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Abstract

There is a rich literature on automatic species identification of a specific target taxon as regards various vocalizing animals.
Research usually is restricted to specific species – in most cases a single one. It is only very recently that the number of
monitored species has started to increase for certain habitats involving birds. Automatic acoustic monitoring has not yet
been proven to be generic enough to scale to other taxa and habitats than the ones described in the original research.
Although attracting much attention, the acoustic monitoring procedure is neither well established yet nor universally
adopted as a biodiversity monitoring tool. Recently, the multi-instance multi-label framework on bird vocalizations has been
introduced to face the obstacle of simultaneously vocalizing birds of different species. We build on this framework to
integrate novel, image-based heterogeneous features designed to capture different aspects of the spectrum. We applied
our approach to a taxon-rich habitat that included 78 birds, 8 insect species and 1 amphibian. This dataset constituted the
Multi-label Bird Species Classification Challenge-NIPS 2013 where the proposed approach achieved an average accuracy of
91.25% on unseen data.
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Introduction

There are many questions that scientists are called to address

regarding the state of knowledge of global biodiversity. For all

taxonomic groups only a percentage of 10–20% is known and

logged. Even as regards known groups, their population,

distribution and dynamic changes are mostly unknown to us.

The urgent problem of grave importance is to be able to assess

when an ecosystem reaches a degraded state to the point of

irreversibility and answer such questions as ‘What is the state of

the habitat in order to design policies and take conservation action

to achieve sustainable use of the environment?’ or ‘How is climate

change related to rates of species loss and migration?’.

Biodiversity monitoring provides the essential information on

which conservation action is based. The monitoring process is

typically carried out by qualified humans who observe and write

down notes while taking logs of instruments that concentrate on

the particular observation site. While the ability of a qualified

scientist can be unparalleled to any kind of machine, there are also

some limitations in human monitoring. The ability and the

qualifications of the observers vary and this introduces a bias [1] in

the total assessment. In addition, human expeditions are costly and

can cover a limited number of sites and only work for a limited

time. Moreover, the monitoring process can become more limited

or even dangerous in remote, inaccessible areas. Besides, it can

also be obtrusive on the species of observation.

Automatic acoustic monitoring of biodiversity is a means to

provide information on species diversity with a view to the ones

that are endemic, in a threatened or endangered status, or have

special importance serving as indicator species. Moreover, each

species is unique of its kind but can also have an additional

importance due to its social, scientific, cultural or economic role.

Acoustic monitoring is limited to the part of the fauna that emits

sound (birds, certain insects, certain amphibians, bats etc), which is

only a subsample of the total biodiversity. However, inferring the

correct taxa of this fauna and their densities can also give us an

indirect cue for non-emitting sound species through their inter-

dependence in the life-cycle, since animal populations are

correlated.

Acoustic monitoring of biodiversity becomes, with time, a more

attractive approach, as autonomous recording units (ARUs)

become more affordable, can be power sufficient and can transmit

their data through GSM or satellite connections from remote areas

straight to the laboratory that can be located as far as in another

continent. Therefore ARUs will eventually allow gathering of

observations at larger spatial and time scales.

The challenge that comes along with such approach is the

processing and logging of the deluge of data coming from the

network of these sensors. Considering that ARUs can be operated

in 24/7 modus and that several recorders can be used

simultaneously, huge amounts of audio data can be gathered in

relatively short periods of time. It is hardly feasible for human

experts to listen to or visually inspect the complete sample of

recordings. Thus semi-automatic processing of the sound files is a

prerequisite for analysing the information within reasonable time

limits.

The possible applications of acoustic monitoring in terrestrial

environments using microphone arrays are thoroughly presented

in [2]. Acoustic entropy indices [3–4] are also proposed as a means
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to assess the type of the habitat and the extent of human

intervention.

There is a rich literature on automatic species identification of

specific target taxon like birds [5–7], amphibians [8], cetaceans

[9], insects [10], fish [11], bats [12] and mice [13]. All these

approaches are valuable as they pave the way for automatic

analysis of animal vocalisations. However, they have not yet

proven generic enough to scale to taxa and habitats other than the

ones described in their original publication. Moreover, the misses

and false alarms of these methods will cause a very large number

of cases to be further investigated manually for a system that works

on a 24/7 basis. Clearly the classification scores must face the high

level of false positive and false negative results in order to make

acoustic monitoring practical.

The present work is an attempt to shed some light on the

possibility of monitoring taxon-rich communities recorded in the

wild. It is our belief, shared by others, that in order to have solid

progress in this research field, researchers should depart from

using private data and focus on unprocessed data as typically

recorded in nature. This paper introduces our approach that took

part in a taxon-rich classification challenge organized by NIPS

2013 conference for bioacoustics [14] that involves 87 species (78

birds, 8 insects and 1 amphibian) in unprocessed wild life

recordings. Competition challenges are very useful as a means to

put theories into practice and assess what is the state of the art, as

all competing approaches are bound by a common corpus;

moreover, the assessment is guaranteed not to be biased towards a

private approach, as the organizers of the challenge have the

responsibility of assessing the approaches and base their final

ranking on data that are unknown to the contestants [15].

We have examined all reported approaches to bioacoustic

challenges [15,18,23] to find structural parallels among the best

performing approaches, gather candidate functional sub-compo-

nents, integrate our novel features, and finally shape our personal

strategy towards the task of classifying large taxa of animal

vocalisation in unprocessed field recordings. Our research

concluded into three key observations that we will thoroughly

analyse in the following sections:

a) The treatment of sound as picture through the spectrogram

as well as the application of image-based transformations to

identify local properties of the target spectral blobs can have

certain advantages over frame-based audio classification

approaches to the task of species identification in noisy, real

environments. This work belongs to the research trend the

treats audio as a picture through its spectrogram [5,9,16,17].

b) Multi-instance, multi-label approaches have an indisputable

advantage over single- label approaches in species classifica-

tion tasks [5].

c) The synthesis of heterogeneous features is beneficial as it can

provide complementary information that can be naturally

integrated into the framework of decision trees in random

forest ensembles.

This paper is organized as follows: In Section entitled ‘Methods’

we present: a) the database and its main difficulties as regards

species recognition, b) the feature extraction and classifier from the

perspective of image analysis of spectrograms, c) the single and

multi-label approaches as well as the benefits of the latter. In

Section entitled ‘Results’ we analyse the fine-tuning of the pattern

recognition methods, perform experiments with real-field data and

analyse the results of the current work. A discussion of the results

concludes this work by presenting possible extensions and

summarizing the implications of the results.

Methods

The Database and its Specificities
The NIPS 2013 database is composed of 1687 field-recordings

each containing vocalisations of 0–6 different species. A subset of

687 recordings is offered as a training set accompanied with

known annotation from bioacoustics experts and we seek the

species existing in the other 1000 recordings. The hardware used

to collect the data was a number of ARUs placed at different

locations of the French Provence and provided by the BIOTOPE

society (see http://www.biotope.fr/for details). All recordings are

monophonic, sampled at 44100 Hz with variable duration from

0.25 up to 5.75 secs. We did not downsample the original

recordings as there were insect species singing up to 20 kHz and

night birds calling as low as at 500 Hz.

The training set matches the test set conditions. The list of

animals can be found in [14] and contains the most encountered

species in central Europe. Another unique aspect of the NIPS

dataset is the distinction between calls and songs of the same

species that are treated as distinct categories that the algorithms

should resolve. The recordings are selected in such a way that

different kinds of difficulties are encountered in almost every

recording, namely:

a) Different bird species can and often do overlap in the same

time-frame. Vocalizations can also overlap in frequency but,

do not generally overlap both in time and frequency

simultaneously. This can be attributed to the sparsity of the

time-frequency domain but also to the observed fact that co-

existing species make use of different bandwidths in order to

communicate efficiently.

b) Different gains of signals due to distance: as many vocalizing

animals can be at any distance from the microphone, often

weak calls are picked up along with a dominating vocalization

(see Fig. 1).

c) Anthropogenic noises such as airplanes, sirens, footsteps,

human speech in biotopes near urban territories can lead any

classifier to error, because they either obscure the target

signal causing a miss or become themselves classified as the

target signal (false alarm).

d) Abiotic sounds due to heavy wind, rain, and recording device

failures can substantially reduce the quality of recordings.

The sound of rain-drops and recording device failures

produce sound events that are short-time with broadband

spectral characteristics and can be misled with insect

stridulations (see Fig. 2).

Signal Processing & Pattern Recognition as Applied to
Animal Vocalisations

Single- and multi-label approaches. Recognizers of animal

vocalisations use prototypes of the target species extracted from

examples of annotated training data. These recordings come out

of large bioacoustics inventories (e.g. DORSA (http://www.dorsa.

de), MacAulay Library (http://macaulaylibrary.org/index.do),

Tierstimmenarchivb (http://www.tierstimmenarchiv.de), and

Xeno-canto (http://www.xeno-canto.org) or from private corpo-

ra.

These inventories, at the time of their compilation did not follow a

common protocol on how to log the target species. Some contain just

a clip of the target species, others contain the target species in the

presence of several others or in the presence of noise or they are even

human narrated. The vast majority of reported research on

classifying animal vocalisations follow the single label paradigm (a
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recording holds a single species). The reference library of a single

instance recognizer should contain a large number of only the target

species and nothing else, as the recognizer will learn the sound that is

unrelated to the target species, which in the end will increase its false

alarms. The single label approach comes with a major drawback.

Not many people are qualified to recognize species efficiently by

sound. In the single-instance case, the construction of a reference

library is a quite laborious task as the expert must screen all

recordings and apply delicate time-frequency cleaning to any

possible interference. Most experts are unwilling to undertake this

task for a large number of species and recordings. Again, single-

instance recognizers are vulnerable to false positives, i.e. species that

are not the target but sound like it and are included by mistake in the

reference library. The Multi-label approach on bird recognition is in

our opinion a breakthrough and was originally proposed for the task

of bird recognition in [5]. In this approach the expert does not need

to clean or time-stamp the recordings at all.

The expert just writes down the acoustic classes that appear in a

recording e.g. European Robin, Common Chaffinch, without any

particular order or time stamp. That is, he/she has to select the set

of labels attributed to the recording without having to clean,

remove, isolate or timestamp parts of the recording. Each

recording in the NIPS 20134B database has vocalisations from a

varying number of species and the training corpus is annotated to

the species level. We transformed the annotation data of all

recordings to a binary matrix of a dimension 687688 (687 training

files, 87 for the species and 1 for noise only recordings as seen in

Table 1). Note that any all noise types as well as recording void of

vocalisations can be pooled to a general noise class.

The multi-label approach is responsible for marginalizing over

the multiple labels and associate probabilities to species. This

procedure accelerates the annotation of the human expert by far,

as it alleviates the necessity of isolating the target signal. The

expert, either by spectrographic analysis or by listening to the

dubious cases, selects the appropriate tags and moves on to the

next recording. Therefore, the multi-label approach relaxes by far

the effort of constructing more complete reference databases.

Pattern Matching
The automatic classification of species by machine learning

techniques has a common theme. The features extracted from the

unknown recordings are compared to prototypes extracted from

labelled reference data in order to find possible matches. The label

of the best matching reference becomes the label of the unknown

recording. The prototypes can be probabilistic descriptions as in

GMMs, HMMs [7], [12] or spectrographic patches serving as

templates as in the general detection framework X-Bat (http://

www.birds.cornell.edu/brp/software/xbat-introduction). The

matching is based on calculating a distance between the target

prototypes and the unknown recordings. Again the distance can be

one suited against a probabilistic approach e.g. a likelihood score,

a probability or a cross correlation score. The final decision on

which species are to be found in an unknown recording comes

after comparing the distance to a threshold.

Species classification approaches based on Gaussian Mixture

Models (GMMs) and Hidden Markov Models (HMMs) as typically

applied to speech are related to animal vocalization classification

quite well. In fact HMM’s were among the first applied classifiers

Figure 1. 3D spectrogram of a typical recording of 3 species (trainfile115 in NIPS20134B database) demonstrating the difficulties in
recognition due to different gains in target signals and noise. From 14–19 kHz a Cicada, 8–13 kHz Bush Cricket, 2.5–3.8 Eurasian Blackcap, 0–
2 kHz strong airplane noise.
doi:10.1371/journal.pone.0096936.g001
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following their success in speech/speaker recognition. After a

thorough experimentation on private dataset of annual recordings

with sophisticated versions of these tools [7] we discovered 2 major

drawbacks of the HMM/GMM approach:

a) Recordings in the wild can be very noisy due to their

exposure to a large number of audio sources originating from

all distances and directions, the number and identity of which

cannot be known a-priori. The co-existence of the target

vocalisation with other species and abiotic interferences is

inefficiently treated by current approaches of audio signal

enhancement and separation when the number and the

nature of audio sources is unknown as when coming from an

unconstrained environment. These audio sources often

appear simultaneously with target vocalisations over a single

time frame (see Fig. 1 and Fig. 3 for common examples).

GMMs/HMMs model the features extracted from overlap-

ping frame analysis of sound. An overlapping time-frame

sound analysis will inevitably include in its spectrum some of

these interferences as well as possibly and quite often the

vocalisations of a number of species.

b) The GMMs/HMMs species detectors derive a probability

per frame (target vs. everything else -the so called ‘world

model’). In the case of applying this classifier to wild-life

recordings the vocalizing species will change from season to

season and therefore the world-model as well. A GMM/

HMM detector produces erroneous results if it is not properly

updated by re-training or adapting to new species. The

update procedure requires an expert in birds’ vocalisations to

be available to sort out which species change and are

probable to be confused with the targeted ones. This problem

is not obvious when one is analysing e.g. one month of data

but is prevalent in annual data analyses.

Spectrographic patches serving as templates is also one of the

very first approaches employed and still is used mostly as providing

a proof of concept on manually selected example recordings [25].

In unconstrained real life scenarios the variability between

vocalisations of a single individual with limited repertoire not to

mention variability among different individuals of the same species

can be so large that templates are not capable to grasp the

individuality of a target species. Moreover, spectrogram patches

are vulnerable to noise and to competing species while the slightest

Figure 2. Types of anthropogenic and abiotic interfering sounds.
doi:10.1371/journal.pone.0096936.g002

Table 1. Annotation sample of the training data under the multi-label framework.

#File Noise Long-tailed Tit … Turdus philomelos

001 0 1 1

002 1 0 1 1

doi:10.1371/journal.pone.0096936.t001
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spectral deformation can result to a large distance between the

unknown vocalisation and the template.

The base classifier in our approach is a random forest under the

multi-label formulation of one vs. all (the so – called binary

relevance approach [5]). Random forests are an ensemble learning

method for classification that is based on constructing many

decision trees at training time and outputting the class that is the

mode of the classes to the end of individual trees [22]. Random

forests are the machine learning technique of choice here as our

approach is based on deriving multiple - heterogeneous sets of

features that aim to grasp different aspects of the spectrogram

picture. The final dimensionality of the feature set is much larger

than the size of the training set. There are few classifiers that can

deal with such large dimensionalities. The class of Support Vector

Machines and Extra Randomised Trees [24] that can also deal

with high dimensional features were also tried out but with inferior

results.

Feature Extraction
The spectrogram as an image. In our work, we do not

follow the framework of audio analysis but the framework of image

analysis. Treating the audio scene as a picture means looking at

the spectrogram as a canvas where the acoustic events appear as

localised spectral blobs on a two-dimensional matrix (see Fig. 3).

Once these spectral blobs are extracted, many feature extraction

techniques can be applied exclusively on these spectral patches

while ignoring the rest of the spectrum. In this section we describe

how we extract the regions of interest (ROIs) from the

spectrogram.

The recording is firstly amplitude normalized. Then morpho-

logical operations are applied on the image. These operation have

as function to derive masks of spectral blobs by connecting regions

of high amplitude that correspond to calls or phrases and to

eliminate small regions of high amplitude that cannot belong to

animal vocalizations because they are too small. Several

approaches have been tried as: removing from the image a

blurred version of the same image as well as removing the

morphological opening of the image. First a morphological

opening on an image is applied that can remove small bright

spots. Opening is defined as an erosion followed by a dilation.

Erosion shrinks bright regions and enlarges dark regions. Dilation

has the opposite effect of erosion and enlarges bright regions and

shrinks dark regions. The border segments are dropped as the

lower part correspond almost always to low-pass noise spectral

patches. All these different are standard approaches in image

processing having as a result to remove background illumination

and extract spectral blobs [21].

As an example, in the sample image (see Fig. 3), the background

illumination is less bright at the bottom of the image than at the

centre or top. This is due to the sound of nearby running water

and wind that corrupt the low frequencies of the spectrum. After

the morphological operations are applied the picture of the

spectrogram is made binary in order to mark the masks of the

spectral blobs.

Binarization is realised by thresholding the image to the 90%

percentile of the data (i.e. that is the highest 90% value).

Subsequently we label the connected components in the 2-D

binary image to derive the masks where the ROIs exist. We call

ROIs the spectral patches cropped by the associated masks. Small

masks (smaller than a fixed number of pixels) are discarded (see

Fig. 4). The threshold for removing small masks is derived by

observing short but perceptible calls from the training data and the

Figure 3. Spectrogram corresponding to a recording with 3 partially overlapping bird species (trainfile005 in NIPS20134B
database). The lower part of the spectrum is coloured by the sound of running water and strong wind.
doi:10.1371/journal.pone.0096936.g003
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number of pixels is set to 100. The ROIs are the patches from the

original spectrogram that correspond to the pixel coordinates of

the masks. All the ROIs extracted from the training set and test set

are stored along with the frequency location from which they were

cropped. The time information is dropped as an animal can

vocalise at any time within a recording but only at the frequencies

of its repertoire (see Fig. 5 for the segments extracted from the

recording of Fig. 3).

Fig. 5 illustrates the ROI’s extracted from a single recording.

The 16798 ROIs of all 1687 recordings are automatically

extracted, enumerated and catalogued in under 12 minutes using

an i7, 3.4 GHz machine. This is a distinct difference from the

seminal approach of [5] where the ROIs are manually extracted,

which is very time-consuming and practically impossible when the

number of recordings is large. Cataloguing entails storing the

spectral patches and the frequency borders in pixel coordinates

from where it was extracted. Everything else but the ROIs is

discarded from the data.

The benefits of extracting the ROIs are:

a) The great reduction of variability between recordings. Every

further analysis of our database will be done in reference to

these ROIs alone while the rest of the spectrum is disregarded

(compare Fig. 5 to the original Fig. 3).

b) Once extracted these ROIs allow us to derive a plethora of

features with gradual increase in sophistication namely:

Marginal over time measurements, statistical descriptors of

the shape of the ROIs and finally how the ROIs of the

training set alone correlate to the spectrograms of the test set.

Extraction of Marginal Over Time Measurements
Spectrogram reconstruction from ROIs entails that an en-

hanced spectrogram is extracted from the original one by

imposing the ROIs of the original spectrum on an empty

spectrogram (see Fig. 4). Each spectrogram is partitioned in 16

equal and non-overlapping horizontal bands. Subsequently several

statistics are derived over this enhanced spectrum on a per band

basis. This approach resembles filterbank analysis in audio. We do

not apply mel-spacing as different birds and insects can vocalize

anywhere in the spectrum. This approach allows us to make use of

the band-limited character of most species and leave the

marginalization process to the multi-label approach. For each

band a set of basic descriptive statistics to represent the essence of

each band concisely is derived from the intensities of each band,

namely: Mean, standard deviation, median and kurtosis and the

90% percentile. The median is found by sorting the values and

picking the middle one and is a way to summarize statistical

distribution. Kurtosis (fourth central moment) is used as a measure

of peaky vs. flat. In order to derive the 90% percentiles the data

are ordered and the one at the highest 90% position is derived. A

percentile is a statistical measure below which a given percentage

of measurements in a group of measurements fall. Other

descriptive statistics have been tried, such as entropy and skewness,

but without presenting any statistically significant difference in the

classification accuracy. Therefore, 5 descriptors for each of the 16

bands is derived resulting to a 5616 = 80 dimensional vector per

recording and a total training matrix S1
687680. One should note

that with this feature alone the multi-label approach achieves

86.37% average accuracy (see Results section).

Bag of Segments, Statistics of Segments and Coding
Over Multiple Codebooks

S1 offers a gross description of the spectrum. The S1 features set

can capture quite well species vocalising in different frequency

bands but it fails to capture species vocalising in the same band.

Another set of features, named S2 is extracted out of the

examination of the morphology of each ROI. Each recording is

considered as a bag of segments where the bag is the set composed

of all ROIs in a recording and each ROI is an instance. For the

ROIs corresponding to each recording we derive the following

features:

Figure 4. Detected spectrogram blobs of Fig. 3. Derivations and enumeration of the masks. Axis are enumerated according to their pixel index.
doi:10.1371/journal.pone.0096936.g004
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Area of the binary mask noted as Marea of the mask M:

Marea~
X

(t,f )[M
Mt,f ð1Þ

where t, f are pixel indices belonging to the area of the mask.

Mean off the spectral patch corresponding to a ROI:

mt,f ~
1

tf

X
(t,f )[M

St,f ð2Þ

where St,f corresponds to the amplitude of the spectral chunk of the

underlying binary mask Mt,f.

Standard deviation of the spectral ROI:

st,f ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

tf

X
(t,f )[M

mt,f {St,f

� �2

s
ð3Þ

The Median, Minimum and Maximum value of the spectral

patch defined by ROIs and the Maximum position of the spectral

ROIs (only the frequency index retained) as well as bandwidth and

duration of each ROI are set as features. Additionally, we calculate

the mel-frequency cepstral coefficients (13 features) only in the

frames containing the ROIs. These coefficients are derived by

multiplying the amplitude of the spectrogram with a mel-scaled

filterbank, then the logarithm is applied and finally the result is

decorrelated using the discrete cosine transform.

However, each recording has a varying number of ROIs. In

order to derive a useful description per recording this must have a

fixed size so that it can be compared to the descriptions of other

recordings. Therefore we follow the following steps:

a) The ROIs of all training and test recordings are pooled

together, whitened and clustered using a widely accepted

non-supervised clustering approach namely K-means cluster-

ing [22].

b) Each ROI belonging to the same recording is associated to

the cluster mean from which it has the lowest distance.

c) From all ROIs belonging to each recording we make a

histogram of occurrences of cluster indices. This clearly has a

fixed dimensionality equal to the size of the K-means

partition. This procedure resembles the bag-of-words analysis

used in text processing that is adapted to our bag of spectral

segments case as in [5].

We have found the use of multiple code-books over the single

codebook approach beneficial. A codebook with a small number of

clusters will cluster using the gross-characteristic of the ROIs while

gradual augmentation of the number of clusters leads to finer

detail. We have been using 3 codebooks with 25, 15 and 70

clusters respectively resulting to a 687625, 687615, 687670

training set which, after column stacking leads to a future set of

S2
6876110 for the training set.

Spectrographic Cross-correlation of ROIs
The final feature set S3 is the most powerful one and has

originally appeared in [19]. The key idea is to span the acoustic

space of all recordings with respect to the swarm of extracted

ROIs. That is, the swarm of the ROIs extracted from the training

set scans the recordings and the highest normalized cross-

correlation achieved from each ROI serves as a feature.

The Normalized 2D Cross-correlation of ROIs is calculated as

follows:

Xcc~

P
x,y f x,yð Þ{�ff u,v

� �
t x{u,y{uð Þ{�ttð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x,y f x,yð Þ{�ff u,v

� �2P
x,y t x{u,y{uð Þ{�ttð Þ2

q ð4Þ

f is the image.
�tt is the mean of the template.
�ffu,v is the mean of f (x, y) in the region under the template.

This feature set alone surpasses all others combined. We

attribute its success to the following facts:

Figure 5. ROIs extracted after applying the masks of Fig. 4 onto the spectrogram of Fig. 3, enumerated and catalogued. The same
procedure is followed for all recordings.
doi:10.1371/journal.pone.0096936.g005
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a) Each ROI scans each spectrogram of the test set in the

bandwidth limits of the ROI (enlarged64 pixels across

frequency to account for variability among individuals of

the same species). Frequency constrained scanning is

important since many species can have similar shapes of

calls and what makes them different is their exact location

in frequency.

b) Lets take the case of a targeted call that must be detected in a

highly degraded environment (say the Bush Cricket in Fig. 1).

If this degradation does not take place exactly on the time-

frequency patch of the targeted call (this is indeed the case of

airplane noise in Fig. 1) this approach will locate this call even

if the background noise is orders of magnitude higher. They

will locate the target call because ROIs can move in a 2D

search space while seeking similar patches and they can

ignore everything else (including all sorts of interferences)

since the path they search is constrained by the permissible

frequency bounds of each ROI.

c) Spectral segments are treated as wholes and do not face the

problem of frame-wise processing of audio signals as GMMs/

HMMs typically do.

d) The set holding all ROIs derived from the training set hold

different manifestations of the same call either because it is a

repetition or because it comes from another individual or is a

call/song from a different distance and location. Therefore, a

target call/song can be tracked even if the bird has a complex

repertoire (in such case the ROIs will be from different parts

of the spectrum) or its call shows variations due to distance

and reflections.

Since the extraction of ROIs is automatic and unsupervised

spectral patches corresponding to noise will be included in the

swarm of ROIs (see segments 2 and 16 in Fig. 4). In fact there

will be a large number of them. The way to deal with them is to

apply a selection of features during building the trees of the

random forest. By monitoring the out-of-bag (oob) error and

rejecting these features whose replacement does not contribute

to this error we discard almost the 2/3 of the total ROIs that are

really valuable for classification. The reason why most of the

noise ROIs are automatically discarded is that noise patches

appear spuriously and therefore do not have descriptive

capability. Noise types that are not spurious such as a siren or

rain are pooled in the noise class that is the 0 class in our 87

class problem and discarded during recognition as the 0 class is

deleted.

One should note that detection results based on a simple cross-

correlation search of a template or even multiple templates on the

spectrogram return poor classification results when applied to

wildlife recordings. The present approach is successful because it

models the way in which the total set of ROIs fits an unknown

recording and therefore integrates votes coming from all available

ROIs.

A strong similarity is to be observed between our work and [20],

a work developed simultaneously to but independently from ours.

The difference in [20] and the proposed work is that the author

presents the idea of median clipping per frequency band and time

frame that removes most of the background noise. The spectrum is

enhanced which results into deriving a much lower number of

ROIs. Moreover he does not apply a one vs. all multi-label

framework but rather isolates the ROIs that belong to each species

as in [19].

Results

Recognition of Species
The features described in section 3 are all stacked with respect

to columns forming a large training set of features S, where,

S = [S1|S2|S3] and S687616988. Therefore an initial random forest

of 80 trees is built in order to use the out of bag error to select the

best performing features and reduce the dimensionality of S to

S68765669. Once the features are finalized by the selection

procedure the final random forest of 250 trees is constructed by

training on the S68765669 and the associated binary multi-label

matrix Y687688 and then applied to the test data represented by

the associated matrix T100065669.

The parameters of the random forest were tuned using grid-

search and 10-fold cross-validation. The number of trees was set to

250 using the entropy criterion with min_samples_split = 4,

min_samples_leaf = 3. The predictions submitted are averaged

over 10 random forests initialized from different random seeds.

The evaluation metric used was the area under the Receiver’s

Operating Characteristic Curve (also known as Area Under the

Curve or ‘AUC’).

Many feature combinations were tried out. We refer to the most

important ones in Table 2.

The experiments demonstrate that our approach accurately

predicts a large set of species present in an unattended acoustic

monitoring scenario. An example of recognizing a single audio

scene is depicted in Fig. 6 where we can see a typical recognition

output of the recording in Fig. 1.

Detector of Recordings Void of Biotic Sounds
A useful by-product of building a classifier of multiple species is

to make a binary classifier that decides whether there is any animal

sound in a recording. The binary classifier uses the same features

as for species classification (i.e. S687616988) but employs only the

first column of the labels (i.e. if there is animal vocalization in the

recording or not represented by the matrix Y68761). This detector

can be used to derive statistics concerning activity patterns of

animal vocalisations vs abiotic or anthropogenic noise sources in

general. This is useful as a statistical measure of the healthiness of a

habitat (which is associated to species’ vocalisation activity) and

also as a means to screen out recordings that do not include animal

sounds. Recordings void of any animal vocalisation are common

in long-term continuous acoustical monitoring of habitats and

discarding empty recordings helps to reduce the time of further

processing of events as well as the storage capacity required. The

test set of 1000 recordings was inspected manually and categorized

into 209 recordings void of biotic sounds and 791 with at least one

call per animal. The machine learning technique we used after a

small set of comparisons with randomized trees and random

forests was a large Gradient Boosting Classifier [22].The

performance was 97.05% over a 10-fold cross-validation of the

training set and 96.3% over the test set. The analytic results are

depicted in Table 3.

Discussion

The probabilistic framework of random forests is very suitable

for animal vocalisations classification tasks. Assuming that there

are Ntr annotated recordings available for training then a feature

matrix S = NtrxNft can be constructed where Nft represents different

kinds of features stacked by column corresponding to different

perspectives on how to engineer features out of spectrograms.

Random forests do not need feature normalization among these

heterogeneous features and can deal with dimensionality of
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features that can reach many thousands of dimensions. Their

embedded feature selection ability during their growing effectively

removes features that are not useful enough for the classification

task.

As regards the computational cost deriving all features from raw

recordings but the cross-correlation of ROIs (that is S1 and S2)

takes 13 minute on an I7 3.4 GHz PC. The training on 687

recordings and recognition of 1000 recordings takes another

10 minutes. The calculation of S3 takes almost 1 day and the

training and testing of the whole set about 20 minutes on the same

machine. One should note that the employment of Graphical

Processing Units (GPUs) is possible to reduce this computational

effort to a couple of hours and we are currently working to this

direction.

Another feature that in [23] was demonstrated to be highly

beneficial and can potentially be integrated naturally in the

statistical framework of random forests is the location of the

recording device and the time-stamp of the recording. This kind of

information can bias the classifier towards certain species.

Location information can be inserted into ARUs during installa-

tion or through a Global Positioning System and this information

can be passed automatically to the header of the sound files or to

their filenames. The location of the ARUs can offer some

information as regards the micro-biodiversity of the local habitat.

Certain species are always found near lakes (e.g. the common

kingfisher Alcedo Atthis or around the sea-coast etc.), while others

only in rocky areas far away from lakes/coast. Species information

provided by the expert can be combined with location information

to provide the a-priori probability of a species being at this location.

This probability is calculated as the frequency of a species

appearing there to the total number of species tagged by the

human expert during training. This probability matrix of all

species serves as a feature that can be appended to the S matrix.

The same matrix type can be calculated for the test recordings and

the classifier is responsible to resolve the situation. Time

information can be drawn from the internal clock of the ARU

and also passed to the header of the recording or to the filename.

Time information is also important as some birds show strong

preference towards the time they call or sing (e.g. night-birds). The

NIPS database did not include such information but; it is

information often ignored while it can be obtained easily directly

from the hardware of the ARUs. We deem that this information

will be vital when the number of classes will reach many hundreds

of species which however neither appear altogether in a certain

location not they sing/call all day long.

One would then naturally ask: what are the main difficulties in

recognizing taxon-rich communities in the wild using only the

acoustic modality? If one could concentrate erroneous cases they

would cluster due to the following reasons:

a) Noise in low frequencies appears quite often and quite strong

because wind is low-pass and many abiotic sounds (e.g.

motors, planes etc.) are also of low-pass character and can

seriously mask night-birds and other species that vocalise in

very low frequencies.

b) Cicadas have a noise-like spectrum that resembles the

spectrum of wind when they are at large distance from the

recorder and their acoustic emissions are affected by

reverberation. If one applies enhancement algorithms to

reduce the noise and the ROIs that will be associated with

noise then one can also wipe out insect species, especially

when the gain of their signal is small. If one does not apply

any kind of enhancement then one will face the problem of

having a large number of ROIs due to noise. Cicadas can

sing for the whole duration of recordings and therefore no

restriction can be applied on the size of the ROIs as in other

species.

Table 2. AUC public refers to accuracy based on the 1/3 of the test data and AUC public to the accuracy achieved using the
remaining 2/3 of the data.

AUC_Public AUC_Private Description

0.87836 0.86368 Global Features

0.87648 0.87424 Histogram of ROIs

0.87422 0.86843 Global Features + Histogram of ROIs

0.90776 0.91310 Cross-correlation of ROIs

0.91202 0.91689* Global Features + Histogram of ROIs + Cross-corr. of ROIs

0.91850 0.91752 Winning Entry

0.92251 0.91578 2nd Best solution

*0.91252 achieved during contest.
doi:10.1371/journal.pone.0096936.t002

Figure 6. Probability output for 87 classes of the recording in
Fig. 1. One can clearly discern 3 classes corresponding to the
probability peaks in locations 53, 74, 81. From the file of NIPS20134B
database annotations the locations 53, 74, 81 indeed correspond to
Cicada, Bush Cricket and Eurasian Blackcap.
doi:10.1371/journal.pone.0096936.g006
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c) Call repertoire of one species can be very similar at least

partially to that of another to the point that even a trained ear

may be in doubt (e.g., different taxa of Parus-tits or the

notable case of the common kingfisher and the Dunnock -

Prunella modularis). In such cases the human observer seeks

other queues of information to resolve the situation (e.g.

repetition patterns) that are currently not taken into account

in this work.

This work assessed the potential of bioacoustic monitoring of a

taxon-rich community. We have developed an approach that can

monitor 78 bird species, 8 insects and 1 amphibian (a total number

of 87 species under quite challenging environmental conditions).

The classification accuracy was assessed by independent observers

and found 91.252%.

We propose that our method is a contribution towards

monitoring biodiversity at large scales through the recording of

vocal fauna such as birds, insects, amphibians and mammals. We

claim that the approach presented will be very robust when the

training and operational data are matched and we plan to apply

them at diverse environments such us underwater acoustics mainly

for the recognition of cetaceans and also on bats. The classification

of the immense number of recordings stemming from the

deployment of a large number of ARUs will allow the following:

a) Collection of relevant data to support decisions concerning

the presence, absence and distribution of species.

b) Data analysis in fully automated fashion that can function in

degraded audio environments.

c) Humans and their activities can be tracked in protected areas

provided they leave an audio imprint.
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