CPUs.
Specifically, vectorized implementations using SSE 4.2 SIMD instructions are proposed
for tokenizing. The extraction stages are still executed sequentially though, for every
data partition—there is no pipeline parallelism. Moreover, instant loading does not
support query processing over raw files. SCANRAW, on the other hand, overlaps the
execution of tokenizing and parsing both across data partitions, and for each partition
individually and with the actual query processing and/or loading. Overall, instant
loading introduces faster algorithms for tokenizing that we integrate in SCANRAW. While
the benefits of vectorization are evident when TOKENIZE is considered in isolation,
the impact on the overall query execution is limited to the percentage tokenization
represents from the total. As our detailed stage analysis shows, tokenization represents
only a small fraction since parsing dominates the extraction time. Consequently, the
impact vectorization has on in-situ raw file data processing is considerable only in
specific scenarios, for example, the file consists of a large number of text attributes
that do not require parsing.

SDS/Q [Blanas et al. 2014]. SDS/Q executes queries directly over data stored in
HDF5 files. Similar to NoDB, it never loads data into the database. Instead, it always
reads data from the raw file. However, since HDF5 is a binary storage format, in
most cases, the parse and tokenize stages can be omitted. Moreover, SDS/Q builds
external bitmap indexes to eliminate the requirement for scanning the entire file in
order to reduce query response time. Compared to SDS/Q, SCANRAW can not only process
queries directly from scientific raw files in binary format (HDF5 is only one such
example) but can also execute queries from other file formats, including text files.
Furthermore, due to the parallel pipeline for data conversion, SCANRAW can load data
into the databases whenever necessary, and without paying any cost for it. This is not
supported in SDS/Q, which is a distributed shared-memory data processing system
without secondary storage functionality.

RAW [Karpathiotakis et al. 2014] & VIDa [Karpathiotakis et al. 2015]. The RAW
system and its VIDa extension aim to query heterogeneous data sources transparently,
without loading data into a database. RAW generates access paths just-in-time to adapt
to the underlying data files and to the incoming queries. SCANRAW integrates external I/O
libraries to access different data formats (e.g., BAM and FITS). Furthermore, SCANRAW
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measures the performance of the library dynamically in order to decide whether to load
the data into database to improve the execution of subsequent queries.

Impala [Kornacker et al. 2015]. Impala is an open-source massively parallel pro-
cessing SQL query engine for data stored in a computer cluster running Hadoop.16

Impala brings scalable parallel database technology to Hadoop, enabling users to issue
low-latency SQL queries to data stored in HDFS and HBase17 without requiring data
movement or transformation. Impala applies task-parallelism to convert raw data into
binary format for execution. When Impala executes a query from a raw file, it has to
first retrieve the data from HDFS, the underlying file system. Therefore, the execution
time for the first query cannot be fully controlled by Impala. Compared to Impala,
SCANRAW applies superscalar pipeline parallelism in order to maximize the hardware
throughput.

9. CONCLUSIONS AND FUTURE WORK

In this article, we propose SCANRAW—a novel database meta-operator for in-situ process-
ing over raw files that integrates data loading and external tables seamlessly while
preserving their advantages. SCANRAW supports single-query optimal execution with a
parallel superscalar pipeline architecture that overlaps data reading, conversion into
the database representation, and query processing. SCANRAW implements speculative
loading as a gradual loading mechanism to store converted data inside the database.
We implement SCANRAW in a state-of-the-art database system and evaluate its perfor-
mance across a variety of synthetic and real-world datasets. Our results show that
SCANRAW with speculative loading achieves the best performance for a query sequence
at any point in the processing.

In future work, we plan to focus on extending SCANRAW with support for multiquery
processing over raw files. Two scenarios will be considered. First, the query workload
is known in advance. The question that has to be answered in this case is how to group
the queries and in what order to execute them in order to minimize the processing
time over the entire workload. Also, how can we take the workload into consideration
when deciding what columns to load inside the database? In the second scenario,
the workload is not know a priori. Queries are admitted dynamically at runtime. The
objective remains minimizing the execution time over the entire workload. The existing
SCANRAW operator represents a solid foundation in pursuing this type of work.
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