
DECEMBER 2015 | VOL. 58 | NO. 12 | COMMUNICATIONS OF THE ACM 111

DOI:10.1145/2830506

To view the accompanying paper,
visit doi.acm.org/10.1145/2830508 rh

The authors built a specific in-
stance of a NoDB system called Post-
gresRaw. The main techniques it
uses are to avoid parsing portions
of a file not needed by the current
query, and reusing the work it does
do via a “positional map” (a sort of
structural index) that remembers the
location of fields in records it does
access. Thus, initial queries avoid
the full load cost of an external file,
while later queries take advantage of
previous parsing work. The authors
also consider incremental methods
on in-situ data, such as collecting
statistics and caching data from one
query to another. The evaluation of
PostgresRaw shows the performance
advantage of NoDB technology over
the alternatives mentioned here.

Should we expect our DBMSs in the
future will do away with internal stor-
age and run entirely over in-situ data?
Likely not—the NoDB approach tar-
gets large, static datasets (though it
could be extended to handle certain
classes of updates, such as append-
ing records). Data subject to small,
frequent changes is best maintained
by the DBMS. Also, if you determine
at some point that a file will be in-
tensely queried in the future, then it
is worthwhile to incur the up-front
load cost, in exchange for faster que-
ries. Nevertheless, the paper is excit-
ing, as it minimizes up-front costs
when exploring new data sources,
and it opens up a wide range of addi-
tional techniques to pursue for in-situ
data management, such as incremen-
tal value-based indexing, synthesiz-
ing access methods for common file
types, and selective transfer of in-situ
data to internal storage.

David Maier (maier@cs.pdx.edu) is Maseeh Professor of
Emerging Technologies in the Department of Computer
Science at Portland State University, Portland, OR.

© 2015 ACM 0001-0782/15/12 $15.00

IMAGINE YOU HAVE a collection of data
files—say, cell-tower call records—
and you believe some of them might
contain useful information: towers
that are near capacity, numbers whose
calls are frequently dropped, failed
hand-offs. You want to run a few que-
ries over selected files to explore which
ones might merit further analysis and
determine what kinds of knowledge
you might extract. If a file is small, you
might transfer it to your own computer
and inspect it with a spreadsheet pro-
gram or an analysis environment such
as R. However, suppose individual files
are too large to fit on your computer.
What are your choices then for explor-
ing them?

One possibility is to load the data
into a database management system
(DBMS) and use the query language—
likely SQL—to ask your questions.
While you get the advantage of a high-
level data language, it might take
hours to load the data before you can
pose your first query. If you want to
switch to another file, then you have to
wait again while that file loads. More-
over, any file you do load now takes up
at least twice the storage space, since
its data is in both the database and
on the file system. Deleting the origi-
nal file might not be possible, if it has
other users.

An option is to use a MapReduce
framework, such as Hadoop, to run
your preliminary analyses. Now your
“time to insight” is delayed by hav-
ing to write (and probably debug) a
program. Even if you are able to for-
mulate your questions as programs
fairly quickly (perhaps using a lan-
guage layer such as Hive or PigLa-
tin), each query you run will scan the
whole file anew. In addition, you lose
performance enhancements such as
indexes and optimization available
in a DBMS.

Such unattractive trade-offs face
nearly everyone wanting to quickly ex-
plore a new data source. The following
paper by Alagiannis et al. investigates a
third approach, extending a DBMS so

it can use the file data in situ, without
having to load it first. They term their
approach “NoDB” to indicate it does
not require a separate copy of the data
stored internally to the DBMS.

Note that some DBMSs do support
links to external files that are viewed
as tables, which are parsed and tem-
porarily loaded on demand. That
approach does avoid the initial load
into persistent storage and allows the
loading process to overlap with other
query stages. However, loading hap-
pens on every query, as with the Map-
Reduce approach. Furthermore,
such external data is a second-class
citizen, lacking the indexes and sta-
tistics that speed performance on
internal data. The NoDB approach,
in contrast, tries to make in-situ data
first class, by using an incremental,
pay-as-you-go approach to provid-
ing DBMS functionality that tries to
minimize up-front load costs, while
capturing the work that is done for
the benefit of later queries.

Technical Perspective
In-Situ Database Management
By David Maier

The following paper
is exciting,
as it minimizes
upfront costs
when exploring
new data sources,
and it opens up
a wide range
of additional
techniques
to pursue for in-situ
data management.

http://dx.doi.org/10.1145/2830506
http://doi.acm.org/10.1145/2830508

Copyright of Communications of the ACM is the property of Association for Computing
Machinery and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

