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Abstract Human Interaction Recognition (HIR) in uncon-
trolled TV video material is a very challenging problem
because of the huge intra-class variability of the classes (due
to large differences in the way actions are performed, lighting
conditions and camera viewpoints, amongst others) as well
as the existing small inter-class variability (e.g., the visual
difference between hug and kiss is very subtle). Most of
previous works have been focused only on visual informa-
tion (i.e., image signal), thus missing an important source
of information present in human interactions: the audio. So
far, such approaches have not shown to be discriminative
enough. This work proposes the use of Audio-Visual Bag of
Words (AVBOW) as a more powerful mechanism to approach
the HIR problem than the traditional Visual Bag of Words
(VBOW). We show in this paper that the combined use of
video and audio information yields to better classification
results than video alone. Our approach has been validated
in the challenging TVHID dataset showing that the proposed
AVBOW provides statistically significant improvements over
the VBOW employed in the related literature.
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1 Introduction

Given a video clip where there are people interacting between
them, the goal of this work is to automatically assign a sin-
gle category label—from a set of predefined ones—to such
human interaction. We address this problem by considering
human interactions as an audio-visual event, i.e., sequence
of image frames plus sound (see Fig. 1).

In Fig. 2 we can see four scenes of people interact-
ing. In such scenes, there are two people very close with
the arms holding the other person. Two of such scenes—
extracted from TV Human Interactions Dataset (TVHID)
[20]—have the label kiss and the other ones the label hug.
In spite of the fact that, nowadays, recorded video clips con-
tain not only image but also sound, the current approaches
for distinguishing such kind of human interactions only
make use of the video pixels, discarding the rich informa-
tion encoded in the audio signal. The previously presented
cases can be clearly ambiguous for a computer if we only
take into account the visual information. However, if we
focus on the audio signals represented in Fig. 3, we notice
that kiss and hug have different audio patterns. Further-
more, many human interactions have associated very well
defined audio-visual patterns—words as hi, hello, nice or
meet are very common during a hand-shake—introducing a
very clear discrimination with other interactions. Therefore,
in this paper we introduce a new approach to deal with the
categorization of human interactions by using audio-visual
information.

Our contribution is twofold: (1) we introduce the use of the
audio signal in the challenging problem of human interaction
categorization; and (2) we carry out a thorough experimental
study on TVHID where it is shown that the combination of
visual and audio information offers better results than only
using the visual one—as done up to this moment.
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Fig. 1 Proposed pipeline for human interaction categorization in TV shows. Audio and visual information combined in an unified framework in
order to distinguish a human interaction

Fig. 2 Kiss or hug? Sometimes visual information on its own is not enough to automatically distinguish between human interactions. In this figure,
a and c correspond to hug, whereas b and d correspond to kiss (see Fig. 3 for a graphical representation of their associated audio signal)
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Fig. 3 Audio signals for scenes in Fig. 2. Note the representative peaks in the audio signal for the kiss interaction examples. Such kind of peaks
are not present, for example, in a hug interaction

The rest of the paper is organized as follows. Section 1.1
explains some of the more relevant works related to ours.
In Sect. 2, we introduce the audio-visual model used in our
proposal, which is based on the successful Bag of Words
model. The experiments and results are presented in Sect. 3.
The paper is concluded in Sect. 4.

1.1 Related works

In recent years, an increasing number of research papers have
been published in the context of Human Action Recogni-
tion (HAR) in videos. For example, [30] compiled published
works within a period of 20 years devoted to human actions
and activities. In the early years the proposed approaches
were tested on artificially generated datasets [7,25,37],
where a single person performed a target action (e.g., walk,
jump, hand-wave,...) in controlled scenarios. Soon, realistic
datasets were compiled from Hollywood movies [11,12,18],
where one or more persons perform a named action in an

uncontrolled, and usually cluttered, scenario. A particular
case of human actions is human interactions. We can distin-
guish between the interactions performed by a person with
an object—as smoking a cigarette [12] or playing a musi-
cal instrument [6,39]—or between two or more persons, as
hand-shaking or hugging [20,24].

Human Interaction Recognition (HIR) in video sequences
[17,20,23,24] is a very difficult problem due to several rea-
sons: (a) action performance and camera viewpoint—the dif-
ferent velocities and manners of performing the interaction
by the persons in combination with diverse camera view-
points; (b) imaging conditions—the ever-present difficulties
found when working with images from real scenarios (i.e.,
uncontrolled imaging conditions); (c) non-stationary noise—
cluttered and different backgrounds, partial occlusions or
diverse person clothing; and (d) relative volume occupied by
the interaction—only a very small region of the pixels along
with a short number of video frames are related to the event of
interest (e.g., the involved hands in hand-shaking). The latter
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Human interaction categorization by using audio-visual cues 73

reason is the one that mostly differentiates realistic human
interactions in video with regard to still images or simulated
human actions (e.g., jumping in Weizmann dataset [7] is very
repetitive). In comparison with the task of object/concept cat-
egorization on still images, where the area of interest is a large
percentage of the image, the HIR problem is clearly much
more challenging. Also if we compare with the HAR prob-
lem, we see HIR more challenging not only due to higher
complexity, but also due to the difficulty of getting large
training databases from real scenes. Up to our knowledge, the
only existing dataset devoted to human interactions in real-
istic situations is TV Human Interactions Dataset (TVHID),
introduced by Patron-Perez et al. [20]. In [20], the problem
of HIR on this dataset is addressed by first detecting and
tracking people and, then, by combining head pose estima-
tors with visual local context descriptors [i.e., Histogram of
Oriented Gradients (HOG) and Histogram of Optical Flow
(HOF) features].

There are papers where the problem of semantic video
retrieval is addressed by using only audio features; for exam-
ple, Bakker and Lew [1] combine local and global audio
features to classify sound samples from video into several
classes as, for example, speech, music, automobile or explo-
sion. Tzanetakis and Chen [31] build audio classifiers to dis-
tinguish between male voice, female voice, noise, music and
silence from videos. Bredin et al. [2] approach the problem
of content-based video retrieval by combining multiple audio
classifiers in a HMM-based framework.

In McCowan et al. [19], it is shown how the use of audio-
visual events can improve the recognition of group actions in
meetings within controlled scenarios. However, we approach
the uncontrolled case in this paper. On the other hand, in
recent years concepts (e.g., news, commercials, sports,...)
are assigned to videos by using the combination of visual,
audio and even textual information [28]. For example, in
[8,14,21], image (e.g., SIFT, HOG, Gist) and audio (e.g.,
MFCC, WASF) descriptors are combined by using differ-
ent approaches for the task of multimedia event detection.
Amitha et al. [21] propose and evaluate two types of fusion:
(a) training high-level classifiers on the output of previously
trained feature-specific classifiers; and (b) learning a linear
combination of low-level classifiers. In order to represent
multimedia events, Inoue et al. [8] use Gaussian Mixture
Models and Support Vector Machines (SVM) to combine
audio and visual features. Sidiropoulos et al. [26] introduce
the usage of audio in the problem of video scene segmenta-
tion. Recently, in Jiang et al. [9] a new challenge for multi-
media video classification is proposed. However, the focus
is not on human interaction but on event classes. In addition,
and as mentioned above, in our case only a short and small
part of the signal helps to classify the whole video sequence.
Despite these related works, audio has not been exploited by
HIR yet, which is one of the main novelties of this paper.

2 Representation model

Inspired in the models used by the document retrieval com-
munity, Sivic and Zisserman [27] proposed an analogy
between the textual words and the visual words (i.e., image
region descriptors) with the idea of representing an image
(i.e., the document) as an orderless collection of visual words:
a Bag of Words (BOW).

In its simplest way, a BOW is equivalent to a histogram
h with K bins (i.e., as much as words in the dictionary D),
where each bin represents how many times a visual word is
present in the target image. In general, the histogram is L1
normalized.

The operation of assigning a word to a bin histogram,
implies the process of finding the word D( j) that makes min-
imum the distance between the current word and all the words
included in the dictionary. Euclidean distance is a common
choice to carry out the word assignment.

Although this representation was originally used on
images, it was generalized in the recent years to describe
video sequences [11]. Figure 4 shows the classical pipeline
used to learn representations of human actions: (1) com-
pute Spatio-Temporal Interest Points (STIP) on input video;
(2) compute descriptors from STIP (e.g., HOG/HOF); (3)
learn a dictionary of visual words from the set of STIP
extracted from the training videos; (4) describe the videos
by using the STIP descriptors and the previously learnt
dictionary; and (5) train a discriminative classifier (e.g.,
SVM).

For a given video sequence, we build different BOWs
depending on the kind of words used: visual or audio descrip-
tors.

We use the popular K -means algorithm [15] to build a
dictionary D. The goal of K -means clustering is to find a
partition of the descriptor space in K regions. Each region
will be represented by the mean vector of its components. We
have chosen the implementation of this algorithm included
in VLFeat library [33].

The resulting audio-visual video descriptor will be used
as input for a classifier. In our case, we have chosen a Support
Vector Machine (SVM) with χ2 kernel, which has shown to
be very effective when working with histogram-based repre-
sentations [34].

2.1 Visual features

Spatio-Temporal Interest Points (STIP) were first introduced
by [10] and applied to the problem of recognizing individual
human actions (e.g., walk) in video. They propose a Harris3D
operator to detect salient points in the space–time volume. In
addition to the (x, y, t) coordinates, each STIP has associated
a spatial and a temporal scale (σs, σt ) that delimit the video
volume where the event of interest happens. An effective
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Fig. 4 Classical pipeline for learning with BOW: (i) compute STIP on input video; (ii) compute descriptors from STIP; (iii) learn a dictionary of
visual words; (iv) describe video by using STIP descriptors and learnt dictionary; and, (v) train a discriminative classifier

alternative to Harris3D operator is a simple dense sampling.
It consists of extracting video blocks at regular locations
and scales in space and time, usually, with overlapping. In
several problems, this approach has shown state-of-the-art
results [36].

The most popular volume descriptors [11] for STIP are
Histograms of Oriented Gradients [3] (HOG) and Histograms
of Optical Flow [4] (HOF). HOG encodes local appearance,
whereas HOF encodes local motion.

In order to compute a HOG descriptor, the image vol-
ume is divided into a nx × ny × nt dense grid of cells, where
each cell will contain a local histogram over orientation bins.
Then, at each pixel, the image gradient vector is computed.
Each pixel votes into the corresponding orientation bin with
a vote weighted by the gradient magnitude. The votes are
accumulated over the pixels of each cell. Afterwards, in order
to provide illumination invariance, a normalization stage is
performed over each block (group of cells). The normalized
histograms of all of the blocks are concatenated to build the
final HOG descriptor. A similar procedure is used for com-
puting HOF descriptor, but replacing image gradient (spatial)
by optical flow.

For our experiments, four orientation bins will be used for
HOG and five for HOF.

2.2 Audio features

In order to use the audio signal in the BOW framework, first
we split the audio signal into overlapping frames of t seconds
(i.e., t = 0.05). An example over an audio signal extracted
from a kiss example is represented in Fig. 5. Then, we com-
pute on each audio frame a set of descriptors.

The simplest descriptor is the raw signal per se (i.e., the
actual values), which will be used in the experimental section
as baseline on audio features.
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Fig. 5 Local audio-visual features. Top Spatio-temporal interest points
(STIP) are used as basis for visual features. A HOG/HOF descriptor is
computed for each STIP. Bottom Audio signal is divided into overlap-
ping frames. In this example, the signal is divided in frames of 0.05 s
overlapping 0.025 s. Features are extracted over each audio frame. Then,
each resulting feature vector is assigned to a word of the corresponding
dictionary

The use of Mel-frequency cepstral coefficients (MFCC)
as audio descriptor is a popular choice specially in the fields
of speech or music recognition [5,13]. It offers a description
of the spectral shape of the audio in a given interval of time.
It is computed as follows [13]:

1. compute the Fourier Transform (FT) of the signal;
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2. map the powers of the spectrum obtained with FT onto
the mel scale (i.e., perceptual scale of pitches [29]);

3. compute the logs of the powers at each of the mel fre-
quencies;

4. compute the Discrete Cosine Transform of the list of mel
log powers, as if it were a signal.

The amplitudes of the resulting spectrum define the
MFCC.

In addition to MFCC, and for comparison purposes, we
extract the following set of simple features in the time
domain [13]:

– zero-cross: the number of times the signal changes sign
(i.e., crosses X -axis);

– coefficient of skewness:

μ3/σ
3,

where μ3 is the third-order moment of the data and σ is
its standard deviation;

– excess kurtosis:

μ4/σ
4 − 3,

where μ4 is the fourth-order moment of the data and σ

is its standard deviation;
– flatness: the flatness of the data results from the ratio

between the geometric mean and the arithmetic mean;
– entropy: the relative Shannon’s entropy of the data (i.e.,

it is divided by the length of the signal).

For each audio frame, the previous features are concate-
nated into a single feature vector which will describe such
audio frame.

2.3 Audio-visual Bag of Words

The combination of audio and video information has been
previously employed in video categorization [9]; however, its
use in the problem of interaction recognition has not been yet
deeply explored. The action recognition problem normally
involves a single person, and people do not usually speak
to themselves while performing actions. On the other hand,
interaction involves two or more people, and both visual and
audio information plays important role in communication.
This work aims at showing that the combination of both
sources of information (see Fig. 1) can yield better results
in this problem, than their stand-alone use.

Two main approaches in data fusion can be considered,
early fusion and late fusion. In the first approach, fusion is
performed before the classification process takes place. Nor-
mally, it consists in joining all the features into a single feature

vector. Late fusion, on the other hand, performs first classi-
fication of all sources of information separately, and then,
fuses the results. Most often, another classifier is trained on
the output of the individual classifiers. This work tests both
approaches to analyze their performance.

3 Experiments and results

This section explains the experiments performed to validate
our proposal. Our goal is to demonstrate that audio informa-
tion can be employed to improve the classification perfor-
mance in the HIR problem. To do so, we have first tested
the performance of video features. In our work, HOG and
HOF features have been tested both separately and together.
Statistical tests have been run on the results so as to analyze
which combination performs better. Then, we have tested per-
formance of the audio features previously explained. Finally,
we have tested the combined use of audio and visual features.
Again, statistical tests have been run to analyze the impact
of the combination. With regard to the feature combination
method, early and late fusion approaches are evaluated, with
special emphasis in early fusion.

Experimentation has been carried our in the TV Human
Interactions Dataset (TVHID) [20] which consists of 200
videos from TV shows grouped in four categories: 50 hand-
shake, 50 high-five, 50 hug and 50 kiss. In addition, a set of
100 negative videos (i.e., none of the other interaction cat-
egories) is included. Figure 6 contains examples of the four
interactions included in TVHID. Note the different imaging
conditions (e.g., illumination, scale, background clutter,...)
where the interactions happen. Each video clip is labeled
with a single interaction class from the possible ones. The
dataset provides information about the frame intervals where
the interaction happens within each video plus additional
information such as the coordinates of upper-body bounding
boxes and an approximation of the head orientations.

The rest of this section is structured as follows. Firstly,
Sect. 3.1 explains the evaluation protocol and experimental
setup employed. Then, we test the performance of visual
(Sect. 3.2) and audio (Sect. 3.3) features independently.
Finally, Sect. 3.4 shows the results of combining both sources
of information.

3.1 Evaluation protocol and experimental setup

Our proposal is evaluated in the context of human interaction
categorization, i.e., given an input video, it must be classified
into the correct category. Thus, it is a multiclass problem that
has been addressed by training 4 one-vs-all binary classifiers.
SVM with approximated χ2 kernel [34] are used in all our
experiments, but in the ones of Sect. 3.4.2.
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76 M. J. Marín-Jiménez et al.

Fig. 6 TV human interactions dataset: hand-shake, high-five, hug and kiss. The different viewpoints and challenging imaging conditions (lighting,
cluttered background, clothing, partial occlusions...) make their recognition with only visual information a very difficult problem

The TVHID data set is divided in two standard partitions
that have been respected to allow a direct comparison with
future and past results. So, training is first performed on one
partition and test on the other one, and then the process is
repeated by interchanging the role of the partitions. As mea-
surement of performance Succ, we report the averaged per-
centage of correctly categorized test videos on the two trials
(i.e., twofold cross-validation):

Succ = 100 ·
(

c1

n1
+ c2

n2

)
(1)

where c1 and c2 are the number of correctly categorized
videos in the first and second partitions, respectively, and
n1 and n2 are the total number of evaluated videos during
test time on each partition, respectively.

With regard to the image signal, we extract STIP only
from the frame intervals where the interaction happens, dis-
carding the STIP whose center is outside the person region.
Such region is defined by computing the minimum and maxi-
mum x from the upper-body bounding box coordinates of the
annotated persons in the target frame. All the frame height
is included in the person region. Since in this work we are
mostly interested in the contribution of the audio features
to HIR problem, we have adopted this preprocessing stage
during training in order to minimize the noise that could be
introduced in the evaluation by the visual regions located out-
side the person region. On the other hand, the audio signal
(used both for training and testing) is extracted from the time
interval where the interaction happens, as indicated by the
dataset annotations.

In order to analyze the performance of the different fea-
tures, statistical hypothesis tests [22] have been employed.
Comparing exclusively the best results obtained by two set
of features does not provide enough support to say whether
the differences are significant.

Statistical hypothesis tests, in general, answer the ques-
tion: assuming that the null hypothesis, H0, is true, what is
the probability of observing a value for the test statistic that

is at least as extreme as the value that was actually observed?
That probability is known as the p value and the null hypoth-
esis is to consider that the features performances are equal.
If the test proves that the null hypothesis is false, then, the
differences observed are not due to chance but statistically
significant. The reduced number of samples employed in our
tests makes it difficult to determine their distribution. There-
fore, non-parametric tests have been employed, since they do
not require the assumption of normality or homogeneity of
variance. Their main disadvantage (compared to parametric
tests) is that for the same number of observations, they are
less likely to lead to the rejection of a false null hypothe-
sis. The hypothesis verified by all tests are H1: the median
difference can be considered statistically significant (not by
chance); and H0: otherwise. In all our tests, we have assumed
p = 0.05.

Two different tests have been employed depending on the
type of data, namely, the Mann–Whitney [16] and Wilcoxon
signed-rank [38] test. The former will be employed for
assessing whether two samples of independent observations
tend to have larger values than the other. The latter, a paired
test, analyzes the impact of an experiment on a population by
measuring features before and after the experiment. In our
case, the paired test will tell us if adding a feature to another
has any impact on the classification results, e.g., adding audio
to the video features.

3.2 Baseline: visual features

In this first experiment, we establish the baseline results
obtained with BOW combined with STIP-based features (see
Sect. 2.1). Different values of dictionary size K , in the range
[100, 2,000] are tested (values of K out of this range did not
show any improvement), in addition to the use of Harris3D
interest point detector and dense sampling. A maximum of
105 randomly selected descriptors are used as input for the
dictionary learning stage.
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Table 1 Human interaction categorization on TVHID by using visual
information

K/features HOG HOF HOG + HOF

100 39.5 38.5 42.0

500 33.0 45.0 46.0

1,000 36.5 43.0 42.5

2,000 36.5 40.0 44.0

1,000 + dense 39.5 43.0 44.5

2,000 + dense 39.5 39.5 45.5

Percentage Succ of correct categorization
The best performance for each descriptor is marked in bold

Table 2 Statistical analysis of the performance of visual features

HOF HOG + HOF

HOG (+4.08, H1) (+6.58, H1)

HOF – (+2.50, H0)

Values in brackets (μ, t) represent the average difference between the
sets and the valid hypothesis

We have tested both HOG and HOF descriptors separately,
and joined so as to analyze the impact of its combination.
The HOG descriptor is a vector of 72 dimensions, whereas
HOF descriptor has 90 dimensions. Therefore, the combined
HOG + HOF descriptor has 162 dimensions.

Table 1 contains a summary of the results of this exper-
iment. The Succ value for each configuration is reported.
Keyword dense indicates that STIP have been extracted by
using dense sampling, otherwise, Harris3D detector has been
used.

Table 2 shows the results of the tests carried out on the
database with only visual features. For the comparison HOF
vs HOG, we have employed the Mann–Whitney Test [16],
while for the tests HOG vs HOG + HOF and HOF vs
HOG + HOF we have employed the Wilcoxon signed-rank
test [38].

Each cell of the table shows the statistical comparison
between their intersecting features. The values into the brack-
ets are the average difference between the sets; and the
hypothesis verified by the tests (H1 if the median difference
can be considered statistically significant, and H0 otherwise).
The tests have been conducted considering the column fea-
ture as first set, and the row feature as the second set. So,
positive values for the average indicates that the column fea-
ture performs better than the row feature (e.g., in Table 2,
HOG + HOF performs better than HOG). In all our tests, we
have assumed p = 0.05.

The tests indicate that, using HOG, the mean success
is 4.08 higher than using HOF, and that the improvement
observed is not due to chance, but statistically significant,
i.e., H0 has only a probability of p = 0.05 of being true.

Table 3 Evaluation of audio features on the TVHID positive classes

K/features raw A1 A2 A3

25 30.0 37.0 37.5 41.0

50 39.0 40.5 38.0 48.5

100 32.0 41.0 41.5 47.0

200 41.0 31.0 41.5 38.0

300 32.0 34.0 39.0 39.5

400 32.5 40.5 40.5 42.0

500 36.0 41.5 38.0 44.0

Percentage of correct categorization for the most representative
configurations raw refers to the actual audio signal
The best overall performance is marked in bold

Table 4 Statistical analysis of the performance of audio features

A1 A2 A3

raw (+2.66, H0) (+4.33, H1) (+7.75, H1)

A1 – (+1.66, H0) (+5.08, H0)

A2 – – (+3.41, H0)

Values in brackets (μ, H) represent the average difference between the
sets and the valid hypothesis

It can also be observed that HOG + HOF obtains statistically
significant differences when compared to HOG alone. With
respect to HOG + HOF vs HOF, we observe an increase in
the success, but we do not have enough support to indicate
that their differences are statistically significant given the
observations. From the results obtained, we conclude that
the combination HOG+HOF is the best video feature.

3.3 Evaluation of audio features

In this experiment we evaluate the use of audio features. For
this experiment we employ the audio features introduced in
Sect. 2.2: group A1 is composed by zero-cross, excess kur-
tosis, coefficient of skewness, flatness and entropy; A2 cor-
responds to mel spectrum (i.e., MFCC before DCT); and, A3
corresponds to MFCC. The feature vector A1 has 5 dimen-
sions, whereas vector A2 has 40 dimensions and A3 has 13
dimensions. As baseline feature, we have chosen the raw
audio signal.

A maximum of 105 randomly selected descriptors are used
as input for the dictionary learning stage. We have tested
different values of dictionary K in the range [25, 500]. Values
of K out of that range did not show any improvement over
the results reported in this paper.

The results of the experiments are summarized in Table 3,
that shows the Succ for each configuration. Using the results
reported in the previous table, we have conducted the Mann–
Whitney tests to compare the performance of the different
audio features (see Table 4). As can be seen, the tests show
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that A2 and A3 present statistically significant differences
with respect to the raw data. However, with the tests per-
formed, it cannot be stated that there are significant differ-
ences between the A1, A2 and A3 features. Nonetheless, the
best average results are obtained by the A3 set.

3.4 Feature combination

In this section, we evaluate different ways of combining
audio-visual features. In many problems the feature com-
bination from several modalities improves the results from
the best single modality. Here, we conduct experiments to
confirm this fact in our task at the same time that identifying
the possible causes of the improvement. To do this we run
experiments from a baseline early fusion technique using the
simple concatenation of the audio and video features. Then,
we compare the results with the state of the art technique for
modality fusion, Multiple Kernel Learning (MKL) [32,35],
and also with a technique based on a bi-modal codebook [40].

3.4.1 Fusion baseline

In this experiment, we compare the proposed audio-visual
framework with the classical visual approach (see Sect. 3.2)
employing an early fusion. Additionally, we aim at quanti-
fying the impact of adding audio information to video in the
sequences tested.

To that end, we have performed a thorough analysis
of our proposal by combining the different HOG+HOF
visual features ({K 100, K 200, . . . , K 2000-dense}) with
all the audio combinations evaluated in Sect. 3.2 (i.e.,
{K 25, K 50, K 100, . . . , K 500}) using three different early
fusion approaches.

As baseline fusion method we choose the concatenation
of the feature vectors. This model is equivalent to consider a
linear combination of kernels with equal weights. SVM are
trained on the concatenated feature vectors.

The results of this experiment are summarized in the
rows BLF of Table 5. Columns labeled as K x represent the
HOG + HOF visual features, while rows represent audio fea-
tures and a particular early fusion method. In each row, we
present the results of the Wilcoxon paired test that compares
the results of the column visual feature vs audio-visual fea-
tures.

For instance, the cell (BLF-A1, K 100) shows the results
of the Wilcoxon test when the HOG+HOF classifier with 100
features is compared to the all the classifiers that results from
adding the audio features {A1 − 25, . . . , A1 − 500} (in total
7 different audio-visual classifiers). As a consequence, since
H1 holds true in this case, it means that the addition of the
audio feature A1 (in general) obtains better results than video
K 100 alone.

The three pieces of data (d, H, m) in the cells represents
the following. First, d is the average mean difference between
the classifiers, where positive values indicate that audio-
visual classifiers are better than the visual ones. Second, the
H denotes the most likely hypothesis (i.e., H1 indicates that
the difference is really significant). Finally, m represents the
average on the performance Succ of the audio-visual classi-
fiers.

3.4.2 Multiple kernel learning

In this experiment, we evaluate a Multiple Kernel Learn-
ing (MKL) [32] approach for early feature fusion. Let
((φk(xi ), yi ), i = 1, . . . , N ) be a sample from each one of
the K input feature descriptors φk , where yi represents the
class label. Let f1, . . . , fK be K -associated distance func-
tions, where fk = wT

k φk . Then, the goal of the linear MKL
is to find the optimal descriptor’s kernel Kopt = ∑

k dkKk

where Kk is the kth kernel matrix (i.e., function of fk) and d
are the weights. The estimation is carried out in as an SVM
optimization framework where the primal problem can be
formulated as:

Min
wk ,b,d,ξ≥0

1

2

∑
k

wt
kwk

dk
+ C

∑
k

ξk + λ

2
||d||2p (2)

s.t. yi

(∑
k

wT
k φk(x) + b

)
≥ 1 − ξi , i = 1, . . . , N

where || · ||p represents the Euclidean p-norm. Nevertheless,
this formulation is too simple for some applications since it is
equivalent to concatenate the K descriptors of each sample.
A richer representation is proposed in [32] using the prod-
uct of kernels instead of the sum. We have used both of it
in our experiments. A χ2 distance and a product of expo-
nential kernels of precomputed distance matrices with SVM
classifiers have been used as feature distance and general-
ized kernel, respectively. The results achieved with this early
fusion method are summarized in the rows MKL of Table 5.

3.4.3 Bi-modal codewords

In contrast to the MKL approach, where a sophisticated com-
bination method is used to fuse the information from each
modality, in [40] a new way of fusing audio and video features
is proposed creating audio-visual patterns represented in a
bi-modal codebook. In short, this technique starts creating a
Bag of Words model from the audio and the video modalities
and then a distance matrix between the codewords of both
dictionaries is estimated. In order to estimate the subset of
codewords that explains the best the audio and video cor-
relation, a spectral clustering technique is applied. The new
subsets of features given by the clusters are used to define a
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bi-modal dictionary used to code the original audio and video
codebooks. The average, max and hybrid criteria suggested
in [40] to make the final coding have been tested.

In our case, the max criterium showed the best results with
a bi-modal dictionary size of 50 % of the original size. The
results are summarized in rows Bimodal of Table 5.

3.4.4 Late fusion

As commented in Sect. 2.3, an alternative to early fusion
(e.g., feature vector concatenation) is late fusion. Therefore,
considering the audio feature A3 as the best one for audio-
visual combination, we have run a set of experiments aiming
at analyzing the results of late fusion for this problem.

For that purpose, we have employed individual classi-
fiers for video and audio, and then, another SVM has been
trained on the scores returned by the individual classifiers.
Let sc

hog, sc
hof and sc

au be the scores returned by SVM trained
on HOG, HOF and audio features for category c, respectively.
We define a new feature vector fc

l f , for a given video, as the
concatenation of sc

hog, sc
hof and sc

au . A new SVM is trained
on the new set of features fc

l f .
The results obtained are shown in Table 6 following the

same rationale employed in Table 5. As can be observed,
in this case audio-visual late fusion does not makes a clear
improvement from the single modalities(see positive differ-
ences).

In [41] a new technique is suggested for late fusion using
the internal order of the items from each classifier to estimate
a better combined order. We have also tested this technique
in our data, however, it did not show any improvement on the
results from the previous SVM late classifiers.

3.5 Discussion

The human interaction categorization (HIR) task has been
studied in this paper as a function of its two main modal-
ities, audio and video. The experimental results shown in
Tables 1 and 3 indicate that decoding of category informa-
tion from a single modality is still a very difficult task. The
single modality best score is obtained from the audio with a
48.5 % of success, what is a low rate. In our understanding,
the video signal has plenty of information but coded in the
images in a very complex way, that added to the high num-

ber of degree of freedom defining each interaction, making
it very hard to decode relevant features. The audio signal is
simpler and therefore easier for processing.

The results shown in Table 5 indicate that the early fusion
approach is an improving strategy for HIR categorization.
It is observed that many of the audio-visual combinations
improve the best single modality score, pointing out that
the feature combination benefits when adequate features are
selected (boldface data in Table 5). The combination K 1000-
dense and MKL-A2 obtains the best average results for our
task. However, it is remarkable that the greatest amount of
successful audio–video combinations—that is the combina-
tions with higher score than the best from the single modali-
ties (48, 5 %)—and the best full average score are associated
to the baseline strategy (see column Mean-AV in Table 5). For
the baseline approach, the combination (BLF-A2, K 100)

shows the best score with an average score of 49.79, and,
for the bimodal approach, the best one is the combination
K 1000-dense with bimodal-A3 with an average score of
49.5. These results show very small differences among the
three strategies as on average as in the highest scores. Nev-
ertheless, the baseline strategy shows its best score when the
shortest codeword is used to code the video (K 100), but the
other two approaches prefer a large codeword with dense
sampling. For the audio, the best features seem to be given
by A2. All these results show the importance of selecting fea-
tures according to the classifier to use. If we focus on the row
named Summary of Table 5, we can see that all the differences
are positive, what means that, in general, the audio-visual fea-
tures improve on the visual ones. In addition, we can see in
Table 8 that the best Succ value achieved with audio-visual
features (i.e., 54.5) is clearly superior to the best one reported
with a single modality (i.e., 48.5 in Table 3).

With regard to late fusion, in Table 6 it can be observed that
this type of late fusion performs worse than the early fusion
approach. The results show that in most of the cases, the video
features alone obtain better results than the combination (see
negative differences). This result could be expected looking
at the low classification scores obtained from each single
modality. This means very noisy inputs for the late fusion
algorithm makes it very difficult to recognize the true audio-
visual patterns.

In order to shed some light on the improvement pro-
vided by the audio features on the four evaluated interaction

Table 6 Performance of late fusion of audio-visual features using A3 as the audio feature

Audio/HOG
+ HOF

K100 K500 K1000 K2000 K1000-dense K2000-dense

A3 (+2.43, H1, 44.43) (−1.21, H0, 44.79) (−1.50, H0, 41.00) (+0.79, H0, 44.79) (−4.00, H1, 40.50) (−0.93, H0, 44.07)

The table shows the results of comparing visual with audio-visual features using the late fusion approach
Each cell contains (d, H, m) (see text for details and discussion)
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Table 7 Performance of audio–video combination for each class in the test MKL-A2 on K1000-dense

HU KI HS HF

(+0.86, H0, 66.86) (+8.86, H1, 40.86) (−7.71, H1, 36.29) (+23.43, H1, 59.43)

Statistical tests showing the improvement of audio-visual features over visual ones on each interaction category: hug (HU), kiss (KI), hand-shake
(HS), high-five (HF)
Each cell contains (d, H, m) (see text for details and discussion)

Table 8 Summary of the best results on TVHID

Feats/Perf Succ(4) Succ(4+neg) mAP(4+neg)

BLF-HOGHOF-K100+A2-K200 54.5 44.7 0.4779

MKL-HOGHOF-K500+A3-K25 54.5 39.3 0.4536

Patron-Perez et al. [20] N/A 40.4 0.4244

Percentage of correct categorization Succ and mAP
Column Succ(4+neg) and mAP(4+neg) are included for comparison purposes (see [20])
Column Succ(4+neg) includes the negative samples as an additional fifth category
The best performances for the 4+neg setup are indicated as bold

categories, we report in Table 7 the results of a statistical
study performed on the audio-visual approach that achieved
the best mean results on the study presented in Table 5:
MKL-A2 with HOG + HOF-K1000-dense. We can observe
that both high-five and kiss categories clearly benefits from
audio-visual features (i.e., positive differences supported
by H1), and hug as well but in a moderated manner. In
contrast, hand-shake does not. Watching the actual video
clips of the dataset used in our experiments, we notice
that both high-five and kiss have associated a sound pat-
tern (i.e., kind of brief outburst) very distinctive, at least
for humans, unlike hug has. For the case of hand-shake
our impression is that since it does not always have associ-
ated a sound pattern as clear as the other two commented
interactions have, the few greeting words that are some-
times said during the interaction introduce uncertainty in the
system.

Comparison with the state-of-the-art In addition to Succ,
and for comparison purposes with [20], we compute the mean
Average Precision (mAP)—as in a video retrieval setup—as
follows: (1) we train the models (one model per positive class,
i.e., 4 models = SVM) with subset A and we classify sam-
ples on subset B; (2) we train the models (one model per
positive class, i.e., 4 models = SVM) with subset B and we
classify samples on subset A; and (3) we put together all
the classified samples from (1) and (2) in the same bucket,
along with their corresponding scores, in order to compute
a global precision–recall curve; and (4) the area under the
precision–recall curve (AP) is used as performance measure-
ment for each class. Note that, since there are four positive
classes, we compute one AP at a time following the previ-
ously explained procedure. Finally, the average AP over the

four classes is reported as mAP. Note that all the negative
videos are included in this evaluation (i.e., video retrieval
task).

Table 8 presents a selection of the two best results achieved
in our experiments for the evaluated audio-visual features
(see Table 5). The results shown in column Succ(4) cor-
respond to measurement Succ applied over the four cate-
gories of interactions, as done in the previous sections. How-
ever, column Succ(4+neg) includes the negative samples of
TVHID as an additional fifth category.

Column mAP(4+neg) in Table 8 allows a direct compar-
ison with the state-of-the-art on video retrieval on TVHID.
The best configuration found for our audio-visual proposal
(i.e., 0.4779) is around 13 % better than the one reported
by Patron-Perez et al. [20] with their fully automatic setup
(i.e., 0.4244). Although this mAP is still below the 0.5074
achieved in [20] when manual tracks of persons are used as
input. Note that in our experiments we only use the location
of the persons during training, to learn a dictionary of clean
STIPs.

Recommendations From the results obtained in our exper-
imental evaluation, our recommendations for fusing visual
and audio information for the task of HIR are: (1) non-dense
HOG + HOF for visual features ; (2) MFCC for audio fea-
tures; (3) early fusion instead of late fusion; (4) MKL as
fusion scheme due to the equivalence between MKL-linear
and BLF. BLF and MKL show similar mean-AV (see Table5)
meaning that, in this problem, the used descriptors have a
similar and additive contribution. In this way, BLF does not
require an additional learning step as MKL does (i.e., kernel
combination weights); therefore, our first choice would be
BLF (i.e., simple concatenation of feature vectors). Neverthe-
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less, the best strategy would be to estimate the d-parameters
using a MKL-linear model; (5) for visual features, a large
dictionary size (i.e., around 1,000 words) leads, in general,
to better mean performance, regardless the size of the audio
dictionary; (6) however, small or medium-sized audio dic-
tionaries (i.e., around 100 words) are preferred.

4 Conclusions

In this paper, we have presented a new focus on the prob-
lem of human interaction categorization in TV Videos. In
contrast to other common approaches in the field of human
action/interaction recognition, we show in this paper (1) that
human interaction categorization is a problem better defined
by audio-visual information; (2) that each single modality
(audio or video) contains too much uncertainty to achieve
good categorization scores by itself; (3) that the audio, as a
single modality, is simple to process providing, on average,
more discriminative features for HIR than the image-based
ones; moreover, audio by itself also provides higher score
than the average of audio–video combinations; (4) that the
combination of audio and visual features, when successful,
makes a significant improvement on the categorization score
in comparison with the single modalities; (5) that the size of
the coding dictionary for the visual signal appears to be a
relevant factor for the combination strategy; and (6) that the
audio-visual framework offers promising results in compar-
ison with the state-of-the-art on TVHID, in terms of mean
average precision.

In conclusion, the results of this work confirm that human
interaction categorization is a matter of audio-visual features
combination where the selected features and the way we com-
bine them are relevant steps to improve the final performance.

In addition, we think that the addition of a voice recogni-
tion stage could help significantly for identifying some inter-
actions where people typically speak, as for example hand-
shake. This will be a line of future research.
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