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Every year, agriculture experience signi¯cant economic loss due to wild geese, rooks and other

°ocks of birds. A wide range of devices to detect and deter animals causing con°ict is used to

prevent this, although their e®ectiveness is often highly variable, due to habituation to dis-
ruptive or disturbing stimuli. Automated recognition of behaviors could form a critical com-

ponent of a system capable of altering the disruptive stimulus to avoid habituation. This paper

presents an audio-visual-based approach for recognition of goose °ocking behavior. The vocal

communication and movement of the °ock is used for the audio-visual recognition, which is
accomplished through classi¯er fusion of an acoustic and a video-based classi¯er. Acoustic

behavior recognition is based on generalized perceptual features and support vector machines,

and visual behavior recognition is based on optical °ow estimation and a Bayesian Rule-Based

scheme. Classi¯er fusion is implemented using the product rule on the soft-outputs from both
classi¯ers. The algorithm has been used to recognize goose °ocking behaviors (landing, foraging

and °ushing) and have improved the performance compared to using audio- or video-based

classi¯ers alone. The improvement of using classi¯er fusion is most evident in the case of °ushing

and landing behavior recognition, where it was possible to combine the advantages of both the
audio- and video-based classi¯er.

Keywords : Audio-visual; classi¯er fusion; intelligent agriculture; human–wildlife con°ict;

support vector machines; optical °ow.
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1. Introduction

Throughout the world, human–wildlife con°icts are increasing and today, wildlife

management is an important part of modern agriculture.28 Since damages caused by

wildlife creates signi¯cant economic challenges, a wide range of devices to detect and

deter animals causing con°ict is used in wildlife damage management, although their

e®ectiveness is often highly variable.16 In most cases scaring devices are nonspeci¯c,

so they can be activated by any animal (through detection of motion and/or body

heat16), not only when individuals of the target species enters the area. This increases

the risk of habituation, which is often the major limitation on the use of scaring

devices.30 Although random or animal-activated scaring devices may reduce habit-

uation and prolong the protection period over nonrandom devices,30 no cost-e®ective

concepts circumventing the problems of habituation have yet been developed. This

paper presents an algorithm for automatic °ocking behavior recognition. The rec-

ognition of °ocking behavior enables us to assess the e®ect of scaring, by monitoring

a subsequent change in behavior. Thereby our system may monitor potential ha-

bituation and, accordingly, change the disturbing or disruptive stimulus to cir-

cumvent this. A robust recognition of landing behavior is a crucial part of a scaring

system, since geese are more alert during landing, and therefore highly susceptible to

disruptive stimulus.

Both audio and video processing methods have been used for recognition of ani-

mal behavior.19,23–25,29,37,38 Research within vocalization recognition has been highly

in°uenced by methods conducted within human speech and speaker recognition.

This includes feature extraction techniques, focused on cepstral features22,33 and

pattern recognition algorithms such as Hidden Markov Models (HMMs),3,39

Gaussian Mixture Models (GMMs)3 and Support Vector Machines (SVMs).4,13,40

Computer vision techniques have been widely used in human/animal activity and

behavior recognition.9,19,41 In the case of a single or a few individuals, di®erent

approaches, such as the Kalman ¯lter, Condensation algorithm or active shape

models (ASM) have been used to track movement or model the posture in order to

recognize behavior.19,23,38 However, when considering crowd behavior, the motions of

individuals within the crowd is the expression of a continuous °ow that drives the

crowd, and when a crowd is dense, usual tracking algorithms like Kalman ¯lters or

the Condensation algorithm generate large state space models, which are compu-

tationally expensive.7

Popular approaches in crowd motion estimation are background subtraction,

temporal di®erencing and optical °ow.7,19,41 Optical °ow, which is utilized in this

paper, is an approximation of the motion in an image sequence, and has been used in

behavior recognition, crowd motion simulations and event detection.7,9,27

The fusion of audio and video streams have been used in both speech recognition

and human emotion recognition research.32,42 In speech recognition, the fusion of

spectral information in the audio channel and the tracking of lip movement have

improved the performance of speech recognition, particularly in situations with low

K. A. Steen et al.

1350020-2



signal-to-noise ratio. In human emotion recognition, both the facial expression and

the tonal information in the speech provide useful information about the state of

mind of humans. In animal °ocks, both the movement and the vocalizations, i.e. the

communication within the °ock, is often associated with certain behaviors. This

makes a fusion of audio and video suitable for robust multi-modal recognition of

animal °ocking behavior.

There are di®erent strategies for fusing audio and video streams. In human audio-

visual speech recognition research, feature fusion and classi¯er fusion have been used

to fuse the information from the two sources.32 The most common method used in

speech recognition is to perform feature fusion in a multi-stream hidden Markov

model; however, we chose not to use HMM as a °ock of geese produce vocalizations at

the same time, resulting in a soundscape, where temporal information is not useful in

the recognition. In contrast to feature fusion methods, the classi¯er fusion framework

provides a mechanism for capturing the reliability of each modality, and thereby

design the algorithm for robust recognition based on knowledge of the individual

classi¯er performance. Here we chose classi¯er fusion as our fusion strategy based on

the nature of the extracted features and the capability to design classi¯ers for each

individual stream.

As such, this paper presents an algorithm for audio-visual-based recognition of

°ocking behavior. The vocal communication and movement of the °ock is used for

the audio-visual recognition, which is accomplished through classi¯er fusion of the

acoustic- and video-based classi¯ers.

2. Materials and Methods

2.1. Study species

We chose the Russian/Baltic population of barnacle geese (Branta leucopsis) as our

study subject. The dramatic increase in this population over the past few decades has

led to serious con°ict between agriculture and geese throughout the wintering range.

In Denmark, the large °ocks of barnacle geese, which occur along the west coast until

late spring, are causing damage to both winter cereals and pastures. Moreover,

barnacle geese, like other goose species, are vocal and therefore suitable for studying

the relationship between vocalizations and behavior. Although various methods have

been employed to scare barnacle geese o® agricultural land, to date, no successful

long-term, cost-e®ective scaring method has been found.

2.2. Equipment

A combination of a shielded shotgun microphone (Sennheiser MKE 400) and a

machine vision camera (uEye UI-1245LE-C) with a ¯eld of view (FOV) of 45�

connected to a laptop were used for recordings. A multiple-shielded audio extension

cable was used to minimize loss in ¯delity. The camera and laptop were placed in a

box at the edge of the ¯eld, whereas the microphone was placed 10m in front of
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the camera, closer to the geese. The system was powered by two 12V 92Ah deep

cycling car batteries and data were stored on a 3 TB external hard drive. A detailed

description can be found in Ref. 34.

2.3. Data collection

The vocalizations were recorded with a sample rate at 44.1 kHz. An uncompressed

audio ¯le (wave) was saved every ¯ve minutes during daylight hours. The syn-

chronized audio and video recordings were stored on an external hard drive for later

processing. In order to capture the movements of the geese, the video stream was

recorded at a frame rate of 20 frames per second with a resolution of 640� 480

pixels.a During the study period, there were two occurrences of barnacle geese, at two

di®erent dates, within the FOV of the camera. The recordings were categorized into

the three behaviors of interest: landing, foraging and °ushing. In Table 1, a de-

scription of the behaviors and the duration of the recordings are listed. The behaviors

were observed as single events on both days, when the behaviors occurred. The

behaviors were manually labeledb and the duration of certain behavior was based on

subjective estimates, where the behavior of the majority of the °ock was used to label

the behavior. In the case of °ushing behavior, the video material was very limited, as

the geese quickly escaped the FOV of the camera. In Fig. 1, a single frame and a

spectrogram of °ushing behavior is shown. It is seen, that temporal information is

not useful for acoustic recognition, as the spectrum does not change much over time

(3.5 s). However, even though it is a still frame, it is clear that the geese are °ying

upwards, and the temporal information in their movement can be used for recog-

nition of behavior. The recorded audio is plotted as a white waveform above the

spectrogram.

Table 1. Description and duration of the recorded behaviors.

Data

Behavior De¯nition Audio Video

No geese No activity on the ¯eld 60 s 1200 frames

Landing Multiple geese approach the ¯eld and land on the ground 241 s 4810 frames

Foraging Multiple geese stay on the ground and feed 180 s 3600 frames

Flushing Some geese take o®, and the rest of the foraging °ock
follow, leaving the ¯eld empty of geese

9 s 180 frames

aPlease contact Kim Arild Steen by email (kas@iha.dk) if you are interested in the data for further

research.

bOle Roland Therkildsen is a research biologist at Department of Bioscience, Aarhus University, and is an

expert in goose ecology.
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3. Acoustic-Based Recognition

In Ref. 35, we presented an algorithm for acoustic-based recognition of goose be-

havior. The recognition was accomplished based on acoustic feature extraction and

pattern recognition.

3.1. Acoustic feature extraction

The acoustic features were based on greenwood function cepstral coe±cients

(GFCC) which are similar to mel frequency cepstral coe±cients (MFCC), which is

often used in both human speech and animal vocalization recognition.3,10,22 However,

the frequency warping can be adjusted to the hearing capabilities of di®erent

species.6

Similarly to MFCC, the calculation of GFCC can be carried out using a scaled

¯lter bank, consisting of a number of critical band ¯lters with center frequencies

adjusted to the speci¯c scale.10 The number of ¯lters in the ¯lter bank depend on the

application, and various implementations of MFCC feature extraction have been

used in speech recognition tasks.15 The bandwidth of these applications di®er, and as

barnacle goose vocalizations contain most of their spectral information in the 500–

6000Hz band,11 it is comparable to the bandwidth used in Ref. 8, where 20 ¯lters

Fig. 1. A single frame and spectrogram of audio during °ushing behavior. The behavior covers a short

time span, and the acoustic channel has no useful temporal information, unlike the video channel.
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were used. Therefore, 20 ¯lters were used in the feature extraction of goose vocali-

zations. The calculation of GFCC was carried out as a short time analysis. We used

46ms (2048 samples), windowed with a hamming window with the same length.

Spectral vectors (Sk) represent the log-energy of each critical band, and a cosine

transform converts the spectral vectors into cepstral vectors, according to the

formula

cn ¼
XK�1

k¼0

Sk cos n k� 1

2

� �
�

K

� �
; n ¼ 0; . . . ;K � 1: ð1Þ

Here cn is the nth cepstral coe±cients and Sk is the spectral log-energy of the kth

band.

3.2. Support vector machines

In Ref. 35, we used SVM with a radial basis kernel function to classify behaviors.

The SVM was chosen over the more popular HMM, as temporal information in the

goose vocalizations is lost as multiple geese vocalize at the same time. Recently,

SVM models have proven succesful in bird species recognition research,13,40 and

other research working with real-world classi¯cation tasks.26 In addition, SVM

models are able to handle nonlinear classi¯cation tasks, which is true for most

real-world data.

SVM produce a crisp value, meaning that the output is either one class or

another. Given the similarities in soundscapes for landing and °ushing behavior, this

may produce erroneous recognition results as data may often be close to the decision

boundary. Soft-outputs/probability measures make it possible to detect these

situations, and this information may be employed in the fusion of the classi¯er

outputs. Here, we use LibSVM, which makes it possible to obtain probability esti-

mates from the SVM classi¯cation.5 This is accomplished by estimating the class

probabilities, for k classes given any data x

pi ¼ P ðy ¼ ijxÞ; i ¼ 1; . . . ; k: ð2Þ

The algorithm for accomplishing this is described in detail in Refs. 5 and 31. Based

on the probability estimates for each class given the data x, the soft-output recog-

nition scheme for audio stream is found by the directional graph13,31,35 shown in

Fig. 2. The resulting output is not a crisp, but a measure of the probability of the

three behaviors and the state of no geese.

The data x is a feature vector extracted from a short time audio sequence (46ms),

which is a very short time window for behavior recognition, since behavior should be

estimated over a longer period of time. Therefore, we concatenate seven short time

audio sequences into a matrix, with dimensions 7� 6 (the dimensionality of features

were reduced to six based on feature selection in Ref. 35), based on 0.2 s of audio

data.
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The ¯nal soft output is found by the mean of ¯ve of the seven outputs, as the

smallest and largest values are removed to avoid outliers.

4. Video-Based Recognition

In Ref. 36, we presented an algorithm for recognition of °ocking behavior using

computer vision methods. The algorithm was based on optical °ow estimation and a

Rule-Based Bayesian scheme.

4.1. Optical flow

Optical °ow is an approximation of the motion in an image sequence, given by

velocity estimates. In crowd or °ocking behavior, the motions of individuals within

the °ock is the expression of a continuous °ow that drives the crowd, which can be

estimated by the optical °ow algorithm. The underlying assumption when computing

optical °ow is that pixel intensities are translated from one frame to the next by

Iðx; kÞ ¼ Iðxþ u; kþ 1Þ; ð3Þ
where Iðx; kÞ is the intensity of the pixel, located in the coordinate x ¼ ði; jÞT at time

k. The vector u ¼ ðux;uyÞT is the 2D velocity vector. The above assumption rarely

holds, since pixel brightness may change due to object rotations and secondary illu-

mination. However, the assumption works well in practice.14 The translation in

Eq. (3) can be expressed as the gradient constraint equation14 (4)

rIðx; kÞ � uþ Ikðx; kÞ ¼ 0; ð4Þ

Flushing vs. Landing

Landing vs. Foraging

Foraging LandingFlushing

Flushing vs. Foraging

p(flushing|x) > p(landing|x) p(landing|x) > p(flushing|x)

No Geese

p(landing|x) > p(foraging|x)
p(foraging|x) > 

p(landing|x)
p(foraging|x) > 
p(flushing|x)

p(flushing|x) > p(foraging|x)

Flushing vs. No Geese

Foraging vs. No Geese

Landing vs. No Geese

p(flushing|x) > p(No Geese|x) p(foraging|x) > 
p(No Geese|x)

p(landing|x) > p(No Geese|x)
p(No Geese|x) > 

p(Others|x)

Fig. 2. Given a data point x the probability of each behavior and the state of no geese is found through a
directional graph.
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where rI � ð@I@x ; @I@yÞ � ðIi; IjÞ and Ik denotes spatial and temporal partial derivate of

the image. The above equation holds two unknowns, and further constraints are

therefore necessary to estimate the velocity u ¼ ðux;uyÞT . In Ref. 18, Horn and

Schunck combined the gradient constraint (4) with a global smoothness term to

constrain the estimated velocity, minimizing

EðuÞ ¼
Z

ðrI � uþ IkÞ2 þ �ðjjruxjj2 þ jjruyjj2Þdxdy; ð5Þ

where � is a regularizing smoothness term. The estimated velocity is found by an

iterative procedure, ¯nding the minimum of (5). Here we used � ¼ 0:5 and at most

100 iterations per frame, as in Ref. 1, where the optical °ow algorithm was used on

both real and synthetic data.

4.2. Behavior recognition

The implementation of the Rule-Based scheme is presented in Fig. 3, where a °ow-

chart of the recognition scheme is presented. First, the presence of geese is evaluated.

This is based on the magnitude of movement, given by vkði; jÞ ¼ jjukði; jÞjj, present in
the current frame. The magnitude of movement is an image constructed from the

velocity vector estimates at each pixel location ði; jÞ. If no geese are present, the

magnitude has a low value and the presence of geese can be determined by a

threshold on v, denoted by Th in the ¯gure, and given by the region Rk, which are

the pixels in the image at time k above the threshold Th (6). If geese are present, the

three behaviors are estimated based on probability measures derived from the esti-

mated optical °ow, as this gives a measure of the direction and magnitude of the

majority of the velocity vectors.

Rk ¼ fði; jÞjvkði; jÞ > Thg: ð6Þ
Since a change of goose behavior takes place over several frames, it is not suitable

to classify behavior based on one frame alone. To incorporate information of

vk > Th
Calculate

vk

No

Foraging

No geese

Yes
Landing

Flushing

Estimate
p(bi

k|uk)
Estimate

uk

p(bNo Geese
k | uk) = 0.85

Fig. 3. Flow of the Rule-Based Bayesian scheme. First, the optical °ow algorithm is used to estimate the

velocity vectors, and the presence of geese is determined based on the magnitude of movement. The
probability of the state of no geese is set to a ¯xed value of 0:85, as the presence is based on a threshold,

which gives a crisp output, and the fusion requires a soft output. If geese are present, the probability of

each behavior is estimated.
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behavior from previous frames, we propose a Bayesian scheme where probability

estimates from previous frames act as prior information. This is implemented using

Bayes rule (7)

P ðAjBÞ ¼ P ðBjAÞP ðAÞ
P ðBÞ ; ð7Þ

where P ðBjAÞ and P ðAÞ are the likelihood and prior, respectively. The denominator

P ðBÞ, sometimes called evidence,2 ensures that the posterior probability P ðAjBÞ is
a valid probability measure. In our application, B denotes data, which is given by uk

and A denotes behavior, which is given by bik; i ¼ fNo Geese;Foraging;Flushing;

Landingg. At each frame, the posterior probability of a behavior given the data, is

updated based on prior information of this behavior and the current probability of

data given a speci¯c behavior, which is de¯ned as the following:

The probability pðukjb foragingk Þ at time k is based on the movement at ground level

Gk (10) compared to the general movement within the image.

Gk ¼ fði; jÞjj � j0g: ð8Þ

Only velocity vectors resulting in a large magnitude of movement are used to

estimate the probability, as small magnitudes could arise from random noise in the

image leading to a noisy probability estimate. The probability is found by (9)

pðukjb foragingk Þ ¼ ]ðRk \GkÞ
]Rk

; ð9Þ

where the notation ] denotes the counting operator.

The ground level is de¯ned as the lower 40 pixel rows in the 640� 480 pixels

image, given by j0. The part of the image, which is not ground level, is denoted sky

level Sk.

Sk ¼ fði; jÞjj > j0g: ð10Þ

In the scope of this paper, the parameter j0 is a ¯xed value. Methods to auto-

matically ¯nd this value will be addressed in the discussion section.

The probability of data containing landing and °ushing behavior is based on

the direction of the velocity vectors in Sk, which consist of upward and downward

directed velocity vectors (11).

Sk ¼ S "
k [ S #

k : ð11Þ

The directionality is found by evaluating the sign of uy;k, which gives the following

S "
k ¼ Sk \ fði; jÞjuy;kði; jÞ � 0g; ð12Þ

S #
k ¼ Sk \ fði; jÞjuy;kði; jÞ < 0g: ð13Þ

Audio-Visual Recognition of Goose Flocking Behavior
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The probabilities pðukjb flushingk Þ and pðukjb landingk Þ are estimated in the same

manner as with foraging behavior:

pðukjb flushingk Þ ¼ ]ðRk \ S "
kÞ

]Rk

; ð14Þ

pðukjb landingk Þ ¼ ]ðRk \ S #
kÞ

]Rk

: ð15Þ

Using Bayes rule, with the probability estimates from the previous frame as prior,

the posterior probability (pðb ikjukÞ) of a single behavior, is based on estimates from

previous frames (16)

pðbikjukÞ ¼
pðukjb ikÞpðb ik�1ÞP
j pðukjbjkÞpðbjk�1Þ

: ð16Þ

This provides a soft-output from the video stream, which can be used in the

classi¯er fusion described in Sec. 5.1.

5. Audio-Visual Behavior Recognition

The recognition of behavior is based on the methods described in the two previous

sections, and a °ow describing the procedure of the behavior recognition, is shown in

Fig. 4. The vocalizations are recorded and divided into short time sequences and

probability estimates for each behavior is found via SVM. These estimates are fused

with the probability estimates from the video stream. The probability estimates from

the video stream are estimated at frame level based on optical °ow measures and a

Bayesian Rule-Based scheme.

The two streams are synchronized at the classi¯er fusion level, based on the frame

count of the video stream. For every four frames (0.2 s), the estimates from each

stream are fused and a single behavior is classi¯ed based on the fusion described in

Sec. 5.1.

Flock
behavior

Vocalizations

Feature 
extraction

Classification

Microphone

Pre-
processing

Feature 
extraction

Classification
Pre-

processing

Fusion

Camera

Behavior

Short time sequences

Frame level

Fig. 4. The °ow of audio-visual behavior recognition.
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5.1. Classi¯er fusion

The audio-visual fusion is accomplished through classi¯er fusion, where the outputs

(crisp or soft) from multiple classi¯ers are combined. The result is a single output,

which is the combined decision of the classi¯ers. Previously, classi¯er fusion have

been used for various tasks, including audio-visual speech recognition and human

emotion recognition. Classi¯er fusion can be performed with di®erent classi¯ers on

the same data set, using di®erent training data with the same type of classi¯ers or

di®erent data sets, as in audio-visual fusion.20,32,42 The outputs from the classi¯ers

may be used as features for a combining classi¯er or a rule-based fusion. Here we used

a rule-based fusion to implement the fusion, and the result of using the sum, product

and mean rule is presented in this paper. The rule-based approach is fast and easy to

implement, and it is easy to introduce stream speci¯c scaling of the soft-outputs,

based on the performance of the individual classi¯ers. The task of the classi¯er fusion

is as follows. Given R classi¯ers (where R ¼ 2 in this paper), the pattern Z can be

assigned to m possible classes f!1; . . . ; !mg by

assign Z ! !j if

P ð!jjx1; . . . ;xRÞ ¼ maxk P ð!kjx1; . . . ;xRÞ; ð17Þ
where P ð!jjx1; . . . ;xRÞ denotes the probability of class !j given the data, x, from R

di®erent classi¯ers. The rules implemented and tested in this paper are all presented

in detail in Ref. 20.

Product rule. Under the assumption of statistical independence, the posterior

probability of m di®erent classes, given the outputs from R classi¯ers, can be ex-

pressed as a product of the individual conditional probabilities.20 The product rule

assigns the pattern Z to the class !j if the product of the posterior probabilities from

the individual classi¯ers for class !j equals the maximum posterior probability.

Written in mathematical terms in (18).

assign Z ! !j if

P �ðR�1Þð!jÞ
YR
i¼1

pð!jjxiÞ ¼ max
m

k¼1
P �ðR�1Þð!kÞ

YR
i¼1

pð!kjxiÞ: ð18Þ

Sum rule. Under the assumption that the a posterioriprobabilities computed by the

di®erent classi¯ers will not deviate much from the prior probabilities, the above

principles can be repeated using a summation of the posterior probabilities. It is a

rather strong assumption, but it may be satis¯ed when the available data is highly

ambiguous due to high levels of noise.20 The sum rule is given by (19)

assign Z ! !j if

ð1� RÞP ð!jÞ
XR
i¼1

pð!jjxiÞ ¼ max
m

k¼1
ð1� RÞP ð!kÞ þ

XR
i¼1

pð!kjxiÞ
" #

: ð19Þ
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Mean rule. Under equal prior assumptions, the sum rule (19) can be used to

compute the average a posteriori probability for each class over all the classi¯er

outputs. The mean rule assigns a pattern to that class for which the average a

posteriori probability is maximum (20).

assign Z ! !j if

1

R

XR
i¼1

pð!jjxiÞ ¼ max
m

k¼1

1

R

XR
i¼1

pð!kjxiÞ: ð20Þ

When using soft outputs it is possible to scale the output based on the performance of

the individual classi¯er. In the literature, this is known as reliability ratio/measures,

which is often used in human audio-visual speech recognition, where low signal-to-

noise ratio in the audio stream would degrade performance.12,32

Like classi¯er fusion, there exist various strategies and methods for estimating

the reliability of the di®erent classi¯ers. The ratio can be estimated based on per-

formance during training of the individual classi¯ers, and set as static weights on

the output of the speci¯c classi¯er. Another approach is to estimate the reliability

via probabilistic measures in a Bayes network, based on features, signal quality,

etc.,21 and other more or less adaptive strategies. Here, the reliability ratio is esti-

mated based on how con¯dent the speci¯c classi¯er is on its estimate of the be-

havior. Let �ð!�Þ and �ð!��Þ denote the best and the second best probability

estimate from a single classi¯er, the certainty � is found by (21) (notation is inspired

by Ref. 12).

� ¼ �ð!�Þ � �ð!��Þ: ð21Þ

The weights (�audio and �video) found by (21) is multiplied to the output of the

speci¯c classi¯er before the fusion rule is applied. The framework of the classi¯er

fusion enables prior information of behavior. Like the video-based classi¯er, the prior

information is based on knowledge from previous classi¯cations. Here, we denote this

with superscript t� 1:

assign Z ! !j if

�1;...;R � P t�1ð!jÞ � P tð!jjx1; . . . ;xRÞ
¼ maxkð�1;...;R � P t�1ð!jÞ � P tð!kjx1; . . . ;xRÞÞ: ð22Þ

6. Results

The presented methods have been applied to the data described in Sec. 2.3. The

performance have been tested via a 5-fold cross validation technique. We choose to

omit the randomization in the cross validation, as the video-based classi¯er depends

on frame-by-frame comparisons, and randomization of data would violate this. The

results shown in Tables 2 and 3 are the mean performance	 standard deviation from

the ¯ve folds.
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Table 3. Comparison of performance using audio, video or classi¯er fusion,
Sum, Product and Mean (mean	 s.d.). NG ¼ No Geese, FL ¼ Flushing, L ¼
Landing and FO ¼ Foraging.

Performance

Behavior C Accuracya Speci¯cityb Sensitivityc

NG A 0.97	 0.03 0.97	 0.03 0.95	 0.05
V 0.96	 0.03 0.99	 0.01 0.88	 0.01

S 0.99	 0.01 0.99	 0.01 1	 0

P 0.99	 0.01 0.99	 0.01 1	 0

M 0.99	 0.01 0.99	 0.01 1	 0

FL A 0.91	 0.05 0.98	 0.02 0.71	 0.22

V 0.88	 0.08 0.84	 0.11 1	 0
S 0.98	 0.04 1	 0 0.92	 0.17

P 0.98	 0.04 1	 0 0.9	 0.17

M 0.98	 0.04 1	 0 0.92	 0.17

L A 0.88	 0.07 0.88	 0.1 0.88	 0.07

V 0.89	 0.08 0.97	 0.06 0.65	 0.33
S 0.97	 0.04 0.97	 0.06 0.99	 0.01

P 0.97	 0.04 0.97	 0.06 0.99	 0.01

M 0.97	 0.04 0.97	 0.06 0.99	 0.01

Table 2. Normalized confusion matrix showing the performance of audio,
video and classi¯er fusion, Sum, Product and Mean, (mean	 s.d.). NG ¼ No

Geese, FL ¼ Flushing, L ¼ Landing and FO ¼ Foraging.

Predicted

Observed C NG FL L FO

NG A 0.95	0.05 0	 0 0.02	 0.02 0.02	 0.04

V 0.88	0.01 0.11	 0.01 0.01	 0 0	 0
S 1	0 0	 0 0	 0 0	 0

P 1	0 0	 0 0	 0 0	 0

M 1	0 0	 0 0	 0 0	 0

FL A 0	 0 0.71	0.22 0.25	 0.21 0.03	 0.08

V 0	 0 1	0 0	 0 0	 0

S 0	 0 0.92	0.17 0.08	 0.17 0	 0
P 0	 0 0.9	0.17 0.08	 0.17 0.02	 0.04

M 0	 0 0.92	0.17 0.08	 0.17 0	 0

L A 0.06	 0.08 0.03	 0.08 0.88	0.07 0.02	 0.03

V 0.01	 0.01 0.33	 0.32 0.65	0.33 0.01	 0.01

S 0.01	 0.01 0	 0 0.99	0.01 0	 0
P 0.01	 0.01 0	 0 0.99	0.01 0	 0

M 0.01	 0.01 0	 0 0.99	0.01 0	 0

FO A 0.01	 0.01 0	 0 0.07	 0.08 0.92	0.08

V 0	 0 0.01	 0.02 0.08	 0.17 0.91	0.17

S 0	 0 0	 0 0	 0 1	0

P 0	 0 0	 0 0	 0 1	0
M 0	 0 0	 0 0	 0 1	0
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The classi¯cation results are presented in a normalized confusion matrix

(Table 2), which gives the ratio of correct positive predictions (as bold numbers) and

correct negative predictions, where the classi¯er rejects a behavior correctly. Positive

predictions or negative predictions, which are incorrect, are also given in the table.

The performance of the models are given in Table 3, by three measures: accuracy,

precision and sensitivity.

In Table 2 it is seen that the three fusion methods performs almost similar, and

they all improve the overall performance in behavior classi¯cation. In the case of

°ushing behavior, the audio-based classi¯er, which relies on a trained model,c does

not perform well compared to the video-based classi¯er. The fusion improves this, as

both mean and standard deviation show better performance.

The fusion slightly degrades the performance of the video-based classi¯er w.r.t.

sensitivity, and this will be addressed in the discussion section. In Table 3 it is seen

that even though the sensitivity is degraded compared to the video-based classi¯er,

both the accuracy and speci¯city has been improved.

In the case of landing behavior, the roles have changed, and the fusion improves

the video-based classi¯er, which is more confused when detecting landing behavior,

due to the nature of this speci¯c behavior. In Table 2 it is seen that both the mean

and standard deviation are improved, and Table 3 also show improved accuracy and

speci¯city, when detecting landing behavior.

7. Discussion

Based on the results it is seen that fusion of audio and video results in an im-

provement of the recognition of goose °ocking behaviors.

The video-based recognition performs worse than the audio based in the case of

landing behavior. This is due to the nature of landing behavior. Not all geese land at

the same time and some geese might take o® again to ¯nd a better location. This

a®ects the probability of landing, as optical °ow estimation ¯nds both downward

Table 3. (Continued )

Performance

Behavior C Accuracya Speci¯cityb Sensitivityc

FO A 0.96	 0.03 0.97	 0.03 0.92	 0.08

V 0.97	 0.04 0.99	 0.01 0.91	 0.17

S 1	 0 1	 0 1	 0
P 0.99	 0.01 0.99	 0.01 1	 0

M 1	 0 1	 0 1	 0

aRatio of correct predictions (both positive and negative) that were correct.
bRatio of correct negative predictions (the ability to reject).
cRatio of correct positive predictions.

cVery little °ushing data was available.

K. A. Steen et al.

1350020-14



and upward directed movement and a measure of the variance in the directionality

of the optical °ow estimates could be used to improve this in the algorithm. Figure 5

shows the probability output from the video-based classi¯er, when landing behavior

is present. It is seen that at approximately frame 600, the probability of °ush-

ing behavior becomes greater than the probability of landing behavior. Four frames

from this observation is shown in Fig. 6, where Figs. 6(b) and 6(c) are falsely

classi¯ed.

The fusion slightly degraded the performance of recognition of °ushing behavior,

w.r.t. sensitivity, compared to video-based classi¯cation. This is because the soft

output from the audio-based classi¯er tends to behave as a crisp output. This is seen

in Fig. 7 where the probability of °ushing behavior for both the audio- and video-

based classi¯er, is plotted. When the probability of °ushing behavior is high, it is

close to one, and when it is low, it is close to zero. One way of dealing with this issue,

could be to incorporate a bound on the weights for the individual classi¯ers. This

should be done based on the performance of the individual classi¯er. This has not

been done here, but could be investigated, when more audio data is available.

The performance of audio-based recognition of °ushing behavior show poor per-

formance with low mean value and a high standard deviation. As described in

Sec. 2.3, the duration of audio °ushing data is very short compared to the other

behavior classes, and few misclassi¯cations has a high impact on the performance

measure. More °ushing data would provide a more realistic evaluation of the audio-

based °ushing behavior, however it is worth mentioning that the accuracy is high

(Table 3).

The data we used in this paper were chosen to ensure that the geese were visible to

the camera, which in°uenced the amount of °ushing data available for the classi¯ers.

Fig. 5. Evaluation of video-based landing behavior recognition. It is seen that from approximately frame
600 to frame 850, °ushing behavior is most likely. This is because some geese are °ying towards the camera,

resulting in upwards movement, and some geese are taking o® to ¯nd other places to land.

Audio-Visual Recognition of Goose Flocking Behavior
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(a) Frame 560 (b) Frame 600

(c) Frame 700 (d) Frame 900

Fig. 6. Frames from landing behavior. A subsampled optical °ow estimate is plotted to show the di-

rection and magnitude of movement in the frames. In frames 600 and 700, the video-based classi¯er assigns
this behavior to °ushing behavior, as most major velocity vectors are directed upwards.

Fig. 7. Probability of °ushing behavior.
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Cameras have a limited ¯eld of view, and further research within this framework

could include the use of omni-directional cameras, or temporal information to detect

°ushing behavior even after the geese have left the FOV of the camera, but still being

within the range of the microphone.

When the geese are landing or °ushing, the constant °apping of wings, produce

optical °ow vectors, which are directed both upwards and downwards. However, due

to an image smoothing ¯lter in the video preprocessing step and a threshold of the

velocity vectors, this e®ect is reduced. In Fig. 8, this e®ect is shown in the case of

°ushing behavior. Here, the geese are very close to the camera, and the °apping of

the wings introduce somewhat large velocity vectors. In the ¯gure, the black arrows

are the thresholded optical °ow estimates (subsampled for illustration purposes).

The red arrows indicate the smaller velocity vectors, which are removed due to

thresholding. It is seen that some of the larger velocity vectors have a downwards

directionality, due to e.g. the °apping wings. However, the video-based classi¯er is

able to recognize the °ushing behavior, as most of the larger velocity vectors origi-

nates from the goose and not its wings.

The video-based recognition depends on dividing the image into sky level and

ground level. In this paper, this is done manually. However, in a real-life scenario, the

camera position could be altered, deliberately or not. This would degrade perfor-

mance, if the algorithm could not detect these levels automatically. Further work on

the video-based recognition should therefore investigate if methods such as hori-

zontal edge detection, hough transform or image clustering17 could be utilized to

accomplish this.

Furthermore, more adaptive or complex strategies for reliability ratio estimation

exist, and more information about the signals, including signal-to-noise ratio and

time of day, could be used to scale the outputs of the classi¯ers. The methods and

framework presented in this paper makes the addition of new information straight-

forward. This includes using other classi¯ers for the single stream classi¯cation, given

they output soft outputs or can be modi¯ed to do this.

Fig. 8. The °ow of behavior recognition.
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8. Conclusion

Audio-visual fusion has been used for recognition of goose °ocking behavior. The

fusion of the audio- and video-based classi¯er has improved the recognition of goose

°ocking behavior. The improvement of using classi¯er fusion is most evident in the

case of °ushing and landing behavior recognition, where it was possible to combine

the advantages of both the audio- and video-based classi¯er.

The improvement of landing behavior recognition is an important result in this

research, since robust recognition of landing behavior is a critical component of an

adaptive wildlife management system. Immediate detection of landing behavior is

crucial to scare o® geese while they are alert. Audio-visual recognition of goose

°ocking behavior may therefore potentially contribute to the reduction of goose

related crop damage levels.
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