
Waldon et al. BMC Bioinformatics 2014, 15:334
http://www.biomedcentral.com/1471-2105/15/334

RESEARCH ARTICLE Open Access

SketchBio: a scientist’s 3D interface for
molecular modeling and animation
Shawn M Waldon*, Peter M Thompson, Patrick J Hahn and Russell M Taylor II

Abstract

Background: Because of the difficulties involved in learning and using 3D modeling and rendering software, many
scientists hire programmers or animators to create models and animations. This both slows the discovery process and
provides opportunities for miscommunication. Working with multiple collaborators, a tool was developed (based on a
set of design goals) to enable them to directly construct models and animations.

Results: SketchBio is presented, a tool that incorporates state-of-the-art bimanual interaction and drop shadows to
enable rapid construction of molecular structures and animations. It includes three novel features: crystal-by-example,
pose-mode physics, and spring-based layout that accelerate operations common in the formation of molecular
models. Design decisions and their consequences are presented, including cases where iterative design was required
to produce effective approaches.

Conclusions: The design decisions, novel features, and inclusion of state-of-the-art techniques enabled SketchBio to
meet all of its design goals. These features and decisions can be incorporated into existing and new tools to improve
their effectiveness.

Keywords: Molecular modelling, Animation, Collision detection

Background
SketchBio is a new tool to help scientists think about 3D
molecular structures and interactions and to communi-
cate them to others.

We found ourselves repeatedly using 2D hand-drawings
of complex 3D structures and their interactions in discus-
sions with our close collaborators in cell biology, pathol-
ogy, and chemistry, despite the fact that the 3D crystal
structures of the proteins making up these structures were
known. Overall structure comprehension was advanced
when a hired artist produced 3D scale models and com-
puter models of the structures [1]. Our group is not alone.
Discussions among collaborators are often done using 2D
whiteboard sketches. Presentations often consist of pasted
images and 2D PowerPoint animations.

Due to the difficulties involved in learning and using
3D modeling and rendering software, many scientists hire
professional computer programmers and/or animators to
work with them to create models and animations rather
than use these programs themselves. This indirection

*Correspondence: swaldon@cs.unc.edu
University of North Carolina at Chapel Hill, 27599 Chapel Hill, NC, USA

both slows the discovery process and provides opportuni-
ties for miscommunication. This paper describes an effort
to provide scientists with a tool that is so rapid to learn
and powerful to use that they can create these models and
animations themselves.

This tool should be general and widely useful. Many
researchers studying cell structure and physiology seek
to construct and evaluate dynamic models that incorpo-
rate random thermal motion as well as conformational
changes induced through intermolecular interactions.
Discovering, testing, and communicating hypotheses
about these interactions requires the development of
complex animated 3D molecular structures. Modeling,
simulation, and rendering these hypothetical scenarios
involves using a number of tools and databases (PDB,
PyMol, Blender, NAMD, etc.) and then converting files
to pass geometry and animations between tools. It also
involves manual placement and orientation of 3D objects,
which is currently done using 2D input devices and by-eye
detection and avoidance of collisions. As a result, it often
takes a team months to produce an acceptable model or
animation.

© 2014 Waldon et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

mailto: swaldon@cs.unc.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Waldon et al. BMC Bioinformatics 2014, 15:334 Page 2 of 17
http://www.biomedcentral.com/1471-2105/15/334

The aim was to produce a tool that reduces this to a
single person working for hours or days.

This paper describes that tool, SketchBio.

Driving problems
Fred Brooks posits that the best way to construct a tool
that is generally usable is to focus on several very different
specific problems and build a tool that solves them [2].
This approach was followed here.

The first driving problem for this project was to con-
struct a protofibril model based on geometric constraints
among a set of individual fibrinogen molecules. The pro-
tein fibrinogen is the main component of blood clots,
where it is converted into fibrin and links together with
other fibrin molecules to form strands. Two of these
strands join together to form a protofibril, which form
thick fibers that make up a large portion of the blood clot.
Based on the crystallized structures of fibrin monomers
from different species and on only two sets of known
interactions [3], one collaborator sought to construct 3D
protofibril structures matching those seen in her data,
which suggested a structure in which two fibrin strands
twist around each other, and wanted to create a model
that shows this interaction at the molecular level. Over
several months, this collaborator and her students worked
with a computer scientist to use the powerful UCSF
Chimera tool to construct such a model (“snapshots”
and modeling of the early stages in fibrin polymeriza-
tion, submitted). Building this model required repeated
iteration of hand-placement of two molecules (using mul-
tiple 2D mouse interactions), followed by using repli-
cation tools to develop candidate models, which were
then evaluated against the data. The desired use of
SketchBio was to construct this protofibril rapidly and
semi-automatically by specifying which location on each
fibrin should be in close contact with other molecules
and by specifying that the molecules do not overlap.
This same capability will enable generation of other
self-symmetric structures such as actin filaments and
microtubules.

The second driving problem was to construct 3D mod-
els and animations of the interaction between actin fila-
ments and vinculin. Actin filaments are one of the three
main components of a cell’s cytoskeleton, and the pro-
tein vinculin binds to actin filaments, connecting them to
other actin filaments or different proteins.

The third driving problem was to construct models
of the mitotic spindle, a structure that separates chro-
mosomes during cell division. As in the fibrin case,
each step of model generation required support from an
artist, animator, and/or programmer to convert a col-
laborator’s concepts into geometry for rendering and
simulation.

The final driving problem involved cell division (mito-
sis). Many proteins beyond cohesin and condensin con-
tribute to mitosis. Scientists are able to fluorescently label
both these proteins and chromosome locations and deter-
mine relative distances and orientations between pairs
of proteins. With accurate localization and tracking for
3D images, these techniques provide partial information
on the 3D layout of proteins and chromosomes in wild-
type and mutant mitotic spindles. Building models to
match this information requires the development of semi-
automatic layout of proteins. This will provide a partial set
of constraints for scientists to construct protein-protein
and protein-chromosome complexes that match experi-
mental data. With these enhancements, SketchBio could
be widely useful to other researchers for the generation
of hypothetical protein-complex structures from partial
data.

Design goals
The application-specific needs from the above collabora-
tors can be summarized as a set of domain-independent
design goals for SketchBio:

• Easy to learn and to use. Scientists must be able to
rapidly construct models and animations on their
own using interfaces that enable them to concentrate
their mental efforts on the design challenge rather
than decyphering the interface.

• Support molecular operations. It must be easy to
load molecules, extract the relevant substructures,
describe conformational changes, group molecules,
and color according to standard data.

• Appropriately constrain layout. Some molecular
structures should not overlap, others (drug vs.
protein) overlap as part of their function, others
(fibrin, actin) assemble into repeated structures. In
some cases, the distances between individual
elements is known but their 3D layout is not.
Supporting all of these cases will enable a biologist to
most rapidly explore the space of possible
conformations to produce consistent models.

• Support rapidly iterated, in-context design.
Understanding the interactions between dozens of
molecules requires repeated adjustment of proposed
locations and motions. The reasonableness of
interactions depends on nearby molecules, which
change over time. Generating consistent models
requires trying and optimizing many potential
solutions before the final model is found.

• Support high-quality rendering. Once a proposed
model has been completed, static and animated
images that use the most-effective lighting and
surface rendering techniques are critical to conveying
the model and its behavior to others.



Waldon et al. BMC Bioinformatics 2014, 15:334 Page 3 of 17
http://www.biomedcentral.com/1471-2105/15/334

Prior work
Molecular modeling
There are many excellent molecular modeling applica-
tions that have been extended to include some aspects
of high-quality rendering and animation. UCSF Chimera
[4], PyMol [5], Graphite Life Explorer [6], and Visual
Molecular Dynamics (VMD) [7] are the most relevant.
Other software such as Protein Explorer [8] and EZ-Viz
[9] (an interface for PyMol) attempt to offer easy-to-use
interfaces for exploring molecular structures.

VMD includes direct force-feedback-based placement
and manipulation of molecules in the context of driving
molecular dynamics. SketchBio provides bimanual con-
trol of much larger sets of molecules by reducing the
physics to only what is necessary to avoid improper col-
lisions and provide appropriate spacing, enabling large-
scale geometric modeling and animation.

GraphiteLifeExplorer includes the ability to position
and twist segments of DNA and interpolate the sections
between them (its DNA modeling tools go beyond what
is available in SketchBio), but does not yet perform colli-
sion detection between molecules, the ability to support
animation, or the ability to maintain specified distances
between objects as needed.

The approach of extending the interaction and ren-
dering capabilities of one of these tools was considered,
but this would require re-implementing existing render-
ing techniques and continual updating as new rendering
advances are made. The decision was made to harness the
power of the existing tools through their built-in scripting
languages (SketchBio has used both PyMol and Chimera
to load, surface, select, and label molecules by partial
charge and other inputs).

Rendering
There are also excellent general-purpose rendering pro-
grams (such as the commercial Maya and open-source
Blender applications) and microscope-simulation ren-
dering tools (such as UNC’s Microscope Simulator
[10]). Several groups are building molecule-specific
loaders that plug into these programs, such as
Autofill/Autopack/Autocell [11], and Molecular Maya
[12]. The BioBlender package also leverages Blender for
molecular modeling and supports collision detection [13].
These each require the scientist to learn the underlying
complex rendering tool plus additional plug-in interfaces,
making them less easy to learn and use. None of these
tools currently support constrained layout along with
rapidly-iterated, in-context design.

Molecular Flipbook [14] aims at similar goals to Sketch-
Bio, providing an easy to use molecule-focused real-
time interaction environment coupled to offline rendering
using Blender and FFMPEG. It does not currently support
constraints on layout or bimanual interaction for rapid

6-degree-of-freedom placement. This approach was also
considered, but providing full capability would require re-
implementing many existing capabilities already available
in molecular modeling tools and tracking new features as
they are developed.

Interactive animation
The Molecular Control Tool-kit [15] is also aimed at
molecular modeling, providing gesture- and speech-based
user interface primitives to control motions of molecules
with a Kinect or Leap Motion device [15]; it provides an
API that can be used to connect their controls to exist-
ing molecular modeling applications. These do not by
themselves meet the needs specified above, but could be
used within SketchBio as a separate front-end interaction
interface. SketchBio uses similar two-handed 6-degree-of-
freedom input devices (the Razer Hydra or two WiiMote
controllers), adding collision detection and several custom
capabilities, and tying the resulting system into exist-
ing powerful molecular modeling and rendering tools to
produce a complete system for thinking, modeling, and
rendering.

Another tool aimed at simplifying the creation of molec-
ular animations, PresentaBALL [16], uses an interactive
web interface to an existing molecular modeling tool. This
enables widespread use by non-experts to develop presen-
tation materials for training. SketchBio provides a custom
interface for experts to use as a thinking aid that is tied to
a powerful rendering engine to produce animations.

SketchBio’s bimanual 6-degree-of-freedom manipula-
tion sets it apart from all of the applications described
above because it lets the user move molecules and craft
animations more rapidly and with less mental effort
than tools that use a mouse and keyboard to manip-
ulate objects. Its support of appropriately-constrained
layout using several features (configurable collision detec-
tion, spring-based layout, and crystal-by-example) meet
needs described above that are unmet by any published
tool.

Interactive rendering
A common bottleneck in interactive modeling and ani-
mation applications is the speed of rendering a complex
scene. Sketchbio requires real-time rendering due to the
nature of its input – objects on the screen must move with
the user’s hand as if the user were actually holding them.

One approach to improving rendering speed is to reduce
the complexity of the objects that are drawn. This is
done by replacing objects with imposters which have
simpler geometry. One type of imposter is a simpli-
fied version of the geometry that is textured to look
like the more complex version [17-19]. Another com-
mon imposter is a square that has a pre-rendered image
of the more complex object as its texture. As long as



Waldon et al. BMC Bioinformatics 2014, 15:334 Page 4 of 17
http://www.biomedcentral.com/1471-2105/15/334

the viewpoint stays near the same position, discrepancies
between the imposter and the actual geometry remain
small [20,21].

The level of simplification of an object can also be
dynamically determined according to the amount of ren-
dering time required to draw each level of detail.

Another approach to enabling interactive rendering of
complex design spaces is to precompute an ensemble
of possible solutions and then interactively explore the
design space by directly manipulating portions of it and
morphing between existing solutions [22]. The space of
potential molecular interactions for dozens of molecules
is so large, and the ease of testing and rendering each con-
figuration so small, that it was more efficient for SketchBio
to directly model and render.

SketchBio uses Chimera and Blender to simplify geom-
etry and the Visualization ToolKit (VTK) library to adjust
rendered level of detail [23].

Collision detection
In many models and animations, molecules should not
overlap one another. If there are n molecules in the scene,
then each pair of molecules must be tested for colli-
sion. This has a complexity of O(n2) in the number of
molecules. However, there are typically far fewer collisions
than potential collisions and so optimizations can reduce
the expected complexity. The best expected complexity
uses sweep and prune methods and assumes the primi-
tives are sorted along one dimension. This is O(n + c)
where c is the number of colliding pairs [24].

Another approach uses space partitioning to rule out
unnecessary tests. The PQP library from the UNC
GAMMA group uses a bounding volume hierarchy [25].
An alternate is to divide space into bins. Only primitives
in nearby bins need to be tested. This type of algorithm
is especially effective on GPUs where many local groups
may be run in parallel [26].

SketchBio directly links to PQP and uses it for basic col-
lision detection. It extends these techniques in ways that
are specific to the kinds of molecular models being formed
to gain an additional order of magnitude reduction in
collision tests for some objects.

Mash-ups
Individual capabilities of web-based applications such as
Google maps and real-estate listing databasese have been
effectively combined to provide combination tools that
include the best parts of each. A system for seamless
integration of applications for visualization was done by
Rungta et al. by adding a layer above all of the applications
of interest to pass events back and forth [27]. SketchBio
takes a similar approach, using a novel core component
that provides interactivity and custom features but using
scripting interfaces to harness the significant modeling

and rendering capabilities of existing tools into a seamless
workflow.

Methods
SketchBio is a system for understanding subcellular biol-
ogy by building complex 3D macromolecular structures
and animating the structures over time.

The modeling and rendering of these hypothetical
structures currently involves using a number of tools and
databases and converting files and data to pass between
tools.

SketchBio harnesses state-of-the-art tools and libraries
into a seamless workflow. It brings best-practice interac-
tion and display techniques to bear on molecular model-
ing, including bimanual real-time direct interaction and
shadow-plane depth cues. It adds three novel features that
accelerate this workflow: crystal-by-example, pose-mode
physics, and spring-based connectors. Its design decisions
(a direct-manip-ulation, real-time interface; harnessing
tools rather than re-implementing techniques; and mak-
ing a system usable in the scientists’ labs) led to a system
that met all of the design goals.

System overview
Figure 1 shows a screenshot of the SketchBio user inter-
face with a group of three actin molecules (left) and
the tail region of a vinculin molecule (right). SketchBio
uses imposters with simplified surface geometry while
developing the animation, but uses full resolution mod-
els for final rendering. The small white spheres follow the
two tracked hand-held controllers. Status information is
shown in the lower left. The current animation time point
is shown in the lower right.

Molecules in SketchBio are represented as rigid surfaces
approximating the Connolly solvent-excluded surface of
the molecule. These were chosen because the listed col-
laborators used surface models in their current work for
all four driving problems. The surfaces may use solid col-
ors, be colored by surface charge, or be colored by their
nearness along the protein backbone to the N-terminus
or C-terminus of the protein. Chimera is used to calculate
and export the datasets for the latter two coloring schemes
using PDB data.

Object selection is indicated by drawing the outline
of the oriented bounding box of the selected molecule
molecules. Color of this outline indicates whether a group
or single object is selected. (An earlier design showed the
selected object in wireframe, but this was found to disrupt
perception of the orientation of the molecule).

A set of “gift ribbons” drawn on the oriented bounding
box indicates that an object has a keyframe at the current
time. This was chosen to minimally obscure the molecule
and selection indicators.



Waldon et al. BMC Bioinformatics 2014, 15:334 Page 5 of 17
http://www.biomedcentral.com/1471-2105/15/334

Figure 1 A screen shot from SketchBio showing three actin monomers on the left colored yellow and the tail region of the vinculin
protein on the right colored by surface charge.

State-of-the-art capabilities
Bimanual interaction
Bill Buxton and others have described the benefits of two-
handed (bimanual) interaction. He and others observed
that bimanual manipulation brings “two types of advan-
tages to human-computer interaction: manual and cogni-
tive. Manual benefits come from increased time-motion
efficiency, due to the twice as many degrees of freedom
simultaneously available to the user. Cognitive benefits
arise as a result of reducing the load of mentally compos-
ing and visualizing the task at an unnaturally low level
imposed by traditional unimanual techniques” [28].

As seen in Figure 2, SketchBio brings bimanual inter-
action to the construction of macromolecular structures.
The entire interface is built around a set of world and root-
object manipulation controls in the non-dominant hand
and a set of individual-element manipulation controls
using the dominant hand.

SketchBio uses a pair of Razer Hydra controllers to pro-
vide two 6-DOF trackers, each of which also has several
buttons, a hi-hat controller, and an analog input. This
enables a very expressive set of verbs (buttons), nouns
(selection via 3-DOF positioning), and adjectives (mag-
nitude via analog inputs, viewpoint via hi-hat, and pose

via a combined 12-DOF tracking). This avoids the need
for the system to recognize a large set of ambiguous ges-
tures, as is the case for video-based user input. Use of this
device enables the interface for moving objects to mirror a
task users are already familiar with, namely reaching out,

Figure 2 The left hand sets the base molecule while the right
hand positions the copies in this two-handed construction of an
actin fiber.



Waldon et al. BMC Bioinformatics 2014, 15:334 Page 6 of 17
http://www.biomedcentral.com/1471-2105/15/334

grabbing an object and moving it to a new position and
orientation.

Using one of the buttons to switch between modes pro-
vides a sufficiently-large space of commands that almost
all operations can be performed without putting down the
controllers. Keyboard and mouse are used to name pro-
teins and files on initial loading, and to set precise values
as needed for one or two operations.

Shadow plane
Because selection in SketchBio requires placing the
tracker within the bounding box of the object, determin-
ing the relative depth between tracker and object is an
important and often-performed task. Initial testing of the
application revealed that determining the relative depth
between an object and the tracker or between two objects
was the most difficult part of using SketchBio. Because
widespread adoption would be limited by requiring stereo
displays and head tracking, another solution was sought.

Hendrix and Barfield found the most effective tech-
niques for aiding in depth estimation to be a textured
plane and lines dropped from the center of an object to
the textured plane [29]. To provide additional depth cues,
SketchBio displays a ground plane that is always rendered
below the viewpoint no matter the direction or position
of the viewpoint and projects the shadows of objects onto

this plane. The trackers also cast shadows onto this plane
(which are darker and larger to highlight them). SketchBio
assumes a light infinitely far away in the default cam-
era’s up direction which gives the same absolute position
against the textured surface as the drop-lines while also
giving information about how close the boundaries of two
objects are to each other. The user can also rotate the
camera while leaving the light and shadow plane fixed to
get a better understanding of the scene through motion
parallax [See Figure 3].

Animations
For scientists creating animations of molecules, Sketch-
Bio provides a basic interface to a much more complex
system. Blender is a production level animation and ren-
dering tool that has an extremely complex user interface
with dozens of hotkeys, menus and buttons (see Figure 4).
Blender also has a Python scripting interface that provides
access to all of its functionality. SketchBio uses this script-
ing interface to create its animations and render them
in a high quality rendering engine, but provides a much
simpler user interface. SketchBio provides a set simple
operations that is sufficient to meet the animation needs
of the driving problems: moving along the video timeline,
setting keyframes on objects and viewing a low resolution
animation preview.

Figure 3 A screenshot from SketchBio showing colored molecules and a different camera angle to emphasize the shadow plane’s effect.



Waldon et al. BMC Bioinformatics 2014, 15:334 Page 7 of 17
http://www.biomedcentral.com/1471-2105/15/334

Figure 4 A screenshot showing the complexity of Blender’s user interface.

Keyframes can modify color and grouping information
as well as object position and orientation. These values
are interpolated between keyframes using splines to pro-
duce smooth motion and changes. The effects of this
interpolation can be easily seen by the user by moving
along the timeline or using the built-in animation preview.
The scene is exported to Blender with a set of predefined
global settings for effects and position of light sources to
produce a full-quality rendering.

Grouping
Grouping of molecules eases construction of larger order
structures and provides smooth animation of objects that
should moving together without the small variations that
even the most careful hand placement causes. Copy and

paste is also implemented (both single objects and groups
can be copied and pasted) even between sessions. Addi-
tionally, a group of molecules constituting a structure that
a user wants to use multiple times in different projects
can be saved and then imported, eliminating the need to
rebuild large structures. Molecules can be added to groups
or removed from them at keyframes.

Importing molecules
SketchBio generates molecular surfaces using UCSF
Chimera via Python scripting. A custom plugin (Ex-
portVTK) was written for Chimera’s Python interface
to export additional data from Chimera in the VTK
file format. This plugin was contributed back to the
Chimera developers and is now part of the standard



Waldon et al. BMC Bioinformatics 2014, 15:334 Page 8 of 17
http://www.biomedcentral.com/1471-2105/15/334

source distribution. This data includes residue and chain
identifier that map to a specific location on the surface
and electrostatic potential on the surface. SketchBio can
use these data sets to color the objects (see Figure 1).

Novel capabilities
To meet the needs described above, SketchBio supports
novel operations beyond those available in the programs
and libraries that it harnesses. These include “pose-
mode physics” that enables rapid docking of one protein
with others, a “crystal-by-example” mode that enables
rapid formation of polymer molecular chains, and spring-
like connectors to maintain expected distances between
molecules. Each of these is described, along with how they
enable optimization of collision detection.

Pose-mode physics
Object motion in SketchBio is accomplished by applying
forces and torques to pull towards the tracker location and
orientation. This can result in the object lagging behind
but also smoothes motion, especially rotation.

Standard rigid-body dynamics was used as the original
collision response in SketchBio. Because the manipulated
object pushed other objects around, this caused difficulty
in assembling molecular groupings.

This was solved by introducing “pose-mode physics”,
where the only objects that move are those directly being
manipulated. Other objects do not move when collision
response forces are applied. This also greatly reduces the
time taken to compute collision detection (as described
later).

The first implementation of pose-mode physics only
moved the object if its new location after being pulled
by the tracker-attracting forces would be collision free.
This caused objects to become stuck together and difficult
to pull apart because tracker rotation usually introduced
collisions even as they forces pulled objects apart. This
also prevented sliding objects along each other, which
scientists often wanted to be able to do.

In the final implementation, where collision response
forces act on the object being manipulated, objects can be
slid along one another but not collide.

Crystal-by-example
Repeated structures formed by replicating a single protein
are common in biology (actin, microtubules, fibrin, etc.),
so the “crystal-by-example” feature was added to support
their construction. Scientists wanted to construct vari-
ants of such structures to study the changes caused by
mutant proteins and to understand their native packing
for comparison to electron microscopy images.

A similar problem is addressed in [6] for DNA molecules
by letting users edit placement and twist of selected base
pairs and interpolating in between these. That system

forces the resulting structure to follow a specified path.
Crystal-by-example inverts this to show the structure
resulting from a specified packing geometry: the user
places two molecules relative to one another in six
degrees of freedom and SketchBio repeatedly applies same
transformation for other copies to generate chains of
molecules. Each replication of the base molecule follows
the example set by the first two molecules, with the third
molecule’s placement relative to the second molecule
being the same as that of the second molecule to the first,
and so on. In this way, a repeated structure is formed
by manipulating only one pair of molecules rather than
tediously moving each individual piece to its proper place,
speeding up the process of building structures.

Figure 5 illustrates this feature, which uses two copies of
a molecule (A and B) to define an entire repeated struc-
ture. Given TA and TB, the transformation matrices that
define the positions of A and B relative to the world ori-
gin, the transformation from A’s coordinate system to B’s
coordinate system, TAB = T−

A 1 ∗ TB, can be computed.
B’s position can be rewritten TB = TA ∗ TAB. The next

repeated molecule, C, has position TC = TB ∗ TAB = TA ∗
T2

AB. This can be extended to generate a chain including
an arbitrary number of molecules.

Many biological structures including actin fibers and
microtubules (major components of a cell’s cytoskeleton)
form in structures that can be defined this way. Figure 6
shows an actin fiber generated this way in SketchBio. By
providing live updates of the entire structure as the initial
two objects are manipulated, SketchBio lets the scientist
explore potential structures in real time.

The extent to which the user can control fine-grain
manipulations of the molecules depends on the input
device, because resolution varies by device. Because
some structures have a known transformation from one
molecule to the next, SketchBio (like other programs) lets
the user input the transformation directly.

Collision Detection in pose-mode physics and
crystal-by-example
In pose mode, collision tests between objects that the
user is not interacting with can be skipped because these
objects do not move. This means that only collisions
involving the objects that the user is moving need to be
checked. This reduces the number of collision tests to
m ∗ n where m is the number of objects that the user is
currently moving. The typical number of objects that the
user moves at a time is 1 or a small constant (in the case
of moving a group), which reduces the number of collision
tests needed to O(n) in this expected case.

There are two ways that the user can interact with
a crystal-by-example structure: moving the entire struc-
ture as a unit, or adjusting the internal transformation to
change the shape of the structure. In the first case, only



Waldon et al. BMC Bioinformatics 2014, 15:334 Page 9 of 17
http://www.biomedcentral.com/1471-2105/15/334

Figure 5 Crystal-by-example illustrating how a helix might be formed.

collision tests between the structure and the other objects
in the scene need to be done, and the above bound applies
to the number of tests.

In the second case, the internal structure does change
and both internal and external collisions must be tested.
External collisions must test every object in the structure
with every external object as above.

The internal case can leverage the known relationship
between the objects to perform fewer tests. Let Xi be the
ith object in the crystal-by-example structure with X1 and
X2 being the two base objects in the structure. Let Ti,j be
the transformation matrix from Xi to Xj. The definition of
the crystal-by-example structure is that Ti,i+1 is the same
for all i and the geometries of all the Xis are the same.
Because the geometries and transformations are the same,
if there is a collision between the ith and (i + 1)th objects
anywhere in the structure, then there is also a collision
between the 1st and 2nd objects. Thus testing only this
one pair performs the work of n − 1 tests where n is the
number of objects in the structure. This same argument
holds for any i and i + k, the 1st and (k + 1)th objects
have the same relative positions and the same collisions.
Thus only the 1st object in the structure needs to be tested
against the others which allows O(n) tests to suffice for all
internal collisions in a repetitive structure of n elements.

Connectors
SketchBio also has connectors that can be added between
objects. These can act like springs and apply forces to
keep objects positioned relative to each other or they can
simply indicate that two objects are connected. Many pro-
teins have regions for which the structure is unknown and
these regions can be represented with these connectors.
Responding to a scientist’s request, the connector end can
be snapped to the N-terminus or C-terminus of a protein,
removing the difficulty of precise hand placement.

When acting as springs, connectors can have non-zero
rest length. When editing a set of proteins some of whose
separations are known experimentally (through two-color
fluorescence labeleing, FRET, or other techniques as in
the final driving problem), this can be used to specify
soft constraints on the 3D layout of the proteins, guiding
the scientist away from impossible structures. This greatly
reduces the conformation space that must be searched to
determine molecular arrangements.

Architecture
The architecture of SketchBio is shown in Figure 7.
SketchBio harnesses external programs when possible
(PyMol, Chimera, Blender) and uses existing libraries for
other core functions (VTK, PQP, VRPN). It maps from



Waldon et al. BMC Bioinformatics 2014, 15:334 Page 10 of 17
http://www.biomedcentral.com/1471-2105/15/334

Figure 6 Actin filament created with the crystal-by-example function using the transformation matrix from the PDB data from one
monomer to the next.

Figure 7 Architecture. SketchBio harnesses existing libraries and
programs (shown in pink) to avoid replicating existing state-of-the-art
algorithms. It also makes use of standard file formats, devices, and
services (shown in purple) to provide maximum interoperability with
existing modeling, rendering, and analysis workflows. Some
techniques are internal, some are harnessed to appear to the user as
internal (double arrows) and some are accessed via standard formats.
SketchBio currently includes three types of output: real-time
rendering for model and structure comprehension, high-quality
offline rendering for animation (through Blender), and simulated
confocal microscopy stacks for analysis and comparison to
experiment (through UNC’s Microscope Simulator). It includes
custom code only for the real-time interaction, animation, and
modeling portions and for its novel features.

dozens of controls in Chimera and hundreds of controls in
Blender down to 4 input options and about 20 modeling
and animation controls to streamline the tasks needed for
creating structures and animations.

Exporting data to Blender is done through a script
run on Blender’s Python interface to produce the anima-
tion. When exporting to MicroscopeSimulator, SketchBio
writes out a Microscope Simulator XML project file and
loads the project into MicroscopeSimulator.

Objects can be loaded into SketchBio as .obj files from
any program that writes this format or directly through
the GUI (via harnessing UCSF Chimera from the PDB or
a local .pdb file). Because VTK is used in SketchBio, any
file format that VTK can read could be imported with
relatively minor changes.

Design decisions
Listed here are design decisions that helped SketchBio
achieve its goals.

Bimanual, 6-DOF interface
SketchBio’s two-handed interface differs from that of most
existing modeling and rendering tools. This has the deficit
of taking the user’s hands away from the keyboard, which
requires them to put down the interaction devices to



Waldon et al. BMC Bioinformatics 2014, 15:334 Page 11 of 17
http://www.biomedcentral.com/1471-2105/15/334

enter text and specific numerical data. Users report that
this small negative is greatly outweighed by the ability to
rapidly perform the more-common and more-challenging
tasks of specifying positions, viewpoints, and animations
in full 6 degrees of freedom. The ability to move both
the world/viewpoint and an animated molecule enables
rapid planning of scenes and the ability to simultane-
ously manipulate both of the molecules that are coming
together in an interaction are two examples of what is
enabled.

The workflow tends to stratify: initial loading of the
kinds of molecules to be used in an animation happens
first (with keyboard and mouse). Then positions, view-
points, and animation are described using the buttons and
controls on the two hand-held controllers. Finally, saving
the file and rendering are again performed with the key-
board and mouse. The use of rich input devices enables
the bulk of the action to take place from within the 3D
environment, accelerating the most-challenging parts of
model and animation development.

Harness, do not re-implement
The design of SketchBio avoids reimplementing existing
features where possible, instead using Python scripting to
control subprocesses to perform these operations. Rather
than reading PDF files directory, SketchBio calls UCSF
Chimera as a subprocess to read in the protein and cre-
ate a displayable surface from it. Instead of writing a
new rendering library, SketchBio uses the Python script-
ing interface of Blender to create a Blender project that
will produce the desired animation. SketchBio uses the
open source Qt and VTK [23] libraries for its user inter-
face and internal rendering and the open source Proximity
Query Package (PQP) for collision detection [25]. The
VRPN library [30] is used to communicate with input
devices.

One significant risk encountered when harnessing exist-
ing programs is that future versions of the programs will
not support required features, or will require modifica-
tions to the harness. This can make maintainence chal-
lenging. To address this, each SketchBio release includes
a list of specific versions of the wrapped programs with
which it is known to be compatible and programs have
been selected that continue to make old versions available
(Chimera still releases installers from 2002 and Blender
from 2003). It also includes copies of custom plug-ins and
scripts that are not yet part of the harnessed packages’
released versions.

Another risk is that the packages used will not be obtain-
able in the future, or for an operating system of interest.
SketchBio has been able to mitigate this risk by selecting
open-source programs to harness.

To measure the re-use of functionality, one can compare
(1) the number of state-of-the-art operations harnessed

from existing tools: Chimera (connecting to the pro-
tein data bank, parsing PDB file, selecting subunits, gen-
erating surfaces, generating data sets on the surfaces,
simplifying surfaces), Blender (surface rendering, direc-
tional illumination, transparency, ambient occlusion, par-
allel rendering, frame storage), and Microscope Simulator
(point-spread-function 3D blurring, TIFF stack gener-
ation) and (2) the number of internally-used existing
libraries: VRPN (reading from general peripheral devices),
PQP (multi-object collision detection), VTK (geomet-
ric operations, real-time rendering, level-of-detail ren-
dering, object positioning, spline interpolation) to (3)
the number of custom operations (crystal-by-example,
pose-mode physics, drop shadows, bimanual interaction
modes, spring connectors, grouping and animation). Most
of the operations are supported by existing tools. Com-
pared to other tools built by the same research group
to support biomedical applications [31], SketchBio has a
much better re-use ratio than tools which similarly span
different domains (nanoManipulator, Camera Calibration,
Chromatin Cutter, Template-Based Matching) and is on
par with tools that are basically wrappers for calls to a
single library (ImageTracker, Microscope Simulator). It
has a better ratio than several single-domain tools (Video
Spot Tracker, Video Optimizer, and WebSlinger). Fur-
thermore, the scripting interfaces enable rapid inclusion
of additional features from external programs without
re-implementation.

Usable in-house
The same research group that developed SketchBio has
in the past built high-performance molecular graphics
applications for scientists that used head-tracked stereo,
wide-area tracking systems, and force-feedback displays
[32-37]. The scientists who were willing to travel to the
developer’s laboratory to use them received great benefit,
but the goal was for SketchBio to be more broadly avail-
able. To maximize its impact, SketchBio was designed to
run on a laptop or desktop system such as a scientist would
have at home or in their laboratory and to use inexpensive
commercial input devices.

Results and discussion
SketchBio has been used by a several scientists and has
demonstrated success in meeting its design goals.

Easy to learn and use
To measure the ability of scientists to learn and use the
system, SketchBio was shown to a visiting graduate stu-
dent from NIH. She is interested in using the system to
study the proteins involved in cell focal adhesions. After a
30-minute training session where she saw us using the sys-
tem, she was able to use SketchBio to load, replicate, and
place the molecules into relevant configurations.



Waldon et al. BMC Bioinformatics 2014, 15:334 Page 12 of 17
http://www.biomedcentral.com/1471-2105/15/334

After similar initial training, and with access to the man-
ual, a biochemistry graduate student used the system to
generate both static and animated multi-protein models.

He created a model to compare the importance of elec-
trostatics between two different models for vinculin tail
interaction with actin [38,39].

He also created an animation of vinculin binding to an
actin fiber for use in a talk, based on the model presented
in [40]. This video used crystal-by-example to generate the
actin and used traslucent connectors to indicate the con-
nection between the head and tail domains of vinculin – a
region for which there is no crystal structure. The model
in SketchBio is shown in Figure 8 and a frame from the
resulting video at approximately the same time is shown
in Figure 9.

Finally, he produced both a SketchBio animation and
a Microsoft PowerPoint animation of molecules (using
images of molecules pre-rendered from a single view-
point), as shown in Figure 10, to test their relative speed
and effectiveness. The PowerPoint animation took 50
minutes of concentrated effort to produce, while the
SketchBio animation took 100. He reports that the Power-
Point animation failed to accurately show rotation of the
vinculin tail domain, to show the linker region that scales

as the domains move apart, to show a change in actin
movement rate, and to accurately portray relative size and
orientation of the molecules. He reports that the increase
in correct presentation of the science was was well worth
the increased time.

Support rapidly-iterated, in-context design
To measure the speed of complex model construction, a
task was repeated using SketchBio that had been done
beforehand. Constructing the protofibril models for the
first driving problem took a computer scientist 3–3.5
hours by hand-editing transformations within Chimera (a
task challenging for biologists to learn). Using an early
prototype of SketchBio, he constructed the protofibril
seen in Figure 11 in 1.5 hours (a task a biologist would
be expected to do just as rapidly). The lack of depth cues
became apparent as he spent most of the time trying to
figure out the relative depth between the tracker and the
molecules, prompting the addition of the shadow plane.
With this addition and other features, he reconstructed
the model in 35 minutes. In all cases, the desired model
was known a-priori; all cases measure time on task and
do not count the time spent learning how to use the
tool. In this case, SketchBio enabled model creation in

Figure 8 A scene from a video created by Peter Thompson from Sharon Campbell’s laboratory at UNC in SketchBio. Approximately the
same timestep is shown rendered at its full resolution in Figure 9.



Waldon et al. BMC Bioinformatics 2014, 15:334 Page 13 of 17
http://www.biomedcentral.com/1471-2105/15/334

Figure 9 A frame from the video created by Peter Thompson. This shows the tail domains of vinculin binding to an actin filament and slowing
its motion. This video was created in SketchBio as seen in Figure 8 and rendered via the export to Blender feature.

about one-fifth of the time for a case of interest to a
scientist.

To further measure the effectiveness of SketchBio for
the rapid construction of animations, it was used to cre-
ate an animation of actin and vinculin (see Additional
file 1). Researchers were able to load the molecules, repli-
cate them, place them, plan camera and motion paths, and
start rendering in half an hour. The first-person design
view and available pre-animation were crucial to this pro-

cess, enabling design intent to be rapidly translated into
action and evaluation, resulting in uninterrupted planning
and design iteration.

These cases indicate that a series of brief training
videos plus the online manual should suffice to get new
users started, that scientists are able to use SketchBio
on their own, and that SketchBio compares favorably to
existing methods of producing animations and structural
models.

Figure 10 A frame from a 2D animation created by Peter Thompson for the same case as Figure 9. This video was created in Microsoft
PowerPoint using separately-rendered single views of the proteins.



Waldon et al. BMC Bioinformatics 2014, 15:334 Page 14 of 17
http://www.biomedcentral.com/1471-2105/15/334

Figure 11 A view of the model that Joe Hsiao, UNC staff scientist, created with SketchBio for Susan Lord to compare usibility with UCSF
Chimera.

Support molecular operations
The video in Additional file 1 shows that a user who is
familiar with both tools is able to load, select subsets,
and attach two molecules six times as fast using Sketch-
Bio as using the combination of Chimera and Blender.
As part of development, a Chimera plug-in was cre-
ated to export the standard molecular labelings (main-
chain index, partial charge, etc.) in a VTK data structure,
enabling them to be used to color the molecules. Sci-
entist are able to use familiar PDB file and substruc-
ture names to load and extract subsets of molecules.
The animation and object-grouping features have been
used to produce models and animations meeting their
needs.

Appropriately constrain layout
Pose-mode physics, with the option to turn it off, supports
both preventing and allowing overlap between molecules,
as appropriate to the task. The crystal-by-example fea-
ture has been used to produce both protofibrils and actin
filaments from their monomers. Fixed-length springs
provide the ability to rearrange sets of moluecules while
maintaining the specified pairwise separations among
them.

Support high-quality rendering
The image frames in the paper and video in the asso-
ciated online materials demonstrate full-resolution ren-
dering with intra- and inter-object shadowing displaying
both complex local shape and 3D relationships between
objects.

Limitations and future work
After successfully using SketchBio for his initial needs,
one user requested new features. He is particularly
interested in using SketchBio as a thinking tool to
determine how mutations in vinculin turn normally-
straight actin filament bundles into helices. Forming a
model to fit experimental data can be challenging. A
module is under construction to optimize the place-
ment of molecules based on a set of constraints. The
resulting optimization algorithms will enable other sci-
entists to semi-automatically construct multi-protein
structures that match negative stain electron microscopy
images.

Collaborators’ projects have so far involved hand-placed
molecules of density sufficiently small to be under-
stood when all of them are visible. Thus, SketchBio
does not yet support automatically-placed molecules to



Waldon et al. BMC Bioinformatics 2014, 15:334 Page 15 of 17
http://www.biomedcentral.com/1471-2105/15/334

fill the space, nor does it require complex occlusion-
handling procedures. As the user base grows, SketchBio
is expected to need to harness importance-based render-
ing techniques and autofill algorithms to handle a large
number of background molecules. These more complex
scenes will also require the ability to label important
molecules.

The motion of objects could be changed to directly
map the user’s hand motion instead of moving toward
it via force and torque being applied. This would pro-
vide a direct mapping of hand location to object location
and possibly a better interface. This could be combined
with the collision detection type where objects are only
allowed to move to a location if the result is colli-
sion free. The disadvantage of this approach is that the
smoothing by the forces and torques will not occur; trans-
mitting any jitter in the device input directly to object
motion.

SketchBio currently supports only rigid structures for
modeling and collision detection. Molecular dynam-
ics simulation is something SketchBio does not do
directly. This decision was motivated by the time cost
of performing the molecular dynamics and the require-
ment to provide real-time user interaction. SketchBio
may eventually harness an external molecular dynam-
ics simulator, but SketchBio will only be used to specify
input configurations for the simulation or easily create
videos from its output. While SketchBio will not sup-
port molecular dynamics directly, a molecular docking
capability involving two individual molecules could be
added.

To avoid dependence on a particular hardware vendor,
SketchBio is being actively ported to use a pair of Nin-
tendo WiiMote controllers instead of the Razer Hydra
controller. Its use of the VRPN library supports switching
devices by renaming the device and input for each func-
tion; a general-purpose mapping layer has been added that
reads from a configuration file to enable the user to cus-
tomize this remapping. This enables new SketchBio users
to continue to use the tool until the next-generation Razer
Hydra is released.

One consequence of the choice to provide a uniform
environment that wraps functions from other programs
is that not all features of the wrapped programs are
available from within SketchBio. This limitation is mit-
igated by enabling the user to export Blender files for
later offline rendering and to import arbitrary geome-
try, but then the user has to learn the complexities of
the other tools to use these features. If it is the case
that most of these features are needed the interface to
SketchBio will eventually become as complex as the sum
of the tools it wraps. Existing users have been able to
develop models and animations without using most of the
tools.

Conclusions
SketchBio is a new tool that enables scientists to
rapidly construct and validate hypothetical macromolecu-
lar structures, to animate these structures, and to produce
high-quality rendered animations. It has been tested and
shown to meet its design goals:

• Easy to learn and to use. Scientists rapidly
constructed models and animations on their own.

• Support molecular operations. By harnessing
PyMol and Chimera.

• Appropriately constrain layout. Configurable
collision detection, fixed-length springs, and
crystal-by-example support all listed cases.

• Support rapidly iterated, in-context design.
Real-time 6-degree-of-freedom interaction, live
animation preview, and viewpoint control enable
embedded design.

• Support high-quality rendering. By harnessing
Blender.

SketchBio includes state-of-the art bimanual interac-
tion, drop shadows to improve depth perception, and
other standard modeling and animation behaviors (group-
ing, spline interpolation, level-of-detail rendering, rapid
collision detection, real-time preview).

SketchBio also includes novel interaction and compu-
tational techniques that directly support the construc-
tion of macromolecular structures. Crystal-by-example
and pose-mode physics both provide improved modeling
capabilities and both enable more-rapid collision detec-
tion. Spring connectors show unspecified interactions
and support semi-automatic structure formation. These
capabilities can be added to existing and new molecular
modeling tools to provide the same acceleration of model
building and evaluation.

Both crystal-by-example and pose-mode physics enable
real-time collision detection to scale to much larger col-
lections of molecules than are possible using existing tech-
niques that must check for collisions among all objects.
The ability to load arbitrary geometry files enables the tool
to scale beyond molecule types that can be found in the
protein data bank.

The design decisions (a direct-manipulation, real-time
interface; harnessing tools rather than re-imple-menting
techniques; and making a system usable in the scientists’
labs) led to a system that met all of the design goals and
is being used by scientists. The relative benefits of these
decisions outweighed their potential pitfalls, making them
likely choices for other designers.

SketchBio is built using portable libraries and has been
compiled and used on Windows, Mac OS X, and Ubuntu
Linux. The source code for SketchBio, along with descrip-
tions and videos can be found at http://sketchbio.org.

http://sketchbio.org


Waldon et al. BMC Bioinformatics 2014, 15:334 Page 16 of 17
http://www.biomedcentral.com/1471-2105/15/334

Additional file

Additional file 1: Video showing SketchBio features being used to
construct a molecular video.

Abbreviations
PQP: Proximity query package; VRPN: Virtual Reality Peripheral Network; PDB:
Protein data bank.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SW was the main system architect and provided most of the implementation.
PT provided continuous feedback and guided development. PH implemented
some features described in the document. RT supervised the work and
implemented coupling to external programs. All authors provided input to the
final text. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by NIH 5-P41-EB002025.
Molecular graphics and analyses were performed with the UCSF Chimera
package. Chimera is developed by the Resource for Biocomputing,
Visualization, and Informatics at the University of California, San Francisco
(supported by NIGMS P41-GM103311).
Blender (blender.org) is used to perform 3D rendering. Blender is an open
source project supported by the Blender Foundation and the online
community.
Early versions of SketchBio used PyMol (pymol.org) to import data from the
PDB. PyMol is an open source project maintained and distributed by
Schrödinger.
We thank Ping-Lin (“Joe”) Hsiao for evaluating the effectiveness of SketchBio
on the construction of protofibrils. We also thank our collaborators Susan Lord,
Sharon Campbell, and Kerry Bloom, and the rest of the UNC CISMM group.

Received: 24 April 2014 Accepted: 19 September 2014
Published: 30 October 2014

References
1. Frankel F, DePace AH: Visual Strategies: A Practical Guide to Graphics for

Scientists and Engineers: Yale University Press; 2012.
2. Brooks FP: The computer scientist as toolsmith-studies in interactive

computer graphics. In Information Processing 77, Proceedings of IFIP
Congress 77. Edited by Gilchrist B. North-Holland: Toronto; 1977:625–634.

3. Lord ST: Fibrinogen and fibrin: scaffold proteins in hemostasis. Curr
Opin Hematol 2007, 14(3):236–241.

4. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng
EC, Ferrin TE: Ucsf chimera - a visualization system for exploratory
research and analysis. J Comput Chem 2004, 25(13):1605–1612.

5. LLC S: The PyMOL Molecular Graphics System. Computer Program,
PyMOL version 1.5.0.4 2013. [http://pymol.org]

6. Hornus S, Lévy B, Larivière D, Fourmentin E: Easy dna modeling and
more with graphitelifeexplorer. PloS one 2013, 8(1):53609.

7. Humphrey W, Dalke A, Schulten K: Vmd - visual molecular dynamics.
J Mol Graph 1996, 14:33–38.

8. Martz E: Protein explorer: easy yet powerful macromolecular
visualization. Trends Biochem Sci 2002, 27(2):107–109.

9. Grell L, Parkin C, Slatest L, Craig PA: Ez-viz, a tool for simplifying
molecular viewing in pymol. Biochem Mol Biol Educ 2006, 34(6):402–407.

10. Quammen CW, Richardson A, Haase J, Harrison B, Taylor RMII, Bloom KS:
FluoroSim: a visual problem solving environment for fluorescence
microscopy. Eurographics Workshop Vis Comput Biomed 2008.
[http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860625/]

11. Johnson G: Autofill Web Page. 2013. [http://www.grahamj.com/]
12. Maya M: Molecular Maya Web Page. 2013. [http://www.

molecularmovies.com/toolkit/]
13. Zini MF, Porozov Y, Andrei RM, Loni T, Caudai C, Zoppè M: Bioblender:

fast and efficient all atom morphing of proteins using blender game

engine. arXiv preprint arXiv:1009.4801 2010. [http://arxiv.org/abs/
1009.4801]

14. Flipbook M: Molecular Flipbook. 2013. [http://molecularviewbook.org/]
15. Sabir K, Stolte C, Tabor B, O’Donoghue SI: The molecular control toolkit:

controlling 3d molecular graphics via gesture and voice. IEEE Trans
Vis Comput Graph 2013:49–56. IEEE.

16. Nickels S, Stöckel D, Mueller SC, Lenhof H-P, Hildebrandt A, Dehof AK:
Presentaball–a powerful package for presentations and lessons in
structural biology. IEEE Trans Visual Comput Graph 2013:33–40. IEEE.

17. Décoret X, Durand F, Sillion FX, Dorsey J: Billboard clouds for extreme
model simplification. ACM Trans Graph 2003, 22:689–696. ACM.

18. Erikson C, Manocha D: Simplification culling of static and dynamic
scene graphs. UNC-Chapel Hill Computer Science TR98-009 1998.
[https://wwwx.cs.unc.edu/geom/papers/documents/technicalreports/
tr98009.pdf]

19. Cohen J, Olano M, Manocha D: Appearance-preserving simplification.
In Proceedings of the 25th Annual Conference on Computer Graphics and
Interactive Techniques. ACM; 1998:115–122.

20. Aliaga DG: Visualization of complex models using dynamic
texture-based simplification. In Proceedings of the 7th Conference on
Visualization’96. IEEE Computer Society Press; 1996:101–106.

21. Maciel PW, Shirley P: Visual navigation of large environments using
textured clusters. In Proceedings of the 1995 Symposium on Interactive 3D
Graphics. ACM; 1995:95–102.

22. Coffey DM, Lin C-L, Erdman AG, Keefe DF: Design by dragging: an
interface for creative forward and inverse design with simulation
ensembles. IEEE Trans Vis Comput Graph 2013, 19(12):2783–2791.

23. Schroeder W: The Visualization Toolkit. 3rd. New York: Kitware, Inc; 2003.
24. Tracy DJ, Buss SR, Woods BM: Efficient large-scale sweep and prune

methods with aabb insertion and removal. In Virtual Reality
Conference, 2009. VR 2009. IEEE. IEEE; 2009:191–198.

25. Larsen E, Gottschalk S, Lin MC, Manocha D: Fast proximity queries with
swept sphere volumes. Technical report, Technical Report TR99-018,
Department of Computer Science, University of North Carolina, 1999.
[http://gamma.cs.unc.edu/SSV/ssv.pdf]

26. Oat C, Barczak J, Shopf J: Efficient spatial binning on the GPU. SIGGRAPH
Asia 2008. [http://www.chrisoat.com/papers/EfficientSpatialBinning.pdf]

27. Rungta A, Summa B, Demir D, Bremer P-T, Pascucci V: Manyvis: multiple
applications in an integrated visualization environment. IEEE Trans
Vis Comput Graph 2013, 19(12):2878–2885.

28. Leganchuk A, Zhai S, Buxton W: Manual and cognitive benefits of
two-handed input: an experimental study. ACM Trans Comput Hum
Interact 1998, 5(4):326–359.

29. Hendrix C, Barfield W: Relationship between monocular and binocular
depth cues for judgements of spatial information and spatial
instrument design. Displays 1995, 16(3):103–113.

30. Taylor RM II, Hudson TC, Seeger A, Weber H, Juliano J, Helser AT: Vrpn: a
device-independent, network-transparent vr peripheral system. In
Proceedings of the ACM Symposium on Virtual Reality Software and
Technology. ACM; 2001:55–61.

31. Computer-Integrated Systems for Microscopy and Manipulation
NIH National Research Resource. [http://cismm.org/downloads]

32. Arthur K, Preston T, Taylor R, Brooks F, Whitton M, Wright W: Designing
and building the pit: a head-tracked stereo workspace for two
users. In 2nd International Immersive Projection Technology Workshop.
Edited by Cruz-Neira C:11–12. [http://webstaff.itn.liu.se/matco/TNM086/
Papers/pit.pdf]

33. Grant B, Helser A, Taylor RM II: Adding force display to a stereoscopic
head-tracked projection display. In Proceedings of VRAIS ‘98. Atlanta,
Georgia: IEEE:81–88.

34. Marshburn D, Weigle C, Wilde BG, Desai K, Fisher JK, Cribb J, O’Brien ET,
Superfine R, Taylor RM II: The software interface to the 3d-force
microscope. In Proc IEEE Vis. Minneapolis, Minnesota: IEEE; 2005:455–462.

35. Taylor RM II: Scientific applications of force feedback: molecular
simulation and microscope control. In SIGGRAPH ‘99. Course Notes for
“Haptics: From Basic Principles to Advanced Applications”. New York: ACM.

36. Taylor RM II, Chen J, Okimoto S, Llopis-Artime N, Chi VL, Brooks FP, Falvo
M, Paulson S, Thiansathaporn P, Glick D, Washburn S, Superfine R: Pearls
found on the way to the ideal interface for scanned-probe
microscopes. In Visualization ‘97. New York: IEEE:467–470.

http://www.biomedcentral.com/content/supplementary/1471-2105-15-334-S1.mp4
http://pymol.org
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860625/
http://www.grahamj.com/
http://www.molecularmovies.com/toolkit/
http://www.molecularmovies.com/toolkit/
http://arxiv.org/abs/1009.4801
http://arxiv.org/abs/1009.4801
http://molecularviewbook.org/
https://wwwx.cs.unc.edu/ geom/papers/documents/technicalreports/tr98009.pdf
https://wwwx.cs.unc.edu/ geom/papers/documents/technicalreports/tr98009.pdf
http://gamma.cs.unc.edu/SSV/ssv.pdf
http://www.chrisoat.com/papers/EfficientSpatialBinning.pdf
http://cismm.org/downloads
http://webstaff.itn.liu.se/ matco/TNM086/Papers/pit.pdf
http://webstaff.itn.liu.se/ matco/TNM086/Papers/pit.pdf


Waldon et al. BMC Bioinformatics 2014, 15:334 Page 17 of 17
http://www.biomedcentral.com/1471-2105/15/334

37. Taylor RM II, Robinett W, Chi VL, Brooks FP, Wright WV, Williams RS, Snyder
EJ: The nanomanipulator: a virtual-reality interface for a scanning
tunneling microscope. In SIGGRAPH 93. New York: ACM:127–134.

38. Janssen ME, Kim E, Liu H, Fujimoto LM, Bobkov A, Volkmann N, Hanein D:
Three-dimensional structure of vinculin bound to actin filaments.
Mol Cell 2006, 21(2):271–281.

39. Thompson PM, Tolbert CE, Shen K, Kota P, Palmer SM, Plevock KM, Orlova
A, Galkin VE, Burridge K, Egelman EH, Dokholyan NV, Superfine R,
Campbell SL: Identification of an actin binding surface on vinculin
that mediates mechanical cell and focal adhesion properties.
Structure 2014, 22(5):697–706.

40. Thievessen I, Thompson PM, Berlemont S, Plevock KM, Plotnikov SV,
Zemljic-Harpf A, Ross RS, Davidson MW, Danuser G, Campbell SL,
Waterman CM: Vinculin–actin interaction couples actin retrograde
flow to focal adhesions, but is dispensable for focal adhesion
growth. J Cell Biol 2013, 202(1):163–177.

doi:10.1186/1471-2105-15-334
Cite this article as: Waldon et al.: SketchBio: a scientist’s 3D interface for
molecular modeling and animation. BMC Bioinformatics 2014 15:334.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit



BioMed Central publishes under the Creative Commons Attribution License (CCAL). Under
the CCAL, authors retain copyright to the article but users are allowed to download, reprint,
distribute and /or copy articles in BioMed Central journals, as long as the original work is
properly cited.


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Driving problems
	Design goals
	Prior work
	Molecular modeling
	Rendering
	Interactive animation
	Interactive rendering
	Collision detection
	Mash-ups


	Methods
	System overview
	State-of-the-art capabilities
	Bimanual interaction
	Shadow plane
	Animations
	Grouping
	Importing molecules

	Novel capabilities
	Pose-mode physics
	Crystal-by-example
	Collision Detection in pose-mode physics and crystal-by-example
	Connectors

	Architecture
	Design decisions
	Bimanual, 6-DOF interface
	Harness, do not re-implement
	Usable in-house


	Results and discussion
	Easy to learn and use
	Support rapidly-iterated, in-context design
	Support molecular operations
	Appropriately constrain layout
	Support high-quality rendering

	Limitations and future work
	Conclusions
	Additional file
	Additional file 1

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References

