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Abstract
We present a system for sensorimotor audio-visual source localization on a mobile robot.

We utilize a particle filter for the combination of audio-visual information and for the temporal

integration of consecutive measurements. Although the system only measures the current

direction of the source, the position of the source can be estimated because the robot is

able to move and can therefore obtain measurements from different directions. These

actions by the robot successively reduce uncertainty about the source’s position. An infor-

mation gain mechanism is used for selecting the most informative actions in order to mini-

mize the number of actions required to achieve accurate and precise position estimates in

azimuth and distance. We show that this mechanism is an efficient solution to the action

selection problem for source localization, and that it is able to produce precise position esti-

mates despite simplified unisensory preprocessing. Because of the robot’s mobility, this

approach is suitable for use in complex and cluttered environments. We present qualitative

and quantitative results of the system’s performance and discuss possible areas of

application.

Introduction
One of the guiding principles in modern robotics is to mimic biological and in particular
human perceptual processes. Human perception is inherently multisensory, that is, every per-
cept is a product of an integrative process of multiple sensory modalities. Consequently, in
recent years, sensor fusion and multisensory research began to influence each other, linking
both fields of research on a fundamental level: In multisensory research, statistically optimal
solutions for the integration of data from multiple sensory modalities have become an impor-
tant approach for understanding multisensory integration processes of basic features [1] [2] [3]
and sensory coding in general [4]. Statistical optimality has always been a dominant approach
in the field for sensor fusion because it provides an inherent link to information theory, which
is the mathematically intuitive approach for the combination of noisy data originating from
multiple sensors.

Source detection and localization received a lot of attention in the last decade and there are
a variety of unisensory [5] [6] [7] as well as multisensory [8] [9] [10] approaches that have
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been proposed. While there are approaches for accurate and relatively robust auditory source
localization, they often require expensive microphone arrays [7] [11] [12] [13] and are not
suited for biologically plausible modeling. Auditory source localization systems also tend to be
prone to noise and reverberation, so that an additional source of information is highly advis-
able in order to increase robustness of the system. In contrast, unisensory systems utilizing
only visual input are problematic, because most cameras feature only a small field of view, lim-
iting their usefulness for source detection and localization systems. Moreover, ambiguous
scenes and occlusion can degrade performance. Consequently, utilizing multiple sensory
modalities, in particular combining the complementary properties of vision and audition,
seems to be a promising approach to solve these problems: Auditory source localization sys-
tems have the advantage that they can monitor all directions, allowing a quick disambiguation
of the scene while the visual modality offers a high spatial resolution, which allows a system to
improve the rough audition-based estimate as soon as the set of possible locations is sufficiently
small. Audio-visual approaches to source localization for use on mobile robots [14] [15] are
rare and mostly focused on specific areas of application, where the movements of the robot
were unrelated to the source localization system. In contrast, our system incorporates autono-
mous movements of the robot to optimize source localization performance.

As an alternative to existing systems, we present a biologically-inspired audio-visual
approach to the problem of source localization using stereo microphones and a camera. The
main novelty of our approach is twofold: First, we use a mobile robot that integrates measure-
ments obtained from different locations using a particle filter. Second, we use an information
gain (IG) mechanism for selecting the most effective actions in order to actively reduce uncer-
tainty via movements. The system accomplishes this selection by analyzing its current belief
distribution about the source location and by determining a set of possible actions. It then pre-
dicts the influence of each of these actions and the consecutive auditory and visual measure-
ments at the respective target position on its current belief distribution. After comparing the
results of these predictions, the system selects the most informative action in order to minimize
the expected uncertainty. This approach is inspired by the recent development of theories
which reject the assumption of perception as a mostly passive generalization of the properties
of coincident stimuli. In particular, the development of theories of the embodied mind in
empirical psychology and philosophy of nature [16], the proposal of sensorimotor systems in
biologically-inspired research in computer science [17], the reinterpretation of the role of
motor actions as the binding element between the senses in multisensory research [18], as well
as active perception approaches in robotics [19] all suggest that multisensory perception is an
inherently active process. In practice, possible fields of application of the proposed system
include social and rescue robotics as well as automatic camera control systems for video
conferences.

Methods
We implemented the system on a mobile robot (Pioneer P3-DX), on which we mounted a robot
head which can perform -90 to +90 degrees rotations in the azimuth plane and -30 to +30 degrees
rotations in the median plane. The robot’s head features an integrated camera system as well as
in-ear stereo microphones, which are mounted in biologically-realistic human-like pinnae
(Kemar KB0065/66) attached to the sides of the robot’s head (see Fig 1). This setup is designed to
mimic the human outer ear system (that is, pinna, auditory canal and eardrum) in order to use a
biologically realistic setup and to allow basic modeling of human auditory processes.

An overview of the system’s main components and the basic dataflow is shown in Fig 2.
After each action audio data and camera images are recorded. Currently, the system only
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processes measurements between the execution of actions in order to avoid noisy measure-
ments resulting from motor sounds and moving sensors. The recorded stereo audio data is
then transformed into a time-frequency representation, which is used for sound source locali-
zation by estimating interaural temporal differences (ITDs). The recorded camera images are
evaluated by applying an object detection algorithm and by assigning probabilities for the pres-
ence of the source to each of the positions of possible targets inside the image. The integration
of auditory and visual measurements as well as the temporal integration of consecutive mea-
surements is achieved by a particle filter, which updates the current belief distribution over
possible source positions based on a sensor model for each modality linking the respective
measurements to the associated states.

A key feature of the architecture proposed in this paper is the utilization of an IG mecha-
nism for the selection of the optimal action in each step, which is indicated as a feedback loop
in Fig 2. Based on the belief distribution about the source’s current position, the system predicts
the effects of a set of possible actions, estimates their expected influence on the belief distribu-
tion and executes the most informative action. This is repeated until the uncertainty is smaller
than a threshold. The components of the system are described in greater detail in the following
subsections.

Fig 1. Robot and Robohead. A) The robot we use for evaluating the proposed approach. B) The robot is equipped with a rotatable head, which features an
integrated camera, biologically-realistic pinnae, and in-ear stereo microphones.

doi:10.1371/journal.pone.0137057.g001

Information-Driven Active Audio-Visual Source Localization

PLOS ONE | DOI:10.1371/journal.pone.0137057 September 1, 2015 3 / 24



Audio Processing
After each movement, audio data is recorded by the pinna-modulated stereo microphones and
the recorded data of both channels is transformed into a biologically-plausible time-frequency
representation by a gammatone filterbank [20].

The basic time-domain filter equation (the impulse response) of Gammatone filters is
defined as

gðtÞ ¼ atn�1e�2pbtcosð2pft þ φÞ: ð1Þ

Here, a denotes the amplitude, t denotes time, n denotes the order of the filter, b the bandwidth,
f the center frequency, and φ the phase of the filter. The impulse responses of Gammatone fil-
ters are effectively a product of a tone (cosine) and a scaled gamma function. The resulting
time-frequency representation is commonly known as a cochleagram, implying that the result-
ing time-frequency representation is trying to model the processing properties of the human
cochlea. In the following, we denote the cochleagrams for the left and the right ear as cl[k, t] =
al[t] � gk and cr[k, t] = ar[t] � gk, where the asterisk denotes filtering, gk denotes the k-th filter in
the filterbank and al[t] and ar[t] represent the auditory input of the left and right ear,
respectively.

We choose Gammatone filterbanks as a means for generating a time-frequency representa-
tion because they are specifically designed to provide a biologically-plausible but still computa-
tionally-efficient solution. Since their introduction in [20], they have become the standard
time-frequency-representation in auditory modeling for real-time systems [21]. With appro-
priate parameterization (based on empirical biological data, typically the ERB-scale, see [22]),
the transfer functions of Gammatone filters are close to those of human inner-ear cells, show-
ing, e.g., the characteristic increase of bandwidth with increasing center frequency of the filters.
There are efficient implementations of Gammatone filters available, utilizing complex recursive
time domain filters [23], which is desirable for use on a robot.

Fig 2. SystemOverview. The main components and basic dataflow of the proposed information-driven multisensory system.

doi:10.1371/journal.pone.0137057.g002
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We use a filterbank with 128 channels with center frequencies between 75 and 1800 Hz.
After generating cochleagrams for the audio input of the left and right ears, these are used to
estimate the position of the source. For auditory source localization we use a classic binaural
approach based on ITDs [24](While a filterbank with 128 channels seems excessive for the cal-
culation of ITDs, we choose to include a high number of channels because we are interested in
investigating whether the transfer function induced by the artificial pinnae influences the per-
formance of ITD-based source localization.): The basic idea of this approach is that sound
takes time to travel from one ear to the other and that this temporal delay can be utilized to
determine the azimuthal position of the source. This delay increases monotonically with the
azimuth angle, though not linearly (at least in our case; it depends on the shape of the robot’s
head). The basic principle is illustrated in Fig 3. In practice, we measure the difference of the
time of arrival between the left and right channel. In our system, this is achieved by calculating
the normalized cross-correlation between the cochleagram representations of the recorded
audio signals of the left and the right ear

R½t� ¼
P

k0;t0 ðcl½k0; t0�cr½kþ k0; t þ t0�ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k0 ;t0cl½k0; t0�2

P
k0 ;t0cr½kþ k0; t þ t0�2

q : ð2Þ

Here, cl and cr denote the left and right cochleagram, respectively, k denotes the channel within
the filterbank and t denotes time. The correlation results can be used to estimate the temporal
delay between the left and right ear by identifying the index t for which cross-correlation is

Fig 3. Interaural Temporal Differences.Depending on the position of the source, the emitted sound needs
a different amount of time to travel to the individual ears. By estimating this interaural delay, the listener is
able to identify the position of the source.

doi:10.1371/journal.pone.0137057.g003

Information-Driven Active Audio-Visual Source Localization

PLOS ONE | DOI:10.1371/journal.pone.0137057 September 1, 2015 5 / 24



maximal. The measured delays with maximum correlation can then be mapped to their corre-
sponding angles because this mapping is monotonous and relatively unambiguous. In order to
estimate a reasonably precise mapping, we measure ITDs for the robot’s head with approxi-
mately 6 degree spacing using a speaker array arranged in a semi-circle in a semi-anechoic
chamber for 240 training samples. For each of the 31 positions we then calculate the mean ITD
(averaged over all training samples for the respective position) and the corresponding standard
deviation to define our auditory sensor model, which is used to find the angles corresponding
to a particular delay and is described in further detail below. The decision to calculate ITDs uti-
lizing a cochleagram representation (in contrast to calculate them directly on the time-domain
data) is mostly motivated by the observation that time-frequency representations seem to be
less prone to noise. Furthermore, as we are using bandpass filters with center frequencies
between 75 and 1800 Hz, only a relatively limited set of frequency bands is considered, which
reduces sensitivity to high-frequency noise.

On a test set of 480 audio files (15 for each speaker-position) recorded in the same semi-
anechoic chamber, this mapping results in perfect performance (i.e., correct identification of
speaker position), while noisy and reverberant audio data lead to decreases in performance and
in some rare cases even to wrong estimates. Thus, in noisy or reverberant rooms, preprocessing
with denoising and dereverberation algorithms is advisable. We intentionally choose to only
use ITDs as auditory features in order to show that even a simplified auditory feature extraction
process is sufficient to get precise position estimates when utilizing it on a mobile system. But it
is important to note that there are restrictions to utilizing ITDs for auditory localization: Most
importantly, no localization in median plane is possible because, in most cases, there are no
position-dependent temporal delays between the ears which would allow the robot to differen-
tiate elevations. Furthermore, ITDs are not suitable for frequency bands over approx. 1600 Hz
because the short wavelength of these sound waves leads to phase ambiguities [25] [26]. How-
ever, Breebart et al showed for human listeners that low-frequency HRTF phase characteristics
can be described by a single interaural delay without significant decrease of localization perfor-
mance and that the absence of high-frequency phase information does not result in perceivable
changes [27]. Thus, as long as we are focusing on azimuthal localization, utilizing only ITDs
based on low-frequency cochleagram-data seems to be a reasonable approximation. It should
be noted that, in order extend our approach to localization in the median plane, it would be
necessary to modify the auditory feature extraction stage to be able to utilize frequency-depen-
dent interaural level differences (ILDs) or explicit HRTF-based cues, which inherently combine
both features (ITDs and ILDs) [28] [29].

Using only ITDs for auditory source localization has the further disadvantage, that the esti-
mation of a source’s distance is principally impossible, because ITDs are not distance-depen-
dent, but we show below that our system is able to overcome this restriction by performing
actions during source localization.

Visual Processing
In each step, images are recorded by the robot’s camera and an object detection algorithm is
applied to the recorded image in order to determine the position of the source. We use a simple
template matching approach for the detection of objects, again utilizing normalized cross-cor-
relation defined in Eq (2) as a similarity measure. We use multiple templates for each object in
order to achieve basic rotation- and scale-invariance. We choose an object detection approach
based on template matching utilizing a filterbank and normalized cross-correlation in order to
introduce a basic parallelism between the auditory and the visual modality to the system,
which is indicated by biological and psychological research. Moreover, as we mostly want to
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evaluate the performance of the information-driven action-selection process, we use a rather
simple approach for visual source localization.

Before applying the template matching algorithm, all camera images and all templates are
filtered by a first-order Gaussian derivative filter (with standard deviation 1.8) in x- and in y-
direction. This filtering is a combination of a smoothing (Gaussian lowpass) and a gradient
operation (derivative), which reduces the system’s susceptibility to noise and avoids some of
the problems typical for template-matching based approaches (like issues with areas of uniform
intensity and contrast inconsistencies due to illumination changes). It also introduces basic
invariance properties to the system: The smoothing operation leads to a greater robustness
with respect to rotation and scale while the gradient operation reduces the effects of illumina-
tion and contrast variations.

The resulting cross-correlation-images for the different templates are combined by a maxi-
mum-operation

Imax½x; y� ¼ maxðI0½x; y�; I1½x; y�; :::; In½x; y�Þ;

where Ik denotes the “cross-correlation-image” for the k-th template. Consequently, we analyze
each of the cross-correlation images and determine the maximum correlation for each pixel
position. Since we are currently only interested in localization in the azimuth plane, we also
apply a maximum-operation over all elevations:

zv½x� ¼ maxyðImax½x; y�Þ:

This operation results in a one-dimensional feature vector zv, whose individual elements corre-
spond to the maximum correlation for a particular azimuthal position. Below we explain how
these feature vectors are used for source localization in more detail.

A problem of utilizing the visual modality for source detection and localization is that, in
many cases, the source is not visible in the camera image due to a relatively small field-of-view.
Especially during the early phases of source detection (that is, when the system has very little
information about the source’s position), the usefulness of the visual modality for source locali-
zation is therefore limited. In contrast, as soon as the system has a rough estimate, it can utilize
vision to improve the spatial accuracy.

In order to calculate probabilities for the presence of the source for each pixel/direction in
the recorded image based on the template matching results, we use logistic regression [30] [31].
To train the logistic regression model, we use a set of training images recorded by the robot’s
camera under realistic conditions, apply the template matching procedure and manually label
the positions of the respective bounding boxes of the source. This means that all locations/pixel
positions which are occupied by the source are labeled with 1 while empty/wrong positions are
labeled with 0. This allows us to utilize the resulting Boolean “bounding box images” to train
the logistic regression model, which we can use to convert the template matching results to
probabilities for the presence of the source.

A potential drawback of utilizing template matching for object detection are the sparse
responses associated with these algorithms: They typically result in high responses for a specific
location where an appropriate template is perfectly aligned, but produce low responses in the
neighborhood [32]. While the mere presence of an object can be reliably detected by template
matching, we do not get any appropriate spatially extended bounding boxes. In our system,
this could lead to low probabilities for positions which are occupied by the source, but which
are not appropriately aligned with any of the templates. This can result in low performance,
because it leads to noisy data for the visual modality. Furthermore, in our implementation,
template matching results already tend to be very noisy (i.e., high correlations for “wrong”
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locations) due to the maximum-operation over all elevations and all templates. We try to over-
come these problems by not only using the correlation response for a single pixel as input for
logistic regression, but also the average response of the region around a pixel position, which
we combine into 2-dimensional feature vectors that are used to train the logistic regression
model. Example responses of visual processing results with and without application of the
logistic regression model are shown in Fig 4A and 4B. Fig 4A shows the template matching
result (after the maximum-operation over all elevations and templates) and Fig 4B shows the
output signal after applying logistic regression: While it is clearly visible that there is a single
position which exhibits a maximal response corresponding to the most appropriate template,
the application of the logistic regression model leads to increased responses inside the neigh-
borhood of the respective pixel position and to reasonable bounding boxes for objects. More-
over, in contrast to the data generated by the template matching procedure, it results in very
low probabilities for areas, in which the source is not present. This is an interesting finding, as
it suggests that the application of this logistic regression model reduces the signal-to-noise-
ratio of the template matching results, which deserves further investigation.

Audio-Visual Integration
We use a particle filter based on importance resampling [33] for the integration of auditory
and visual data and for the temporal integration of consecutive measurements. The basic idea
of particle filters is to approximate the probability density function (PDF) of the current state

Fig 4. Visual Processing: Logistic Regression. A) Result of the template matching procedure B) Effect of the application of the logistic regression model.

doi:10.1371/journal.pone.0137057.g004
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by a finite set of samples (referred to as particles). While Kalman filters [34], which are the
most popular approach for source localization [5] [35] [36], require the underlying models to
be normally distributed, particle filters are a non-parametric approach and are thus able to rep-
resent a much larger class of distributions. In particular, particle filters allow the system
dynamics and measurement update to be described by non-linear functions, and they allow the
PDF of the current state to be a multi-modal distribution. Being able to represent multi-modal
distributions is essential in our approach due to localization ambiguities caused by auditory
measurements (see below).

The goal of audio-visual integration is to estimate the posterior PDF p(xtjz0:t, u0:t) where xt
denotes the source location at time t, z0:t = z0, . . ., zt denotes the sequence of all measurements
over time, and u0:t denotes the sequence of controls the robot executes over time. The state xt is
a vector xt = (xt;φ, xt;d, xt;r)

T where xt;φ 2 [−π, π] is the direction of the source and xt;d is the
Euclidean distance of the source, both expressed in a robot-centric coordinate system. In addi-
tion, xt;r 2 [−π/2, π/2] is the current rotation of the robot’s head with respect to the robot’s
“body”, which has to be estimated as well due to noise associated with the execution of controls
for head rotations. The PDF of the current state can be updated recursively over time in two
steps: a prediction and a correction step. The equations underlying both steps are approxi-
mated by the particle filter [37].

Prediction Step. The prediction step is performed whenever the state changes. Here, we
assume that the location of the source does not change over time (although this assumption is
not required by our approach) and, as a result, state changes only occur due to actions by the
robot. These changes are described by a dynamics model p(xtjxt − 1, ut) where ut represents an
action that leads to a new state xt. Using the dynamics model, the state distribution p(xt − 1jz0:t
− 1, u0:t − 1) at time t − 1 can be updated in order to obtain the proposal distribution p(xtjz0:t − 1,
u0:t) that does not yet contain the latest measurement zt.

pðxtjz0:t�1; u0:tÞ ¼
Z
xt�1

pðxtjxt�1; utÞ pðxt�1jz0:t�1; u0:t�1Þ dxt�1 ð3Þ

The above equation holds if the underlying process satisfies the Markov property, i.e., the cur-
rent state only depends on the previous one.

Because we assume a static source, the dynamics model p(xtjut, xt − 1) is given by simple geo-
metric transformations describing the robot’s movement and additive Gaussian noise: The
control ut determines the relative 2D translation and rotation of the robot itself, and it also
describes how the robot’s head rotation changes. Because the source location is represented in
the robot’s coordinate system, translation and rotation of the robot simply require transform-
ing the source location correspondingly.

For the case of a moving source, the dynamics model also has to reflect the movement of the
source in addition to the coordinate system changes caused by the robot’s movement. The sim-
plest way of achieving this would be to assume a constant velocity for the source and noisy
acceleration, in which case the state vector has to be extended by the source’s velocity [38].

Correction Step. In the correction step, the proposal distribution produced by the predic-
tion step is updated based on a new measurement zt. This is achieved by applying Bayes’ theo-
rem where measurements are assumed to be conditionally independent.

pðxtjz0:t; u0:tÞ / pðztjxtÞ pðxtjz0:t�1; u0:tÞ ð4Þ

The likelihood p(ztjxt) represents the sensor model where measurement zt = (zt;a, zt;v)
T con-

sists of an auditory component zt;a and a visual component zt;v. Given the current state xt, these
components can be considered as approximately conditionally independent, which is why the
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likelihood in Eq (4) can be factorized into an auditory sensor model and a visual one (and in
case there are additional sensors, these can be easily incorporated into the likelihood as well).

pðztjxtÞ ¼ pðzt;ajxtÞ pðzt;vjxtÞ ð5Þ

Eqs (4) and (5) provide the basis for the multisensory integration in our approach. The
assumption of conditional independence in Eq (5) is quite reasonable in this context because
the state (relative position of the source) determines both the visual and the auditory measure-
ments aside from noise, which is independent for both modalities. Conditional independence
only breaks down in case there are additional factors influencing both modalities that are not
reflected by the state representation (e.g. a person walking between the robot and the source).
However, even in such situations, the system could probably recover due to the integration of
multiple measurements over time.

Auditory Sensor Model. The sensor model for audition p(zt;ajxt) describes the probability
density for a certain ITD given the current state xt. We model this distribution as a Gaussian
for which we learn the parameters (mean and variance) by evaluating a test set of annotated
audio files, which we recorded in a semi-anechoic chamber: Using a set of 31 speakers arranged
in a semicircle (corresponding to 6 degrees separation between consecutive speakers), we pres-
ent test stimuli to the robot and calculate ITDs with the procedure presented above. For each
speaker position xk, we can then calculate the mean μk and standard deviation σk of the ITD
response (zt;a), which allows us to define the sensor model for audition by:

pðzt;ajxt;kÞ ¼
1

sk

ffiffiffiffiffiffi
2p

p e
�zt;a�mk

2s2
k : ð6Þ

In order to simulate front-back-mixups frequently found in perceptual experiments on
humans in audition [39] [40], we are intentionally using the same sensor model for positions
in front of the robot’s head and corresponding positions to the back of the robot’s head. As we
show below, front-back-confusions can be easily disambiguated in our source localization
approach by integrating multiple measurements and actions into a single estimate.

Visual Sensor Model. The sensor model for vision p(zt;vjxt) directly uses the values pro-
duced by the template matching/logistic regression approach discussed above. For this, the par-
ticle location, which is represented in a robot-centric coordinate system, is first transformed
into a camera-centric one and the resulting angles are mapped to their corresponding pixel
positions. If the location is within the field of view of the camera, the system can now evaluate
the feature vector (the output of the logistic regression model, see Fig 4) at the corresponding
angle to obtain an estimate for the probability of the presence of the source for this location.

In many cases, the location corresponding to a particular direction xt;φ is not visible in the
camera image though due to the limited field of view of the camera. In these cases, the particles
in question are not updated because the measurement contains no information about the cor-
responding locations.

Action Selection by Information Gain Maximization
In our approach, the central principle for selecting actions is to choose the most informative
ones. This is achieved by maximizing the expected information gain with respect to the current
PDF approximated by the particle distribution. The expected information gain IG of an action
ut is defined as the expected difference in uncertainty (measured by entropy H) between the
current PDF at t − 1 and the PDF at time t after having executed action ut and having recorded
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a new measurement zt [41]:

IGðutÞ ¼ Hðxt�1jz0:t�1; u0:t�1Þ � Ezt
½Hðxtjz0:t; u0:tÞ�: ð7Þ

The distribution at time t − 1 is directly given because it corresponds to the current particle
set. Because measurement zt is not known prior to executing action ut, the expected value Ezt
with respect to zt has to be computed in order to obtain an uncertainty estimate for time t.
Because zt is furthermore continuous, a finite number of samples is randomly drawn from the
sensor models in order to compute the expected value Ezt. Update Eqs (3) and (4) (or rather,
their sampling-based particle filter implementations) can then be applied to approximate the
expected distribution after having executed action ut.

For measuring the uncertainty of the state, we only consider the positional uncertainty of
the source and ignore the robot’s head rotation xt;r. We discretize the distribution over posi-
tions by a histogram where the probability of each bin is calculated from the number of parti-
cles located inside the bin. For this, it is essential to transform positions into a Cartesian
representation first because the polar representation used by the particle filter has the disad-
vantage that the resulting histogram bins would not cover the same amount of area (when
dividing both, angle and distance, linearly), which would distort the uncertainty estimate. Let

xðiÞt denote the discretized position expressed in Cartesian coordinates corresponding to the i-
th histogram bin. For this discretized distribution, the entropy H is given by

Hðxtjz0:t; u0:tÞ ¼ �
X

i

PðxðiÞt jz0:t; u0:tÞ logPðxðiÞt jz0:t; u0:tÞ: ð8Þ

Because the entropy for time t − 1 is constant with respect to ut in Eq (7), it can be ignored
for the optimization problem, and the maximization of the expected IG becomes a minimiza-
tion of the expected entropy with

arg min
ut

ðEzt
½Hðxtjz0:t; u0:tÞ�Þ: ð9Þ

It is not possible to calculate the expected uncertainty for every realizable action ut because
all parameters (angle head rotation, angle robot rotation and distance of robot translation) are
continuous. Thus, in order to choose the most informative action in practice, actions are sam-
pled randomly. Moreover, in order to avoid situations in which all or most sampled actions
coincidentally lead to similar target states, we ensure that important target positions are repre-
sented in the set of simulated actions at least once. For this, we divide each of the three compo-
nents constituting an action in our system into subintervals and randomly sample at least one
action within each combination of these intervals. Because the range of values of these parame-
ters is continuous, the number of intervals and the number of simulated actions has to be
decided based on the particular application. In the following, we use six intervals for the head
direction, six intervals for the rotation of the robot and four intervals for translation distance
(between 0.3m and 2.0m), which corresponds to 144 different actions. Once the expected IG
has been computed for every action, the action resulting in the lowest expected uncertainty is
executed by the robot.

While the calculation of the IG requires additional computational resources, it minimizes
the number of actions the mobile robot has to execute in order to achieve accurate position
estimates. Furthermore, in order to save computation time, it is always possible to use a
reduced particle set for the calculation of IG. While this can potentially lead to worse estimates
of the entropy of the resulting particle distribution, in most cases the accuracy is still sufficient.
The main advantage of integrating movements of the system itself into our source localization
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system is that it allows integrating multiple consecutive measurements from different positions,
which results in better estimates. In particular, this enables the robot to estimate the distance of
the source, which is very hard to achieve in vision with a single measurement, and is to our
knowledge practically impossible in audition.

Results
In this section, we evaluate the performance of the proposed system and investigate whether
the information gain procedure is an efficient solution to the action selection problem for
source localization. We divide the presentation of our results in two subsections: In the first
section, we present results of the proposed system in a simulation environment while, in the
second section, we present results of the system running on the robot. The evaluation in the
simulated environment mainly serves as proof of concept. The simulation environment allows
for an easier and more thorough evaluation and quantification of the system’s reactions to dif-
ferent situations because no additional hardware-based tracking of the robot and the source is
needed to compare estimated and actual positions. In contrast, experiments utilizing the robot
are the only way to ensure that the proposed system is able to handle real-world applications.

Simulation Experiments
At first, an example run of the system is presented in order to demonstrate the behavior of the
system and to show the main principles of our approach. Second, quantitative results are pre-
sented, including an evaluation of the average estimation error and an analysis of the entropy
of the PDF estimate.

To simulate auditory measurements, we are using test files which were recorded by the
robot under real-world conditions. These test files were tagged by direction and were selected
randomly while ensuring that the selected test file is appropriate for the respective relative posi-
tion of the source. Since it is difficult to record realistic camera images for all possible states, we
simulate visual measurements by generating them artificially. This is accomplished by generat-
ing feature vectors which resemble those resulting from the template matching and logistic
regression approach described above. We approximate these responses by a mixture model
consisting of a Gaussian for the bounding box of the source and a uniform distribution repre-
senting noise. The parameters of this model are fitted to a dataset annotated with the true posi-
tions and sizes of the source inside the image.

Fig 5A to 5D show the effects of the measurement updates for the individual modalities. In
Fig 5A, the initial uniform particle distribution is shown, while Fig 5B to 5D illustrate the
updates of the particle distribution for auditory and visual measurements and their combina-
tion. These figures illustrate an interesting synergy of modality-specific properties in our sys-
tem: While auditory measurements are effective for reducing the number of possible
hypotheses about the position of the source by a single measurement (auditory measurements
update all particles at once), visual measurements offer a high spatial precision but a small field
of view and thus can be used by the system to improve the position estimate based on the audi-
tory measurement.

To exemplify the system’s behavior, an example run of the system is shown in Fig 6A to 6H.
These figures illustrate that, after initialization, the system utilizes audition to reduce the set of
possible positions, exploiting the fact that audition can remove many hypotheses by a single
measurement. As soon as the ambiguity of the particle distribution is sufficiently reduced, the
robot turns its head towards the source for a more precise localization utilizing the visual
modality. Moreover, these figures show a distinctive property of the proposed system: In order
to improve the localization estimate, the simulated robot tends to approach the source, which
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Fig 5. Initial State And Updates. These figures show the initial particle distribution in a robot-centric coordinate system whose origin corresponds to the
center of the robot (indicated by a green dot and a green line which illustrates that the robot’s head is rotated toward its front) while the x- and y-axis
correspond to the left/right and front/back of the robot, respectively. Particles are depicted as blue dots while the source’s actual position is indicated by a
green star. The mean of the particle distribution is symbolized by a red dot. We chose to include it in these figures because we use it as a state estimate when
calculating distances to the actual position of the source. A) After initialization all particles are distributed uniformly in the state space, which implies that the
system does not have any information about the location of the source, which is located in front of the robot. B) The initial auditory correction update
eliminates all particles located to the left and right of the robot because they are not compatible with the measurement. The width of the cone around the “true
position” directly corresponds to the standard deviation parameter of the Gaussians in the auditory sensor model. This correction update is also a good
example for the front-back confusion in audition: Based on the ITD-measurement, the system cannot distinguish whether the source is in front of or behind it,
and thus treats corresponding particles behind and in front of it the same way.C) The initial visual correction update shows the characteristic properties of
the visual modality within our system: Visual measurements have a high spatial precision but particles corresponding to positions outside the field of view of
the camera are not updated because the measurement contains no information about these positions.D) The combination of both sensory updates
shows the interaction of the modalities: The visual modality is able to increase the precision of the estimate based on the auditory measurement but provides
no information about locations outside the field of view.

doi:10.1371/journal.pone.0137057.g005
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Fig 6. Example run of the system. The figures in the top row show the position of the simulated robot, the
source, and the actions performed by the robot in a room-centric/absolute coordinate system, while the
figures in the bottom row show the current particle distribution in the robot-centric coordinate system. We
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can be explained by the fact that the auditory measurements are more precise if the distance to
the source is small.

In Fig 7A, the average error of the position estimate is shown as a function of the number of
actions. To measure the accuracy of the estimates, we calculate the root mean square (RMS)
error by err ¼ absðx� x̂Þ where x denotes the actual location of the source and x̂ denotes the
system’s position estimate. For this, x and x̂ are both represented in Cartesian coordinates

include both types of plots, because it is easier to analyze the particle distribution in a robot-centric coordinate
system while the depiction of robot movements is only possible in an absolute reference system. A) and B):
Initial state after the first measurement. C) and D): State after first movement and subsequent measurements.
E) and F): State after the second movement. G) and H): State after the third movement.

doi:10.1371/journal.pone.0137057.g006

Fig 7. Average RMS error (simulation). Utilizing the IG procedure (blue curve), the average RMS error decreases monotonically with the number of actions
performed by the system and only few actions are needed for a precise estimate. With randommovements (green curve), localization accuracy is
considerably worse, indicating that the IG procedure is an efficient solution for the selection of actions.

doi:10.1371/journal.pone.0137057.g007
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because the resulting values then directly correspond to the Euclidean distance between the
system’s estimate and the actual position of the source, which makes interpretation easier. Fig
7A clearly shows that the system is able to localize the source with high accuracy: Initially (after
the first measurement), the position estimate is still ambiguous, which is explained by the fact
that the system has little information about the distance of the source, because the individual
measurements of both modalities only provide information about the relative direction of the
source. After the second action and consecutive measurements, the average RMS error is
already below 0.4m and, after 4 actions, it is already smaller than 0.2m. This is a good result
considering that the spatial precision of the measurements (particularly audition) is not very
high and that the additive Gaussian noise for the robot’s translation movements is modeled
with a standard deviation of 0.08m in the motion model. In summary, the system is able to pro-
duce an accurate position estimate and only needs few actions and consecutive measurements
to accurately estimate the source position.

In order to evaluate whether the IG procedure actually improves localization performance,
we conducted an additional set of experiments, where actions were selected randomly by the
system and the IG procedure was deactivated. The results are shown in Fig 7B. Comparing the
average RMS error of information-driven source localization to the results of source localiza-
tion utilizing random movements, it is noticeable that the IG procedure leads to a substantial
improvement of localization performance: The initial error (after the first sensory measure-
ments) is similar for both approaches because the system has not performed any actions yet
and thus there is no difference between both. But when comparing the results of both experi-
ments after the system has executed actions, it is obvious that, in each step, the localization
accuracy is considerably worse if movements are selected randomly.

The IG procedure is based on the minimization of the expected entropy of the PDF esti-
mate. Thus, in order to evaluate the action-selection process, we calculated the entropy aver-
aged over all experiments as a function of the number of actions performed by the system and
compared the results to the system variant utilizing random movements. The results are pre-
sented in Fig 8. The entropy of the estimated PDF decreases with each action and the number
of actions needed to achieve an precise estimate is minimized. By interpreting entropy as a
measure of uncertainty, these results show that the system is actively trying to reduce uncer-
tainty with respect to the position estimate. The average entropy is clearly reduced with each
action when utilizing the IG procedure, while randommovements rarely lead to drastic reduc-
tions of entropy and the impact of each action is smaller in general.

Moreover, the number of actions required to reach a criterion RMS error of less than 30cm
serves as an indicator of localization performance. As shown in Fig 9A, the IG procedure
requires fewer actions to reach the criterion in comparison to randomly selected movements.
This impression from descriptive statistics is confirmed by a Mann-Whitney test (α = .5)
which indicates a significantly lower number of actions using the IG procedure (Mdn = 2) com-
pared to random selection of movements (Mdn = 5), U = −8.67, p<.001.

Robot Experiments
In this section, we present results of the system’s source localization capabilities under more
realistic conditions implemented on a robot that is able to move freely inside an empty room.
For now, we are using an empty room in order to abstract from obstacle detection and avoid-
ance. We used cardboard to separate an area of 5.5m × 4.5m from the rest of the 7m × 6m
room in order to provide a relatively uniform background for the template matching algorithm
and to protect the robot from driving into walls or other objects due to technical failures. To
continuously determine the actual position of the robot and its relative position to the source,
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we use the robot’s integrated dead reckoning. Apart from the fact that the data presented in
this section is collected by the actual robot system, we are using the same procedure as above.

We kept the target elevation consistent (1.2m above the floor) between experiments because
our system is currently designed for azimuthal localization only and we wanted to minimize
sources of error. The initial relative position between the robot and the source was measured
manually. As the source is assumed to be static in our setup, its position relative to the robot
only has to be measured once before each experiment. In order to minimize measurement
errors, we chose to select only initial positions for which the source was located on one of the
main axes of the robot-centric coordinate system. That is, it was located either directly in front
of, behind, to the left, or to the right of the robot to simplify the measurement of the initial

Fig 8. Entropy of the PDF estimate (simulation).When utilizing the IG procedure, the entropy of the PDF estimate decreases on average with each action,
while the estimate of the source’s position gets more precise. While randommovements also lead to a monotonic decrease of entropy, the comparison of the
curves shows clearly that the IG procedure is reducing the remaining uncertainty more efficiently.

doi:10.1371/journal.pone.0137057.g008
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position of the source relative to the robot. This simplification is justified because the simula-
tion results show that the initial relative position of the source is mostly irrelevant for localiza-
tion performance in our setup. The distance was varied randomly between -2m and 2m. We
conducted a total of 20 experiment runs, which seemed to be a good compromise between
expenditure of time and statistical interpretability.

Most natural sounds of interest for our application are relatively broadband and contain sig-
nificant low-frequency energy. We thus used high-bandwidth noise patches as auditory stimuli
which contain sufficient low-frequency components to make the auditory localization based on
ITDs feasible. We use a cylindric object textured with a black and white pattern as a visual
stimulus, which is relatively easy to detect utilizing the template-matching-based object detec-
tion approach. In order to achieve better performance during visual object detection, we cre-
ated a set of 112 templates for different positions, robot orientations, and distances.

Figs 10 and 11 show the results of the robot experiments. In Fig 10A, the average RMS error
is plotted as a function of the number of actions, averaged over all experiments. The initial
error after the first measurement is similar to the simulation results, showing that sensory mea-
surements are of similar quality in simulation and in the robot scenario. After the first

Fig 9. Localization performance. The result show a significantly lower number of actions required to reach a criterion RMS error < 30cm in both A)
simulation and B) robot experiments. Errors bars show confidence intervals (.95).

doi:10.1371/journal.pone.0137057.g009
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movement and subsequent visual and auditory measurements, the average RMS error is still
1.25m, which can be explained by the fact that, after one movement and two measurements,
the system has limited distance information. After the second movement, the average error
already decreases to less than 0.7m, and it continues to decrease to ca. 0.3m after the third
movement. After the fourth movement, the average RMS error is below 0.2m, which already is
smaller than the diameter of the source. Overall, the plot shows a smooth monotonic decrease
of the average error, marginally worse than the results produced in the simulation environ-
ment. This is especially an interesting result because auditory measurement precision is worse
than during simulation due to highly reverberant signals and the relatively simple template-
matching-based vision system described above, which is principally prone to noise and

Fig 10. Average RMS error (robot experiments). Confirming the results of the simulation experiments (Fig 7), the average RMS error smoothly decreases
with every action and few robot movements are needed to achieve a precise position estimate. When deactivating the IG procedure, localization performance
gets considerably worse, even more so than in the simulation environment.

doi:10.1371/journal.pone.0137057.g010
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illumination changes. Moreover, the combination of possible measurement errors for the initial
position and the radius of the source also might affect performance negatively.

In Fig 10B, we compare the system’s performance to the performance of a system variant, in
which actions are selected randomly in each step and the IG procedure is deactivated. The
results are also averaged over 20 experiment runs to ensure comparability. While the average
error smoothly decreases when utilizing the IG procedure, random movements lead to a slower
decrease and never reach the performance of the information-driven approach. After 5 steps,
the average RMS error is still greater than 1.0m and, even after 10 steps, it is just slightly under
1.0m. Moreover, the average error never gets smaller than 0.6m, probably due to the fact that
(in contrast to the information-driven variant) the system does not systematically approach

Fig 11. Entropy of the PDF estimate (robot experiments). The information-driven action selection process leads to a (roughly) exponential decrease of
entropy. In comparison, randommovements still lead to a mostly monotonic decrease of entropy, but at a slower rate and with a higher minimum entropy than
in the information-driven approach.

doi:10.1371/journal.pone.0137057.g011
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the source and thus cannot increase the spatial precision of the estimate because of the limited
precision of auditory measurements for high distances.

In Fig 11A, the entropy of the PDF estimate is plotted as a function of the number of actions,
averaged over all experiments. Again, these are similar to the results in the simulation environ-
ment (Fig 8A), as the entropy of the PDF estimate decreases monotonically with each action.
When comparing these results to those of the system variant utilizing randommovements (Fig
11B), it is obvious that the IG mechanism is successful in actively reducing uncertainty with
respect to the state. The utilization of the IG procedure leads to considerably better results
when compared to the results of the system variant utilizing random movements: In each step,
the average entropy is considerably lower, while the average RMS error is substantially smaller.

A Mann-Whitney test (α = .05) supports descriptive statistics by indicating that the number
of actions required to achieve an RMS-Error of less than 0.3m is significantly lower using the
IG procedure (Mdn = 3) compared with random selection of movements (Mdn = 6), U =
−3.40, p = .001. This effect can also be seen in Fig 9B.

Discussion
We were able to show that the proposed system can use a sensorimotor audio-visual strategy to
localize a source with high efficiency and accuracy. This was demonstrated both in a simulated
environment and under real-world conditions using a robot. Each action reduces the uncer-
tainty about the current state and, as a result, the system is able to accurately estimate azimuth
and distance of the source despite substantial limitations in our setup, like simplified unisen-
sory processing and “enforced” front-back-mixups in audition. As intended, only few actions
are needed in order to achieve accurate position estimates, which shows that the IG mechanism
is an efficient solution for selecting actions.

Furthermore, we showed that auditory and visual processing complement each other and
that the combination of both modalities allows for the disambiguation of competing hypothe-
ses. For example, we observed interesting multisensory interactions: While audition has a full
360 deg range (front/back ambiguities aside) and updates all particles independent of their
direction, the visual modality has only a restricted field of view but therein a very high spatial
precision. Consequently, the system utilizes audition to reduce the number of hypotheses very
quickly and then uses vision to achieve more accurate estimates (see Fig 6 for comparison). We
could show that localization performance is significantly reduced when replacing the IG mech-
anism with randomly chosen movements.

Moreover, we showed that the system is able to estimate the distance of a source without
explicit distance measurements. This is due to the particle filter combining multiple angle mea-
surements from different positions into a distance estimate. In addition, the system is able to
produce accurate estimates of the source’s position without any visual measurements. This
makes our approach a suitable and cost-efficient alternative to auditory source localization
approaches utilizing expensive microphone arrays, at least for applications where measure-
ments for different positions are available.

Because movements are an integral part of the system architecture, the main purpose of the
proposed source detection and localization algorithm is the application in mobile robotics. But
it is also applicable to stationary systems, which are able to perform rotations, making it suit-
able for applications such as automatic camera control systems for video conferences. An inter-
esting area of application for the proposed system is audio-visual detection and localization of
a human speaker in noisy and cluttered environments. This is, for example, an essential feature
for the camera control systems mentioned above, and for rescue robotics where the localization
of victims and survivors by mobile robots in cluttered environments is an important area of
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research. In rescue robotics, the utilization of a mobile robot with auditory and visual sensors is
particularly useful because the robot’s mobility allows for free movement and thus can be used
in complex environments assuming that a robust mechanism for obstacle avoidance is avail-
able. Note that our system can cope with situations where the person of interest is not visible
from certain positions.

In preliminary experiments, we use a people detection approach based on a multiscale
pedestrian detector [42]. The combination of this detector with our information-driven multi-
sensory approach shows very promising preliminary results for this application.

While the system is currently designed to work with only a single static source, it is easily
expandable to handle multiple dynamic sources by including an arbitrary source separation
mechanism for the audio data (e.g., based on Onset and Offset positions [43]). After separating
the sources, it is possible to apply the existing auditory source localization algorithm: For each
source, ITDs have to be calculated using only those channels associated with the respective
source as estimated in the segmentation stage. This would not require any significant addi-
tional computational costs because the number of channels within the cochleagram remains
constant. In the future, we will extend the auditory processing to allow localization in the
median plane utilizing filter characteristics of the artificial pinnae, which introduce position-
dependent Head-Related-Transfer-Functions [44].
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