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Abstract Detecting complex events in videos is intrin-
sically a multimodal problem since both audio and visual
channels provide important clues. While conventional meth-
ods fuse both modalities at a superficial level, in this paper
we propose a new representation—called bi-modal words—
to explore representative joint audio–visual patterns. We first
build a bipartite graph to model relation across the quan-
tized words extracted from the visual and audio modalities.
Partitioning over the bipartite graph is then applied to pro-
duce the bi-modal words that reveal the joint patterns across
modalities. Different pooling strategies are then employed to
re-quantize the visual and audio words into the bi-modal
words and form bi-modal Bag-of-Words representations.
Since it is difficult to predict the suitable number of bi-
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modal words, we generate bi-modal words at different levels
(i.e., codebooks with different sizes), and use multiple ker-
nel learning to combine the resulting multiple representations
during event classifier learning. Experimental results on three
popular datasets show that the proposed method achieves sta-
tistically significant performance gains over methods using
individual visual and audio feature alone and existing pop-
ular multi-modal fusion methods. We also find that average
pooling is particularly suitable for bi-modal representation,
and using multiple kernel learning to combine multi-modal
representations at various granularities is helpful.

Keywords Bi-modal words · Multimodal fusion ·
Multiple kernel learning · Event detection

1 Introduction

Automatically detecting complex events in diverse Inter-
net videos is a topic that is receiving increasing research
attention in computer vision and multimedia. Currently, a
large portion of the Internet videos are captured by amateur
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34 I.-H. Jhuo et al.

Fig. 1 Example video frames
of event “feeding an animal”
defined in TRECVID
Multimedia Event Detection
Task 2011. As can be seen,
event detection in such
unconstrained videos is a highly
challenging task since the
content is extremely diverse

consumers without professional post-editing. This makes the
task of event recognition extremely challenging, since such
videos contain large variations in lighting, viewpoint, camera
motion, etc. Figure 1 shows example frames from six videos
containing event “Feeding an animal”. In addition to the vari-
ations mentioned above, the “high-level” nature of the event
categories (e.g., different kinds of animals in this event) sets
a big challenge in event recognition.

Fortunately, besides the visual frames shown in Fig. 1,
videos also contain audio information which provides an
extra useful clue for event detection. In other words, events
captured in the videos are multimodal and videos of the same
event typically show consistent audio–visual patterns. For
example, an “explosion” event is best manifested by the tran-
sient burst of sound together with the visible smoke and flame
after the incident. Other examples include strong temporal
synchronization (e.g., horse running with audible footsteps)
or loose association (e.g., people feeding an animal while
also talking about the feeding action). Therefore, we believe
that successful event detection solutions should effectively
harness both audio and visual modalities.

Most existing works fused multimodal features in a super-
ficial fashion, such as early fusion which concatenates feature
vectors before classification, or late fusion which combines
prediction scores after classification. To better characterize
the relationship between audio–visual modalities in videos,
in this paper, we propose an audio–visual bi-modal Bag-
of-Words (BoW) representation. First, we apply the typical
BoW representation to build an audio BoW representation
and a visual BoW representation, where the codebooks are
generated by using standard k-means clustering separately.
After that, a bipartite graph is constructed to capture joint
co-occurrence statistics between the quantized audio words
and visual words. A bi-modal codebook is then generated
by spectral clustering, which partitions the graph into a set
of visual/audio word groups, and each group is treated as a
joint bi-modal word. Finally, the original individual feature in
each modality (audio, or visual) is re-quantized based on the
bi-modal codewords, using popular feature pooling methods.
In addition, as it is difficult (if not impossible) to predict the
suitable number of bi-modal words, we generate bi-modal
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Fig. 2 The framework of our proposed joint bi-modal word represen-
tation. We first extract audio and visual features from the videos and
then quantize them into audio and visual BoW histograms respectively.
After that, a bipartite graph is constructed to model the relations across
the quantized words extracted from both modalities, in which each node
denotes a visual or an audio word and edges between two nodes encode
their correlations. By partitioning the bipartite graph into a number of
clusters, we obtain several bi-modal words that reveal the joint audio–
visual patterns. With the bi-modal words, the audio and visual features in
the original BoW representations are re-quantized into a bi-modal BoW
representation. Finally, bi-modal codebooks of various sizes are com-
bined in a multiple kernel learning framework for event model learning

codebooks of different sizes and employ MKL to combine
their respective representations for event model learning. The
flowchart of our approach is illustrated in Fig. 2.

The main contributions of this paper are summarized as
follows:

– We propose the audio–visual bi-modal BoW represen-
tation, which effectively explores the underlying struc-
ture of the joint audio–visual feature space of complex
unconstrained videos. Our representation is very easy to
implement because only classical bipartite graph parti-
tion technique is used to generate the bi-modal words.
Compared with the original audio or visual BoW rep-
resentations, the joint bi-modal BoW not only outper-
forms simple early/late fusion, but also greatly reduces
the dimensionality of the final video representation.

– Other than fixing the number of codewords as most exist-
ing works on visual/audio word-based representations,
we propose generating bi-modal codewords at different
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Bi-modal words to detect video events 35

granularities (multiple codebooks of different sizes) and
adopt MKL [11,17,30] to incorporate multiple bi-modal
BoW representations for event detection, which further
improves the detection accuracy.

This paper is an extension of a previous conference
paper [33] with the new idea of using multiple kernel learn-
ing under multiple bi-modal codebooks and additional exper-
iments on one more dataset, and extra detailed discussions.
The rest of the paper is organized as follows. We first review
related works in Sect. 2. Section 3 discusses typical represen-
tations of audio and visual features. Section 4 introduces our
proposed audio–visual bi-modal BoW representation. Exten-
sive experimental evaluations on three popular datasets will
be given in Sect. 5. Finally, we conclude this work in Sect. 6.

2 Related works

Fusing complementary audio and visual information is
important in video content analysis, and has been attempted
in many prior works. For example, Jiang et al. [15] adopted
average late fusion, which uses the average prediction scores
of multiple independently trained classifiers. Differently, the
work in [4] averaged the kernel matrices obtained from audio
and visual features before classification, and is known as the
early fusion method. Different from these superficial fusion
methods, our bi-modal BoW representation characterizes the
joint patterns across the two modalities, which is able to
uncover their underlying relations rather than simple com-
bination.

There are also several interesting works on joint audio–
visual analysis, especially for object tracking and detection.
For instance, Beal et al. [5] developed a joint probability
model of audio and visual cues for object tracking. Cristani et
al. [8] tried to synchronize foreground objects and foreground
audio sounds in the task of object detection. One limitation
of these methods is that they only considered videos in a
fully controlled environment, which is much easier than the
unconstrained videos as handled in this work.

More recently, Jiang et al. [12] proposed Short-Time
Audio–Visual Atom as the joint audio–visual feature for
video concept classification. First, visual regions are tracked
within short-term video slices to generate so-called visual
atoms, and audio energy onsets are located to generate audio
atoms. Then the regional visual features extracted from the
visual atoms and the spectrogram features extracted from the
audio atoms are concatenated to form an audio–visual atom
feature representation. Finally, a discriminative joint audio–
visual codebook is constructed on the audio–visual atoms
using multiple instance learning, and finally the codebook-
based BoW features are generated for semantic concept
detection. As an extension of this work, in [13], the authors
further proposed audio–visual grouplets by exploring tempo-

ral audio–visual interactions, where an audio–visual grou-
plet is defined as a set of audio and visual codewords that
are grouped together based on their strong temporal corre-
lations in videos. Specifically, the authors conducted fore-
ground/background separation in both audio and visual chan-
nels, and then formed four types of audio–visual grouplets
by exploring the mixed-and-matched temporal audio–visual
correlations, which provide discriminative audio–visual pat-
terns for classifying semantic concepts. Despite the close
relatedness with our work, the above two methods require
performing object or region tracking, which is extremely
difficult and computationally expensive, particularly for the
unconstrained Internet videos. Several other works demon-
strated the success in utilizing audio and visual informa-
tion for recognition [16,28,31], but are restricted to videos
containing emotional music or talking faces. In this paper,
our method is proposed for more general situations and
avoids using expensive and unreliable region segmentation
and tracking.

Methodologically, our work uses bipartite graph parti-
tioning technique [9] to obtain the bi-modal codebooks.
Bipartite graph partitioning has been widely adopted in
many applications. For example, Liu et al. [21] used a
bipartite graph to model the co-occurrence of two related
views based on visual vocabularies, and graph partitioning
algorithm was applied to find visual word co-clusters. The
generated co-clusters not only transfer knowledge across
different views, but also allow cross-view action recogni-
tion. To model the co-occurrence relations between words
from different domains, Pan et al. [26] adopted a bipar-
tite graph and spectral clustering to discover cross-domain
word clusters. In this way, the clusters can reduce the gap
between different domains, and achieve good performance
in cross-domain sentiment classification. In contrast to these
applications which focus on cross-domain/view learning,
we propose using a bipartite graph to discover the corre-
lations between audio and visual words. Another algorithm
used in our approach is MKL [29,30], which has been fre-
quently adopted in many computer vision and multimedia
tasks.

3 Unimodal feature representations

Before introducing the bi-modal BoW representation, let
us briefly describe the popular unimodal BoW feature rep-
resentations, which are the basis of our approach. Typical
audio/visual BoW representation involves three steps: first,
a set of descriptors (visual/audio) are extracted from a video
corpus. Then the descriptors are used to generate visual/audio
codebooks using k-means clustering. Each cluster describes
a common pattern of the descriptors, and is usually referred
to as a codeword. With the codebook, feature pooling is per-
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36 I.-H. Jhuo et al.

formed which aggregates all the descriptors in each video1

to form a single fixed dimensional feature vector.
We describe the visual/audio descriptors applied in this

work as below:

– Static sparse SIFT appearance feature. The effective-
ness of SIFT descriptors [18] has been proved in numer-
ous object and scene recognition tasks. It is therefore
adopted to characterize the static visual information in
video frames. Following the work of [15], we adopt two
versions of sparse keypoint detector: Difference of Gaus-
sians [18] and Hessian Affine [24], to find local key-
points in the frames. Each descriptor for the keypoint is
described by a 128-dimensional SIFT vector. To reduce
the computational cost, we sample one frame every two
seconds. Finally, the SIFT features within a frame are fur-
ther quantized using a SIFT codebook and form a 5,000-
dimensional BoW histogram.

– Motion-based STIP Feature. Motion information is
always an important clue for video content recognition.
For this, we adopt the commonly used Spatial–Temporal
Interest Points (STIP) [20]. STIP extracts space–time local
volumes which have significant variations in both space
and time. We apply Laptev’s algorithm [19] to locate
the volumes and compute the corresponding descriptors.
Specifically, a local volume is described by the concate-
nation of histogram of gradients (HOG) and histogram of
optical flow (HOF). This leads to a 144-dimensional vector
for each volume, which is then quantized with a codebook
to produce a 5,000- dimensional BoW histogram.

– Acoustic MFCC feature. Besides the aforementioned
visual features, audio information provides another
important clue for video event detection [31]. To utilize
this, we adopt the popular mel-frequency cepstral coeffi-
cients (MFCC) [27] and compute a 60-dimensional MFCC
feature for every temporal window of 32 ms. The features
are densely computed with nearby windows having 50 %
overlap. Finally, the MFCC features are quantized into a
4,000-dimensional BoW histogram, in the same way as
we quantize the visual features.

With these unimodal features, for each video clip, we have
a 10,000-dimensional visual BoW representation by concate-
nating the BoW histograms generated from SIFT and STIP
(5,000 + 5,000), and a 4,000 dimensional audio BoW rep-
resentation. These are used to compute the bi-modal repre-
sentation as discussed in the next section.

1 Normally event detection is performed on video level, i.e., to detect
whether a video contains an event of interest. Therefore, we represent
each video by a feature vector.

4 Joint audio–visual bi-modal words

We now introduce the audio–visual bi-modal representation
in detail. We first introduce the construction of the bipartite
graph based on the audio BoW and the visual BoW represen-
tation, and the way of generating the bi-modal codewords.
Then we describe three pooling strategies which are used for
re-quantizing the original visual/audio BoW into the joint
audio–visual bi-modal BoW representation. At the end, we
discuss how to integrate the bi-modal BoW representations
generated at different granularities using MKL.

4.1 Audio–visual bipartite graph construction

Let D = {di }n
i=1 be a training collection with n videos.

Denote the audio BoW feature of video di as ha
i and its

visual BoW feature as hv
i , i.e., di = {ha

i , hv
i }, where ha

i
is 4,000-dimensional and hv

i is 10,000-dimensional. These
features are �1 normalized such that the sum of its entries
equals to 1. In addition, we use Wa = {wa

1 , . . . , wa
ma

} and
Wv = {wv

1, . . . , wv
mv

} to denote the sets of audio and visual
words respectively, where wa

i ∈ Wa represents an audio
word and wv

i ∈ Wv indicates a visual word, and ma and mv

denote the number of audio and visual words, respectively.
The total number of audio and visual words is m = ma +mv.

We further define an undirected graph G = (V, E)

between the audio and visual words, where V and E denote
the set of vertices and the set of edges, respectively. Let V
be a finite set of vertices V = V a ⋃

V v, where each vertex
in V a corresponds to an audio word in Wa and each vertex
in V v corresponds to a visual word in Wv. An edge in E
connects two vertices in V a and V v, and there is no intra-
set edge connecting two vertices in V a or V v respectively.
This graph G = (V, E), where V = V a ⋃

V v, is commonly
called a bipartite graph. To measure the correlation between
an audio word wa

k ∈ Wa and a visual word wv
l ∈ Wv, we

assign a non-negative weight skl to any edge ekl ∈ E , which
is defined as follows,

skl =
∑n

i=1 ha
i (k)hv

i (l)∑n
i=1 ha

i (k)
∑n

i=1 hv
i (l)

, (1)

where ha
i (k) denotes the entry of ha

i corresponding to the kth
audio word wa

k and hv
i (l) denotes the entry of hv

i correspond-
ing to the lth visual word wv

l .
In Eq. (1), the numerator measures the summation of the

joint probability of the audio word wa
k and the visual word

wv
l , where the summation is calculated over the entire video

collection. This value essentially reveals the correlation of
the audio and visual words. On the other hand, the denomi-
nator acts as a normalization term, which penalizes the audio
and/or visual words that frequently appear in the video col-
lection. It is also worth noting that the choice of the correla-
tion measure in Eq. (1) is flexible. We can also estimate the
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Bi-modal words to detect video events 37

Fig. 3 An illustration of the bipartite graph constructed between audio
and visual words, where the upper vertices denote the audio words and
the lower vertices denote the visual words. Each edge connects one
audio word and one visual word, which is weighted by the correlation
measure calculated based on Eq. (1). In this figure, the thickness of the
edge reflects the value of the weight

weight skl by applying other methods like pointwise mutual
information (PMI) [21]. Figure 3 gives a conceptual illustra-
tion of a bipartite graph constructed from the joint statistics
of the audio and visual words.

4.2 Discovering bi-modal words

We adopt standard bipartite graph partitioning method to dis-
cover the audio–visual bi-modal words. Following [9], we
begin with a bipartitioning method over the bipartite graph
and then extend it into the multipartitioning scenario.

Recall that we have a bipartite graph G = (V, E) between
the audio and visual words. Given a partitioning of the vertex
set V into two subsets V1 and V2, the cut between them can
be defined as the sum of all edge weights connecting the
vertices from the two subsets,

cut(V1, V2) =
∑

k∈V1,l∈V2

skl . (2)

The bipartite partition problem over the bipartite graph is
to find the vertex subsets V ∗

1 and V ∗
2 such that cut(V ∗

1 , V ∗
2 ) =

minV1,V2 cut(V1, V2). To this end, we define the Laplacian
matrix L ∈ R

m×m associated with the bipartite graph G as,

Lkl =
⎧
⎨

⎩

∑
l skl , k = l,

−skl , k �= l and ekl ∈ E,

0, otherwise.
(3)

Given a bipartitioning of V into V1 and V2, we further
define a partition vector p ∈ R

m that characterizes this divi-
sion, in which the ith entry describes the partitioning state of
i ∈ V ,

pi =
{+1, i ∈ V1,

−1, i ∈ V2.
(4)

With the above definitions, it can be proved that the graph
cut can be equally written in the following form,

cut(V1, V2) = 1

4
p�Lp = 1

4

∑

(i, j)∈E

si j (pi − p j )
2. (5)

However, it can be easily seen from Eq. (5) that the cut is
minimized by a trivial solution when all pi ’s are either +1 or
−1. To avoid this problem, a new objective function is used to
achieve not only minimized cut, but also a balanced partition.
Formally, the objective function is defined as follows,

Q(V1, V2) = cut(V1, V2)

weight(V1)
+ cut(V1, V2)

weight(V2)
, (6)

where weight(Vi ) = ∑
k,l∈Vi

skl , i = 1, 2. Then it can
be proved that the eigenvector corresponding to the second
smallest eigenvalue of the generalized eigenvalue problem
Lz = λDz (where D is a diagonal matrix with D(k, k) =
∑

l skl ) provides a real relaxed solution of the discrete opti-
mization problem in Eq. (6) [22]. To obtain the eigenvector
corresponding to the second smallest eigenvalue, [9] pro-
poses a computationally efficient solution through singular
value decomposition (SVD). Specifically, for the given bipar-
tite graph G, we have

L =
(

D1 −S

−S� D2

)

, and D =
(

D1 0

0 D2

)

, (7)

where S = [skl ], D1 and D2 are diagonal matrices such that
D1(k, k) = ∑

l skl and D2(l, l) = ∑
k skl . Let the normal-

ized matrix Ŝ = D−1/2
1 SD−1/2

2 , it can be proved that the
eigenvector corresponding to the second smallest eigenvalue
of L can be expressed in terms of the left and right singular
vectors corresponding to the second largest singular value of
Ŝ as follows,

z2 =
[

D−1/2
1 u2

D−1/2
2 v2

]

, (8)

where z2 is the eigenvector corresponding to the second
smallest eigenvalue of L, u2 and v2 are the left and right
singular vectors corresponding to the second largest singular
value of Ŝ.

Finally, we need to use z2 to find the approximated opti-
mal bipartitioning by assigning each z2(i) to the clusters
C j ( j = 1, 2) such that the following sum-of-squares cri-
terion is minimized,

2∑

j=1

∑

z2(i)∈C j

(z2(i) − m j )
2, (9)

where m j is the cluster center of C j ( j = 1, 2).

The above objective function can be practically minimized
by directly applying the k-means clustering method on the
1-dimensional entries of z2. The bipartitioning method can be
easily extended to a general case of finding K audio–visual
clusters [9]. Suppose we have l = �log2 K � singular vectors
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u2, u3, . . . , ul+1, and v2, v3, . . . , vl+1, then we can form the
following matrix with l columns,

Z =
[

D−1/2
1 U

D−1/2
2 V

]

, (10)

where U = [u2, . . . , ul+1] and V = [v2, . . . , vl+1]. Based
on the obtained matrix Z, we further run k-means method on
it to obtain K clusters of audio–visual words, which can be
represented as follows,

B = {B1, . . . , BK }, (11)

where each Bi consists of the audio word subset Wa
i and the

visual word subset Wv
i falling in the same bi-modal cluster.

Note that either Wa
i or Wv

i can be empty, indicating that only
one modality forms a consistent pattern within the bi-modal
word Bi (e.g., visual words corresponding to the background
scene).

The above graph partition method needs to compute eigen-
vectors of the Laplacian matrix, and thus has a computational
complexity of O(m3) in general, where m is the total num-
ber of audio and visual words. We implement the method
using Matlab with a Six-Core Intel Xeon Processor X5660
(2.8 GHz) and 32 GB memory. It takes 32 min to group
14,000 audio and visual words into 2,000 bi-modal words in
the experiment on the CCV dataset (cf. Sect. 5.1).

4.3 Bi-modal BoW generation

After generating the bi-modal codewords, we need to map
the original visual and audio descriptors to the new code-
book. The main purpose here is to fuse the original two
visual and audio representations into one joint representa-
tion, which will be used for event classification. For this, we
adopt three different quantization strategies. Given a video
di = (ha

i , hv
i ), the audio–visual bi-modal BoW representa-

tions generated by average pooling, max pooling and hybrid
pooling are described as follows.

4.3.1 Average pooling

Average pooling treats the audio and visual words as equally
important. Formally, the bi-modal BoW generation strategy
is described as follows,

havg
i (k) =

∑
wa

p∈Wa
k ,wv

q∈Wv
k
(ha

i (p) + hv
i (q))

|Wa
k | + |Wv

k | , (12)

where wa
p means the pth audio word, wv

q represents the qth

visual word, and havg
i (k) denotes the entry in the bi-modal

BoW havg corresponding to a given audio–visual bi-modal
word Bk = (Wa

k ,Wv
k ). |Wa

k | and |Wv
k | denote the cardinali-

ties of Wa
k and Wv

k respectively. As we can see in Eq. (12),
the measure of the entry in the bi-modal representation is the

average value of the entries of the audio and visual words
in the original BoW representations. We call such bi-modal
BoW generation strategy average pooling due to its related-
ness w.r.t the pooling strategy in sparse coding [6].

4.3.2 Max pooling

Max pooling selects the maximum summation in the original
audio or visual words as the quantization value of the given
audio–visual bi-modal word, which is formally defined as
follows,

hmax
i (k) = max

⎛

⎝
∑

wa
p∈Wa

k

ha
i (p),

∑

wv
q∈Wv

k

hv
i (q)

⎞

⎠ . (13)

4.3.3 Hybrid pooling

We also propose a hybrid pooling strategy which integrates
average pooling and max pooling together. Intuitively, the
visual features from the visual scene in the video tend to per-
sist over a certain interval when the camera does not move
too fast. Therefore, we use average pooling to aggregate
information in the interval. Max pooling is employed for the
audio information since audio features tend to be transient in
time. Formally, the hybrid pooling strategy can be defined as
follows,

hhyb
i (k) = 1

2

(

max
wa

p∈Wa
k

ha
i (p) +

∑
wv

q∈Wv
k

hv
i (q)

|Wv
k |

)

, (14)

where the average pooling aggregates the two entries of the
audio and visual words obtained from max and average pool-
ing, respectively.

Algorithm 1 gives the detailed flow of the generation pro-
cedure of the bi-modal BoW representation.

Algorithm 1 Audio–visual bi-modal BoW representation
generation procedure
1: Input: Training video collection D = {di } where each di is repre-

sented as a multi-modality representation d = {ha
i , hv

i }; Size of the
audio–visual bi-modal codebook K .

2: Create the correlation matrix S between the audio and visual words
by calculating the co-occurrence probability over D by Eq. (1).

3: Calculate matrix D1, D2 and Ŝ respectively.
4: Apply SVD on Ŝ and select l = �log2 K � of its left and right singular

vectors U = [u2, . . . , ul+1] and V = [v2, . . . , vl+1].
5: Calculate Z = (D−1/2

1 U, D−1/2
2 V)�.

6: Apply k-means clustering algorithm on Z to obtain K clusters, which
form the audio–visual words B = {B1, . . . , BK }.

7: Apply a suitable pooling strategy to re-quantize each video into the
audio–visual bi-modal BoW representation.

8: Output: Audio–visual BoW representation.
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Bi-modal words to detect video events 39

4.4 Combining multiple joint bi-modal representations

As it is true for any BoW-based representations, it is
extremely difficult (if not impossible) to identify the suitable
number of codewords. Existing works mostly set a fixed num-
ber (a few thousands), which have been empirically observed
to work well in practice. Since our bi-modal words are gen-
erated on top of the audio and visual words, the problem
becomes more complicated since there is not (even empiri-
cal) evidence of a suitable word number of the joint code-
book. Using a small bi-modal codebook will result in ambigu-
ous audio–visual patterns within a bi-modal word. On the
other hand, the joint audio–visual patterns may be separated
immensely if the codebook size is too large.

To alleviate the effect of codebook size, in this paper,
we propose to generate the bi-modal BoW representation
at different granularities, i.e., with different codebook sizes.
Representations are then combined through the well-known
MKL framework. Specifically, suppose we have the joint bi-
modal BoW representations generated from T bipartite graph
partitioning with different resolutions (i.e., cluster number),
and denote the kernel matrix corresponding to the histogram
generated at the t th resolution as Kt (h, h′). MKL seeks an
optimal combination K (h, h′) = ∑T

t=1 dt Kt (h, h′) with the
constraints dt ≥ 0, ∀t and

∑T
t=1 dt = 1. By using this

K (h, h′) for event classification, the performance can be
usually boosted as compared to that using a single kernel.
Lots of MKL frameworks [11,17,30] have been proposed
and demonstrated for visual classification. In this paper, we
adopt the widely used simpleMKL framework [29] because
of its sound performance and efficiency. In this MKL frame-
work, for each kernel Kt , it is being associated with a Repro-
ducing Kernel Hilbert Space (RKHS) Ht , and the decision
function is in the form f (h) + b = ∑

t ft (h) + b where
each ft is associated with Ht . The objective of simpleMKL
is given as follows:

min
ft ,b,ξ,d

1

2

∑

t

1

d
‖ ft‖2

Ht
+ C

∑

i

ξi

s.t. yi

∑

i

ft (xi ) + yi b ≥ 1 − ξi , ∀i

ξi ≥ 0, ∀i (15)
∑

t

dt = 1, dt >= 0, ∀t,

To solve the above objective, we use the simple MKL
solver [29].

5 Experiments

In this section, we evaluate our proposed audio–visual
bi-modal representation for video event detection using three

datasets: TRECVID Multimedia Event Detection (MED)
2011 dataset, a large dataset that consists of both TRECVID
MED 2010 and TRECVID MED 2011, and the recently
released Columbia Consumer Video (CCV) dataset.

5.1 Datasets

TRECVID MED 2011 dataset. TRECVID MED [3] is a
challenging task for the detection of complicated high-level
events in unconstrained Internet videos. Our first dataset is
the MED 2011 development set, which includes five events
“Attempting a board trick”, “Feeding an animal”, “Landing a
fish”, “Wedding ceremony”, and “Working on a woodwork-
ing project”. This dataset consists of 10,804 videos from
17,566 minutes of web videos, which is partitioned into a
training set (8,783 videos) and a test set (2,021 videos). The
training set contains about 100 positive videos for each event
(most videos in the training set are background videos which
do not contain any of the five events). Within each class,
there exist complicated content variations, making the task
extremely challenging.

TRECVID MED 2010+2011 dataset. We also consider the
earlier MED 2010 dataset [2]. Since the MED 2010 dataset
is too small (less than 2,000 videos), we combine TRECVID
MED 2010 with MED 2011 [2,3] together to form a larger
and more challenging event detection dataset. MED 2010
has three events “Assembling a shelter”, “Batting a run in”,
and “Making a cake”, each having 50 positive videos for
training and 50 for testing. This combined dataset consists
of 14,272 videos falling into 8 event categories, which is
partitioned into a training set (10,527 videos) and a test set
(3,745 videos). Note that the combination also gives another
opportunity to re-examine the performance of the five MED
2011 events when more background videos are added (i.e.,
the MED 2010 videos).

CCV dataset. CCV dataset [14] contains 9, 317 YouTube
videos annotated over 20 semantic categories, where 4,659
videos are used for training and the remaining 4,658 videos
are used for testing. Most of the 20 categories are events, with
a few categories belonging to objects or scenes. To facilitate
benchmark comparison, we report performance of all the 20
categories.

5.2 Experimental setup

As discussed earlier, we adopt the SIFT BoW (5,000 dimen-
sions) and STIP BoW (5,000 dimensions) representations
as the visual features while using the MFCC BoW (4,000
dimensions) as the audio representation. One-vs-all SVM is
used to train a classifier for each evaluated event. To get
the optimal SVM trade-off parameter for each method, we
partition the training set into 10 subsets and then perform
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Fig. 4 Effect of bi-modal codebook size and pooling strategies on the three datasets. a TRECVID MED 2011, b TRECVID MED 2010+2011,
c CCV Dataset

10-fold cross validation. Moreover, we adopt the χ2 ker-
nel due to its outstanding performances in many BoW-based

applications, which is calculated as k(x, y)=exp(− d
χ2(x,y)

σ
),

where σ follows the previous work [33], dχ2(x,y) is defined

as dχ2(x,y) = ∑
i=1

(x(i)−y(i))2

x(i)+y(i) , and σ is by default set as the
mean value of all pairwise distances in the training set.

For performance evaluation, we follow previous works
[14,25] and use average precision (AP), which approximates
the area under a precision–recall curve. We calculate AP
for each event and then use mean average precision (MAP)
across all the event categories in each dataset as the final
evaluation metric.

In the following experiments, we will systematically eval-
uate the performances of the following methods:

1. Single feature (SF). We only report the best performance
achieved by one of the three audio/visual features.

2. Early fusion (EF). We concatenate the three kinds of BoW
features into a long vector with 14,000 dimensions.

3. Late fusion (LF). We use each feature to train an indepen-
dent classifier and then average the output scores of the

three classifiers as the final fusion score for event detec-
tion.

4. Average pooling based bi-modal BoW (BMBoW-AP),
where the average pooling is employed to generate the
bi-modal BoW.

5. Max pooling based bi-modal BoW (BMBoW-MP), where
we use max pooling to generate the bi-modal BoW.

6. Hybrid pooling based bi-modal BoW (BMBoW-HP),
which applies the hybrid pooling to generate the bi-modal
BoW.

7. MKL based bi-modal BoW (BMBoW-MKL), which uses
MKL to combine multiple bi-modal BoW representa-
tions. We used all the codebook sizes as experimented
in Fig. 4.

5.3 The effect of codebook size and pooling strategies

We first experimentally evaluate the performance of dif-
ferent codebook sizes and pooling strategies. Since the
sizes of audio and visual modalities are 4,000 and 10,000,
we expect each bipartite partitioning can provide a high
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Fig. 5 The density of audio and visual words in the bi-modal words. a TRECVID MED 2011, b TRECVID MED 2010+2011, c CCV dataset

correlation between audio and visual modalities. Therefore,
we increase the size of the bi-modal codebook from 2,000
to 12,000 and discuss the MAP performances with different
pooling strategies in Fig. 4. We can see that average pooling
tends to show better stability than max pooling and hybrid
pooling when the codebook size varies, which demonstrates
that average pooling is more suitable for the bi-modal BoW
quantization. This may be due to the fact that average pool-
ing captures the joint audio–visual patterns while hybrid/max
pooling incurs significant information loss caused by con-
sidering only the max response of audio/visual information.
For codebook size, 4,000 seems to be a good number for the
MED datasets, but for CCV, large codebooks with 6,000–
10,000 bi-modal words seem to be more effective. Note that
for such a large bi-modal codebook, there are codewords
containing only word from the audio or visual channel. It
makes sense to have such words because, while we would
like to discover the correlations between the two modali-
ties, not all the words are correlated. Therefore it is good to
leave some audio/visual words independent in the bi-modal

representation. This inconsistent observation also confirms
the usefulness of aggregating multiple bi-modal codebooks,
which will be evaluated later.

We also show the density of audio and visual words within
each bi-modal word in Fig. 5. Here, each grid in the map
denotes the frequency of bi-modal words made up of a cer-
tain numbers of audio word (vertical coordinate) and visual
word (horizontal coordinate). It estimates the portion of the
words in the entire bi-modal codebook that contain both
visual and audio information, which is found to be about
47 % for the TRECVID MED 2011 dataset, 39 % on the
combined TRECVID MED 2010 and 2011 dataset, and 36 %
for the CCV dataset. This confirms the significant effect of
the audio–visual correlations in the joint bi-modal represen-
tation. Therefore, The bi-modal word is also an important
component of a large event detection system that achieved the
best performance [25] in TRECVID MED 2011. We observe
that a large number of bi-modal words contain more visual
words than audio words, or the opposite of having more audio
words than visual words (i.e., the bins close to x or y axis
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Fig. 6 Per-event performance
on TRECVID MED 2011
dataset. This figure is best
viewed in color
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in Fig. 5). This may be due to the fact that some large visual
or audio patterns are only correlated to a small clue in the
other modality. For instance, a birthday scene with many
visual characteristics may be only highly correlated to cheer-
ing sounds.

5.4 Performance comparison on TRECVID MED 2011
dataset

Let us now evaluate the seven methods listed in Sect. 5.2.
Figure 6 shows results on the MED 2011 dataset. We fix
the size of the bi-modal codebook to be 4,000 except for
the BMBoW-MKL method, which combines multiple code-
book sizes as listed in Fig. 4. Also, we adopt average pooling
in BMBoW-MKL, since—as will be shown—it outperforms
max pooling and hybrid pooling. Based on the results, we
have the following findings:

1. Our proposed bi-modal word representation outperforms
all the other baseline methods in terms of MAP, which
proves the effectiveness of this approach. In particular, it
outperforms the most popularly used early fusion and late
fusion methods by a large margin. This is due to the fact
that the bi-modal words not only capture the correlation
between audio and visual information but also aggregate
their mutual dependence.

2. As an important but quite obvious conclusion, the
bi-modal word representation performs significantly bet-
ter than all the single features, which verifies the merits
of considering multi-modality in the task of video event
detection.

Start
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/k
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0 90
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Fig. 7 An example of audio–visual correlations in the event “Landing
a fish” from the TRECVID MED 2011 dataset. We see that there are
clear audio patterns correlating with the beginning and the end (fish
successfully landed) of the event

3. As indicated in the introduction of this paper, visual
and audio information of the same event category often
present consistent joint patterns. This not only holds for
events with intuitive audio–visual correlations like “Bat-
ting a run in”, but is also true for events that contain
fewer audio clues. Fig. 7 gives an example. In the event
“Landing a fish”, although the soundtrack is mostly quite
silent, in the beginning and after the fish is successfully
landed, there are some clear audio patterns. Our method
is able to capture such local correlations, which is the
main reason that it performs better than the simple fusion
strategies.
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Fig. 8 Per-event performance
comparison on TRECVID MED
2010+2011 dataset, which
includes eight events. This
figure is best viewed in color
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4. BMBoW-AP tends to give better results that BMBoW-
MP, which may be due to the fact that the former captures
the joint audio–visual patterns while the latter incurs sig-
nificant information loss caused by selecting only the max
contribution between two modalities.

5. BMBoW-HP outperforms BMBoW-MP, as it utilizes per-
haps the more suitable pooling strategies for different
modalities (i.e., max pooling for the transient audio sig-
nal and average pooling for the persistent visual sig-
nal). For some events, BMBoW-HP even achieves better
results than BMBoW-AP, indicating that selecting maxi-
mum response of audio signal may help reveal the seman-
tic clue of the videos. However, in general BMBoW-AP
is the best among the three pooling strategies.

6. BMBoW-MKL shows better results than all the methods
based on a single bi-modal codebook, confirming the fact
that using multiple codebooks is helpful.

5.5 Performance comparison on TRECVID MED
2010+2011 dataset

Figure 8 shows the per-event performance for all the meth-
ods on this combined dataset. From the results, we can see
that the MKL-based bi-modal representation, i.e., BMBoW-
MKL, achieves the best performance. Specifically, it out-
performs the BMBoW-AP, BMBoW-MP, and BMBoW-HP
by 0.96, 5.53, and 1.96 % respectively in terms of MAP.
Among the three pooling methods, average pooling offers
the best result. In addition, comparing results of the five
2011 events on this combined dataset with that on MED

2011, we also observe that the performances of early and
late fusion are not as stable as that of the bi-modal represen-
tations when more background videos are added. For exam-
ple, late fusion performs quite badly for “Attempting board
trick” event on MED 2011, but is very good on the combined
dataset.

5.6 Performance discussion on CCV dataset

Figure 9 further shows the per-category performance com-
parison on the CCV dataset, where the bi-modal codebook
size is set as 6,000, except the BMBoW-MKL method.
Again, the results show that the BMBoW-MKL achieves
the best performance in terms of MAP. It outperforms the
BMBoW-AP, BMBoW-MP and BMBoW-HP by 1.16, 2.26
and 7.36 % respectively. Moreover, BMBoW-MKL also
achieves the best performance on most of the event cate-
gories. For instance, on event “graduation”, it outperforms
the best baseline method SF by 15.05 %. Besides, compared
with the best baseline EF, our method achieves the highest
relative performance gain on category “birds ” and “Wed-
ding ceremony”. This may be because these two categories
contain more significant audio–visual correlations than the
other categories. For example, the appearance of birds is
often accompanied with the singing sound. Meanwhile, peo-
ple’s actions in a wedding ceremony are always accompanied
by background music. In general, we expect high impact of
the proposed bi-modal features on other events that share
strong audio–visual correlations like the ones mentioned
above.
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Fig. 9 Per-category performance comparison on CCV dataset. This figure is best viewed in color

5.7 Statistical significance testing

We also measure the statistical significance between the best
baseline and BMBoW-MKL on the three datasets. We use
a popular measure for statistical significance testing, the p
value, which is the probability of obtaining a test statistic
at least as extreme as the one that was observed, assuming
that the null hypothesis is true [1]. We can reject the null
hypothesis when the p value is less than the significance
level, which is often set as 0.05. When the null hypothe-
sis is rejected, the result is said to be statistically signifi-
cant. To get the p value, we sample 50 % of the test set
from each dataset and repeat the experiment 1,000 times.
For each round, we compute the paired MAP differences
Di = MAPBMBoW−MKL(i) − MAPBaseline(i), where i =
1, 2, . . . , 1, 000. Then we make the assumption that the null
hypothesis is Di < 0, i = 1, 2, . . . , 1, 000, based on which,
the p value can be defined as the percentage of Di that is
below 0. We find that the p values obtained on the MED 2011,
MED 2010+2011, and CCV datasets are 0.015, 0.018 and
0.022 respectively, which are well below 0.05 and show that
the null hypothesis can be rejected. Therefore, we can con-
clude that our method has achieved statistically significant
improvements over the best baseline on the three datasets.

6 Conclusion

In this paper, we have introduced a bi-modal representation
to better explore the power of audio–visual features in video
event detection. The proposed method uses a bipartite graph
to model the relationship between visual and audio words

and partitions the graph to generate audio–visual bi-modal
words. Several popular pooling methods are evaluated to gen-
erate the BoW representation using the bi-modal words, and
average pooling is found to be the best performer. Exten-
sive experiments on three datasets consistently show that
the proposed bi-modal representation significantly outper-
forms early and late fusion, which are currently the most
widely used multimodal fusion methods. In addition, since
there is no single codebook size that is suitable in all cases,
we propose using multiple bi-modal codebooks and MKL to
combine BoW representations based on different codebooks.
Results show that using MKL and multiple bi-modal code-
books is always helpful. With these findings we conclude that
many state-of-the-art video event detection systems may have
overlooked the importance of joint audio–visual modeling.
We would also like to underline that—while some promising
results from bi-modal words’ perspective have been shown in
this paper—advanced joint audio–visual representations are
still a topic that deserves more in-depth studies in the future.
It is also interesting and important to construct a larger dataset
for evaluating these new representations.
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