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Abstract

In order to use score-audio alignment to study expressive
performance or guide signal processing algorithms, it is
necessary to identify the onsets and offsets of all of the notes in
sounded simultaneities (e.g. chords). This paper describes an
algorithm to improve the accuracy of dynamic time warping-
based score-audio alignment for monaural polyphonic record-
ings. The algorithm uses a multi-pass approach, where an
initial dynamic time warping alignment is refined by a hidden
Markov model to allow the identification of asynchronies
between musical events that are notated as simultaneities in the
score. By providing estimates of individual onsets and offsets
in notated simultaneities, the multi-pass algorithm improves
the median accuracy of the DTW alignment for individual on-
sets by 41 ms on average, from 118 to 77 ms, and for individual
offsets by 6 ms on average, from 75 to 69 ms.

Keywords: performance, music alignment, dynamic time
warping, hidden Markov models, voice

1. Introduction

Music alignment has been an active area of inquiry for over
twenty-five years, although there remain a number of chal-
lenges to be addressed in terms of system accuracy and
robustness. Work has been divided between the online prob-
lem of following a solo performer in real-time in order to
generate a responsive accompaniment and the offline problem
of matching a symbolic representation (such as MIDI) to
a monaural recording of a polyphonic performance. Offline
implementations have applications in digital library synchro-
nization, signal processing, and expressive performance anal-
ysis. This paper presents an offline system that focuses on the
challenge of measuring note onset and offset asynchronies
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between musical lines that are marked as simultaneities in the
score, which is particularly important for signal processing
and expressive performance applications. Research has shown
that these asynchronies can range from 7 to 50 ms (Palmer,
1997). The current state of the art, as described in Section 2,
is not sufficiently accurate to address this, especially for tones
with non-percussive onsets, such as unfretted strings or the
singing voice, which form two of the major types of
ensembles in Western art music: string quartets and vocal
ensembles/choirs.

After providing a summary of related in work Section 2,
the paper details the specific challenges of identifying asyn-
chronies between voices in monaural recordings of polyphonic
performances in Section 3. Section 4 describes a novel tech-
nique for improving the accuracy of polyphonic score-audio
alignment by using a multi-pass approach where a hidden
Markov model is used to refine the offset–onset transitions
identified by an initial dynamic time warping alignment be-
tween score and audio representations of the same music
where at least one voice changes notes or re-articulates its
current note. An evaluation of the algorithm and discussion
of the results is presented in Section 5. Conclusions, potential
applications of this algorithm, and possibilities for future work
are presented in Section 6.

2. Background

Dynamic time warping (DTW) and hidden Markov models
(HMMs) have been the most commonly used techniques for
alignment (e.g. Orio and Schwarz (2001) for DTW and Cano,
Loscos, and Bonada (1999) for HMMs), though recently more
complex graphical models have been explored (e.g. Raphael,
2004). Dynamic programming, a technique for recursively
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solving problems with a certain type of structure, was used
in early score following (e.g. Dannenberg, 1984). DTW is a
particular type of dynamic programming algorithm for align-
ing two sequences given a matrix of compatibilities between
all pairs of elements in the sequences and rules for valid
differences between the sequences. Graphical models take
advantage of graph structure and the laws of probability to
efficiently estimate model parameters and states. HMMs are a
type of directed graphical model where a hidden state variable
completely determines the distributions of both the observed
variables at a moment in time and the next state in the
sequence. DTW can be considered a constrained form of an
HMM, where the state sequence always moves forward and
each relative state transition has the same probability for all
states. In contrast to an HMM, classic DTW lacks meaning-
ful training procedures. Because of its constrained nature,
DTW is better suited to offline applications where there is
a known correspondence between the performance and the
score as it is not as flexible as HMMs in dealing with per-
formance errors in online contexts. Other approaches used in
score following include particle filters (e.g. Otsuka, Nakadai,
Ogata, & Okuno, 2011) and conditional random fields (CRFs)
(e.g. Joder, Essid, & Richard, 2011). Particle filters, also known
as sequential Monte Carlo methods, are related to HMMs
in that they use Markov chains, but differ in that they use
a continuous rather than discrete state space, which can be
useful when modelling things like tempo. CRFs are similar to
HMMs, but instead of learning to describe a sequence of ob-
servations using hidden state sequences, they learn to predict
the probabilities of state sequences given an observation.

2.1 Online systems

The published history of score following began at the 1984
International Computer Music Conference (ICMC), where
Dannenberg (1984) and Vercoe (1984) presented separate
papers on the topic of automatic computer accompaniment
of a live musician. Both Dannenberg and Vercoe were in-
terested in creating accompaniment systems that were able
to respond to live soloists. Vercoe’s system was particularly
motivated by a commission for a piece for flute and live
electronics from IRCAM. A ‘second generation’ score fol-
lower developed by Baird, Blevins and Zahler (1990, 1993)
segmented the musical score to improve the accompaniment
systems’musicality. These early systems worked on symbolic
representations of the performances and focused on either
keyboards, which could generate symbolic data, or instru-
ments with sensors affixed that could transmit symbolic data.
Audio score following was motivated in the 1990s by the de-
sire to automatically accompany the singing voice,
which was addressed by both Puckette (1995) and by Grubb
and Dannenberg (1997). In these early score following sys-
tems, either MIDI was transmitted directly from the instru-
ment (Baird et al., 1990, 1993; Dannenberg, 1984; Vercoe,
1984) or a pitch-tracking algorithm was used to generate MIDI
data (Puckette, 1995). The performance MIDI data was then

aligned to a MIDI score, typically using string-matching tech-
niques and/or dynamic programming until Stammen and Pen-
nycook (1993) pioneered the use of a modified version of
DTW for score following.

The use of stochastic methods in online music alignment
was pioneered by Grubb and Dannenberg (1997), who used a
stochastic approach for estimating a score position pointer in a
vocal performance using probability density functions. Since
the late 1990s, it has been more common for online systems
to use HMMs and graphical models. Cano et al. (1999) used a
left-to-right HMM-based approach for aligning monophonic
music to model attack, sustain, release and silence states. Orio
and Déchelle (2001) trained a multi-level HMM for poly-
phonic recordings that consisted of HMMs at both the song-
and note-levels using the same features as Orio and Schwarz
(2001). Raphael (2004) used a more generalized graphical
model approach for score matching in order to address the
problems that HMM-based systems have in modelling note
duration. His two-level model was able to use the duration
information in the score more effectively than a single-level
model: one level modelled the pitch content in the signal and
the other the notes and tempo-shifts.

Cont (2006) used hierarchical HMMs to model the notes,
chords, and rests in the lower level and the temporal relation-
ship between the lower-level events and the score in the upper
level models. He later used this approach as the basis for his
‘anticipatory’ score following system, which makes predic-
tions about the future to inform its current decision through
the use of a hidden hybrid Markov/semi-Markov model (Cont,
2010). Other related approaches include the use of dynamic
HMMs in a Bayesian framework for score position pointer
estimation by Peeling, Cemgil and Godsill (2007), the use
of particle filtering by Otsuka et al. (2011), and Montecchio
and Cont (2011b) for estimating song pointer position and
tempo simultaneously. Duan and Pardo (2011) presented a
generalized model for polyphonic score following, also based
on particle filtering, that did not require training for specific
instruments.

Online systems require robust and accurate note location
estimates, accounting for deviations from the score, such as
ornamentation or mistakes, and low-computational cost, in
order to provide low-latency. Typically, online systems con-
sider estimates within 250 ms (Cont, 2010) to 300 ms (Cont,
Schwarz, Schnell, & Raphael, 2007) of the actual note to be
considered correctly aligned. Overall, while there are certain
instruments for which score following is effective, there re-
main others for which it needs to be improved, especially those
with non-percussive onsets (e.g. violins (Cont, 2010)).

2.2 Offline systems

Offline music alignment can be used for a number of appli-
cations, including digital library synchronization, signal pro-
cessing, and expressive performance analysis. Digital music
libraries contain both score-based and acoustic-based repre-
sentations of music. Dunn, Byrd, Notess, Riley and Scherle
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(2006), and Damm, Fremerey, Kurth, Müller and Clausen
(2008) synchronized these representations with one another to
create a multi-modal browsing experience using music align-
ment. Such synchronization allowed for both fast indexing
of the recordings and a multi-modal experience where the
score position is shown in real-time while the recording plays.
Offline music alignment has been used to create a reference
for signal processing algorithms (Basaran,Cemgil, & Anarım,
2011; Dannenberg, 2007; Montecchio & Cont, 2011a; Smit &
Ellis, 2009; Woodruff, Pardo, & Dannenberg, 2006). It is also
useful in expressive performance studies because of its ability
to achieve greater precision in identifying note onsets and
offsets than blind estimation algorithms, an application idea
first described by Scheirer (1995) and more recently employed
in toolkits by Dixon and Widmer (2005) and Devaney, Mandel
and Fujinaga (2012).

As noted above, DTW is commonly used in offline systems.
Orio and Schwarz (2001) used DTW for monophonic and
polyphonic music alignment by modelling note attacks and
silences. Soulez, Rodet and Schwarz (2003) subsequently im-
proved the robustness of the algorithm by also modelling note
sustains. Müller, Kurth and Roder (2004) later implemented
an alignment algorithm that used a less constrained version of
DTW in order to allow for matching when there is information
in the audio signal that is not present in the score (e.g. orna-
mentation). In the following year, Müller, Mattes and Kurth
(2006) presented a multi-scale DTW-based algorithm, which
allowed better alignment for performances with significant
structural variation from the reference MIDI file. Müller and
Ewert (2008) later used this algorithm for assessing structural
similarities between two pieces of audio by computing a joint
structural analysis on the pieces.

More recently, Joder, Essid and Richard (2010) built on the
multi-scale DTW model in Müller et al. (2006) with a hier-
archical pruning method in which some pruning parameters
were set adaptively and which resulted in both increased speed
and accuracy. They also explored the use of CRFs through
three formulations of the model’s state transition function
(Joder et al., 2011). Overall they found a direct relationship
between accuracy and complexity, with the most accurate
being the most computationally expensive.

There has been a limited interest in multi-pass approaches
to refine an initial DTW alignment for increased accuracy. In
previous work (Devaney, Mandel, & Ellis, 2009), the author
and collaborators used acoustic features of the singing voice
to guide an HMM to refine a DTW alignment based on Orio
and Schwarz (2001). This work described an algorithm for
aligning monophonic recordings of the singing voice where
the initial DTW alignment served as a prior for the HMM,
which refined the alignment using aperiodicity and power
measurements along with fundamental frequency estimates
as observations. The algorithm also identified the transient
and steady state sections of the note and decreased the overall
median alignment error in the initial DTW alignment for both
onsets and offsets from 52 to 28 ms. Similarly, Niedermayer
and Widmer (2010) used non-negative matrix factorization

(NMF) to refine the estimate of the onsets of individual notes
within vertical simultaneities in piano performances obtained
by the DTW alignment approach in Müller et al. (2004). The
piano is well suited to the use of NMF because the individ-
ual notes sound at a consistent pitch during a performance
and contain characteristic inharmonicities in their spectrum.
Niedermayer and Widmer evaluated their algorithm against
accuracy metrics of 10 and 50 ms deviation from the ground
truth. They used 10 ms for the first metric based on findings in
Friberg and Sundberg (1993) that 10 ms is the perceptual limit
for humans’ ability to differentiate between onset times. The
50 ms metric was included to allow for comparison with earlier
results. They found that their system improved the number of
notes within the 10 ms threshold from 40.0% to 49.8%, but
that there still remained a number of outliers for both this
and the 50 ms metric. Note offsets were neither estimated nor
evaluated.

Niedermayer and Widmer (2010) demonstrated the need for
a high level of accuracy for expressive performance applica-
tions, one that exceeds the current requirements for both score
following, as discussed above, and digital libraries. Research
into the timing of asynchronies between notated simultane-
ities (either between fingers on the piano or between different
performers in an ensemble) can range from 7 to 50 ms (Palmer,
1997). For digital music libraries, where the alignment is used
to either visually link the score to the audio during playback or
to find a particular section of the piece, the required alignment
precision may be even lower and may range from note-level, at
its most precise, to the bar-level, for certain applications such
as syncing audio to a score for multi-modal playback. For a
piece in 4/4 that is performed at 120 BPM, this would trans-
late to 500 ms for quarter note-level precision or 2 s for bar-
level precision. Evaluations of digital libraries are typically
made in terms of overall usability or retrieval accuracy, rather
than onset estimation accuracy. In contrast, signal processing
applications, where alignment assists in source separation for
such tasks as F0 estimation and audio mixing, ideally requires
a level of accuracy comparable to expressive performance
applications.

3. Asynchrony in polyphonic performances

In earlier work (Devaney & Ellis, 2009), the author and a col-
laborator demonstrated that in various applications DTW was
not sufficient by itself to estimate the timing of asynchronies in
notated simultaneities. Evaluation was performed on a hand-
annotated forty-second excerpt of multi-tracked recordings of
the ‘Kyrie’ from Guillaume de Machaut’s Notre Dame Mass
(shown in Figure 1) and three different tests were performed.
In the first test, each line of the monophonic recording was
aligned to each part’s MIDI file, in the second, the four parts
were aligned simultaneously to the polyphonic composite of
the entire MIDI file, and in the third, each part’s MIDI file
was aligned to the polyphonic composite. The multi-tracked
recordings allowed for testing on both individual and com-
posite tracks. Two measures were used to assess the accuracy
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Fig. 1. Score of ‘Kyrie’ from Guillaume de Machaut’s Notre Dame Mass. Reproduced from Devaney and Ellis (2009).

of the alignment: the first tallied the number of alignments
that are within 100 ms of the ground truth’s onsets and off-
sets and the second averaged the amount that the alignments
were off from the ground truth. The results demonstrated
that the individual alignments (test one) performed compara-
bly to the simultaneous alignment (test two). In both of these
tests the DTW alignment algorithm was able to consistently
find the relevant notes in the audio signal, but the determi-
nation of the exact location of onsets and offsets was not
always accurate (especially for asynchronies between simulta-
neously performed notes in the simultaneous alignment). The
alignment of individual lines against the composite signal in
test three did not prove to be a viable option for addressing
asynchrony due to the DTW alignment algorithms’ tendency
to become lost when aligning a single line in a monaural
recording of a polyphonic performance. Figure 2 provides a vi-
sual example of the problem with this approach.At the notated
simultaneity between the soprano and the bass around 13.3 s
the alignment is locked to the onset of the soprano’s note,
which, in the performance, is approximately 30–40 ms behind
the onset of the bass’ note. Also, the offset of the tenor note
occurs approximately 100 ms before the other voices’ offsets.
A multi-step extension to the DTW approach for simultaneous
alignment used in test two was suggested as a promising way
to address the issue of onset and offset asynchrony in notated

Fig. 2. Example of errors in estimating onset and offset asynchrony.
The boxes indicate the DTW estimates and the vertical lines and
arrows identify the actual locations of the onsets and offsets in the
performance. Reproduced from Devaney and Ellis (2009).

simultaneities, though this was not designed or implemented
at that time.

4. Algorithm for addressing asynchrony

To address the issue of onset and offset asynchrony in notated
simultaneities, this presents a multi-pass algorithm (DTW/
HMM) that uses both DTW and an HMM to estimate the
location of the onsets and offsets for each voice in a monaural
recording of a polyphonic performance. The algorithm was
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developed and tested for the singing voice, one of the hardest
paradigms for music alignment, but can easily be extended
to other instruments by retraining the HMM on appropriate
recordings. The algorithm was designed for recordings with
one voice per part, and thus is appropriate for smaller vocal
ensembles rather than a choir. As in Devaney et al. (2009),
discussed above in Section 2.2, DTW is used in the first pass
to obtain a rough estimate of the note locations and an HMM
is used in the second pass to refine the offset–onset transitions
between groups of ‘simultaneous’notes in the DTW alignment
in order to estimate the location of the onsets and offsets
for each voice. The HMM assumes that the DTW is roughly
correct and only looks at the audio 125 ms before and after the
onset identified by the DTW alignment, thus it is only able to
correct errors in the DTW alignment by a maximum of that
amount. A visual representation of the DTW alignment allows
for detection of gross errors in the DTW alignment, which can
be manually corrected.

The multi-pass algorithm uses the DTW alignment method
described in Orio and Schwarz (2001), which creates an ide-
alized harmonic template for each note in the score and calcu-
lates the peak spectral difference between the template and the
audio in order to build a similarity matrix through which the
DTW algorithm finds the best path. The output of the DTW is
a series of note transition times, t̂1, t̂2, . . . , t̂T . The algorithm
then uses the HMM to find the best sequence of note offsets and
onsets for each voice in the recording using the processed out-
put of a constant-Q filter bank, X , as observations. The DTW
used Dan Ellis’ (2003) MATLAB code and the HMM was
implemented with Kevin Murphy’s (1998) HMM toolbox for
MATLAB. Müller and Ewert’s (2011) MATLAB toolbox was
used for calculating the filter bank and for estimating
the tuning of the recording. Tuning estimation was particu-
larly important for running the algorithm on a cappella vocal
ensembles because they do not necessarily sing with a strict
tuning reference.

4.1 HMM states and transitions

In the HMM, each voice present in the signal can be in one of
three sub-states: Note1, NoteOff, and Note2, denoted
s ∈ {−1, 0, 1}. Note1 reflects the time spent on the note being
sung at the beginning of the offset–onset transition. NoteOff
reflects the time spent after the first note and before the second
note, when no note is being sung. Note2 reflects the time spent
on the note being sung at the end of the offset–onset transition.
The offset for the first note is calculated from the point in time
when the HMM changes from the Note1 state to the NoteOff
state and the onset for the second note is calculated from the
point in time when the HMM changes from the NoteOff state
to the Note2 state.

Each state in the HMM is a composite with one sub-state per
voice, S = [s1 . . . sN ]T ∈ {−1, 0, 1}N , where N is the number
of parts in the offset–onset transition. A monophonic offset–
onset transition would consists of just three states and as the
number of voices increases the number of states

increases as 3N . Thus, a two-part offset–onset transition
consists of nine states (shown in Figure 3), a three-part offset–
onset transition consists of 27 states, and a four-part offset–
onset transition consists of 81 states. This exponential growth
is not a problem for small ensembles such as vocal trios or
quartets. Also, since the HMM only operates on small chunks
of audio, the computational cost is low. State transitions and
paths are restricted so that only one voice may change sub-
states at a time and sub-state paths must go through the ‘off’
state. Figure 3 shows the possible paths that the HMM may
take in a two-voice offset–onset transition and which sub-
state each voice is in for each HMM state. Self-loop tran-
sition probabilities are 10 times more likely than each other
allowable state transition, although the actual probabilities are
dependent on the number of outgoing states. Experimentation
revealed that the results are not very sensitive to the transition
probabilities; rather it is the legal state paths that are important.

4.2 HMM observations

The likelihood of each sub-state is independent within each
state, and is parametrised by which notes are on and which are
off. The HMM’s observation model is a single, multivariate
Gaussian per state, with two observation dimensions for each
voice, one for Note1 and one for Note2. The probabilities for
the presence of Note1, NoteOff, and Note 2 are:
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where pon (x) = N (x;μon, σon) and poff (x) = N (x;μoff ,

σoff ). In the case when a voice re-articulates the same note,
p(s(n)

v = −1) = p(s(n)
v = 1).

The parameters for the observations were calculated us-
ing hand annotations of a multi-tracked four-part recording
of the ‘Kyrie’ from Machaut’s Notre Dame Mass (shown in
Figure 1). Since each singer was recorded separately, the note
onsets and offsets could be precisely hand-annotated in the
individual tracks and the observations could be calculated
in the composite signal. The means and covariances were
modelled with a single Gaussian for when a note was present,
pon(x (n)

v (t)), and a different Gaussian for when one was not,
poff (x (n)

v (t)), with separate parameters for male and female
voices. These models were evaluated and found to be robust
on audio files with different levels of amplification.

The observations, x (n)
v (t), for the HMM are calculated from

a constant-Q filter bank decomposition of the signal with
one filter per semitone, X ( f, t). Guided by the DTW align-
ment, a power measurement (in decibels) is summed over
a 3-semitone span around the fundamental of the MIDI
note (the fundamental plus/minus one semitone) for both
the ending note, f (n)

v , and starting note, f (n+1)
v , in each

offset–onset transition identified by the DTW alignment,
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Fig. 3. The schematic on the right shows all of the possible states and state transitions for a scenario when two voices change. A summary of
the combinations of note ons and offs for each state is shown in the table in the lower left.

x (n)
v (t) = ∑ f (n)

v +1

f = f (n)
v −1

X ( f, t), where tn − 0.125 � t � tn +
0.125. The inclusion of additional harmonics in this sum did
not improve results. This is likely due to overlap between
the voices from the ±1 semitone range used to calculate the
observations. These sub-state likelihoods are then combined
into the composite state likelihoods assuming that they are
independent, and then the Viterbi path is found through the
HMM to perform the alignment.

The algorithm automatically identifies onset–offset tran-
sitions as places in the MIDI file where at least one voice
changes notes or re-articulates its current note. For each offset–
onset transition, an HMM is constructed based on the score to
use the appropriate state space size and parameters. Only those
voices changing notes are included in the HMM alignment
process for a given transition. Thus, for a four-part
ensemble, a transition may include one, two, three, or four
voices. For the corner case where one voice moves to a note
already being held by another voice, the DTW onset estimate
is used for the moving voice. This is because the observations
for the HMM cannot distinguish between the held voice and
moving voice on the same note. (This corner case occurs in
the Benedetti exercise used in the evaluation in Section 5.)

5. Evaluation of algorithm

The algorithm was tested on two sets of the recordings. The
first set was four recordings of a three-part exercise (alto-
tenor-bass) by Giambattista Benedetti, shown in Figure 4.
The second set was seven recordings of the first verse of
Michael Praetorius’ ‘Es ist ein Ros’ entsprungen’, a four-part
piece shown in Figure 5. As with the Machaut recording,
these recordings were multi-tracked and hand annotated by
the author and another person, which allowed for an accurate
determination of the onset and offset for each note. The eval-
uations were run on the composite signals, where the three or
four multi-track parts were mixed down to a monaural audio
file.

The accuracy of the algorithm was evaluated by two met-
rics. The first is the number of onsets and offsets within a fixed
interval of the ground truth. Following from Niedermayer and
Widmer (2010), this was calculated for both 10 ms (Table 1)
and 50 ms (Table 2) thresholds. Across the combination of
both test sets, the DTW/HMM algorithm improved the DTW
alignment for the onsets and offsets for both the 10 ms (from
2% to 9% of the notes for the onsets and 6% to 11% for the
offsets) and 50 ms (from 11% to 39% of the notes for the onsets
and from 23% to 40% for the offsets) thresholds. This general
trend held for the Praetorius test set, although the percentage
of notes within the threshold was proportionally much higher
for the DTW/HMM algorithm versus the DTW than for the
Benedetti test set. This is likely due to the increased complex-
ity of the musical texture, which could lead the performers
to greater timing asynchrony than the more chordal nature
of the Benedetti. In the Benedetti test set, however, the DTW
outperformed the DTW/HMM algorithm for the offsets within
10 ms, by 17% to 11%. An examination of the individual
voices shows that the largest performance difference between
the DTW alignment and the DTW/HMM occurred in the alto
voice (27 onsets within 10 ms for the DTW algorithm versus
nine for the DTW/HMM algorithm) is likely due to the fact
that this voice changes notes most frequently and thus acted
as an anchor for the DTW alignment such that this voice was
most accurate at the expense of the other voices.

The second measurement of accuracy is the 2.5th, 25th,
50th, 75th, and 97.5th percentiles of the difference between
the predictions and the ground truth, which provide infor-
mation about the distribution of errors (Table 3). Overall the
DTW/HMM algorithm improves the median (50th percentile)
onsets results for both test sets, which shows that on average
the algorithm is improving the accuracy of the alignment.
For offsets, there is only an improvement for the median
with the DTW/HMM for the Bendetti test set, although the
difference for the Praetorius test set between the DTW and
the DTW/HMM is less than 6 ms. For the Benedetti test set,
the DTW/HMM algorithm also improves the 75th and 97.5th
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Fig. 4. Score of exercise by Giambattista Benedetti used for evaluating the alignment algorithm.

Fig. 5. Score of Michael Praetorius’ ‘Es ist ein Ros’ entsprungen’ used for evaluating the alignment algorithm.

Table 1. The number of onsets and offsets predicted by the alignment within 10 of the ground truth. DTW indicates the values for the original
DTW alignment and DTW/HMM indicates the values for the multi-pass algorithm. Bold typeface indicates the better results for each vertical
category.

Number of onsets within 10 ms
Vocal Part Benedetti (228) Praetorius (1252) Total (1480)
(# of notes) On Off On Off On Off

DTW 14 (6%) 38 (17%) 9 (1%) 47 (4%) 23 (2%) 85 (6%)
DTW/HMM 20 (9%) 25 (11%) 107 (9%) 140 (11%) 127 (9%) 165 (11%)

percentile results for both onsets and offsets, which means that
it is correcting the outliers; although, since the algorithm can
only correct the DTW by 125 ms in either direction, it can only

improve alignment errors by this amount. The DTW/HMM
algorithm improves the 25th percentile results for onsets in
the Benedetti test set and both the onsets and offsets in the
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Table 2. The number of onsets and offsets predicted by the alignment within 50 ms of the ground truth. DTW indicates the values for the original
DTW alignment and DTW/HMM indicates the values for the multi-pass algorithm. Bold typeface indicates the better results for each vertical
category.

Number of onsets within 50 ms
Vocal Part Benedetti (228) Praetorius (1252) Total (1480)
(# of notes) On Off On Off On Off

DTW 88 (39%) 102 (45%) 81 (6%) 247 (20%) 169 (11%) 347 (23%)
DTW/HMM 119 (52%) 109 (48%) 465 (37%) 477 (38%) 584 (39%) 386 (40%)

Table 3. 2.5th, 25th, 50th, 75th, and 97.5th percentiles for the discrepancy between the onset and offset alignments and the ground truth. DTW
indicates the values for the original DTW alignment and DTW/HMM indicates the values for the multi-pass algorithm. Bold typeface indicates
the better results for each vertical pair of values.

Percentiles
2.5 25 50 75 97.5

Benedetti Ons DTW 3.1 29.2 66.7 122.5 759.5
DTW/HMM 3.8 19.2 47.7 100.1 653.2

Offs DTW 1.0 21.8 64.8 141.9 752.9
DTW/HMM 1.5 25.1 53.4 131.3 677.0

Praetorius Ons DTW 18.2 87.2 142.0 244.3 991.15
DTW/HMM 2.8 30.8 82.6 206.2 1071.8

Offs DTW 4.2 35.2 77.2 173.0 1180.0
DTW/HMM 1.8 23.2 74.5 213.3 1250.4

Total Ons DTW 9.8 63.5 117.8 209.3 831.4
DTW/HMM 3.1 29.0 77.4 196.4 1043.0

Offs DTW 2.1 31.8 74.7 167.3 1112.8
DTW/HMM 1.7 23.2 68.9 206.9 1217.2

Praetorious test sets, meaning that for these, the good align-
ments get better. The DTW/HMM algorithm also improved
the 2.5th percentile for the Praetorius test set but not for the
Benettedi test set, though for the Bendetti it was only worse
than the DTW on the order of 1 or 2 ms.

6. Conclusions

This paper has presented an offline multi-pass score-audio
alignment algorithm for estimating note onset and offset asyn-
chronies in monaural recordings of the singing voice between
notes marked as simultaneities in the corresponding score. In
the algorithm, an HMM is used to refine a DTW alignment
with power estimates derived from a constant-Q filter bank
decomposition of the signal as observations. The parameters
for the HMM were trained on a multi-tracked vocal ensemble
recording. The algorithm was evaluated on the mixed-down
audio of a set of three- and four-part multi-track vocal perfor-
mances, which were hand annotated with ground truth onsets
and offsets. By providing estimates of individual onsets and
offsets in notated simultaneities, the multi-pass algorithm im-
proves the median accuracy of the DTW alignment for onsets
by 41 ms on average, from 118 to 77 ms, and for offsets by
6 ms on average, from 75 to 69 ms. This algorithm can be used
for expressive performance applications, both for estimating
timing relationships between voices and for guiding signal-

processing estimation of other performance parameters, such
as pitch and dynamics. The algorithm can also be used for
guiding other types of signal processing algorithms and source
separation.

One future direction for this research is to generalize the
algorithm to work for a range of instruments, not specifically
the singing voice. This can be done with the current observa-
tions by creating a training set for the type of instrument one
wishes to add.Amore robust option is to explore other types of
observations. One possibility is the use of a template-model
similar to the one used in the DTW algorithm by Orio and
Schwarz (2001), described above, either with the peak spectral
distance used by Orio and Schwarz (2001) or the Kullback-
Leibler divergence used by Cont (2010). This approach has
the advantage of not requiring training, since the templates are
fixed, theoretically making it usable for any instrumentation.
Another area of future work is combining multiple features
for the observations, in addition to the power measurements
currently used, which could account for overlapping notes be-
tween voices. In earlier work (Devaney et al., 2009), the author
and collaborators found that a combination of aperiodicity
and power measurements along with fundamental frequency
estimates as observations provided the best results for refining
a DTW alignment of monophonic sung audio using an HMM.
While these specific features are not available in a polyphonic
context it is likely that the use of a combination of features in
this algorithm would improve results.
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