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Automated Analysis of Child Phonetic
Production Using Naturalistic Recordings

Dongxin Xu,a,b Jeffrey A. Richards,a and Jill Gilkersona,b

Purpose: Conventional resource-intensive methods for
child phonetic development studies are often impractical
for sampling and analyzing child vocalizations in sufficient
quantity. The purpose of this study was to provide new
information on early language development by an automated
analysis of child phonetic production using naturalistic
recordings. The new approach was evaluated relative to
conventional manual transcription methods. Its effectiveness
was demonstrated by a case study with 106 children with
typical development (TD) ages 8–48 months, 71 children with
autism spectrum disorder (ASD) ages 16–48 months, and
49 children with language delay (LD) not related to ASD
ages 10–44 months.
Method: A small digital recorder in the chest pocket of
clothing captured full-day natural child vocalizations, which
were automatically identified into consonant, vowel, nonspeech,

and silence, producing the average count per utterance
(ACPU) for consonant and vowel.
Results: Clear child utterances were identified with above
72% accuracy. Correlations between machine-estimated
and human-transcribed ACPUs were above 0.82. Children
with TD produced significantly more consonants and
vowels per utterance than did other children. Children with
LD produced significantly more consonants but not vowels
than did children with ASD.
Conclusion: The authors provide new information on typical
and atypical language development in children with TD, ASD,
and LD using an automated computational approach.
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typical development, language delay, autism,
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Research shows that different developmental issues
affect the trajectory of a child’s language devel-
opment (Grizzle & Simms, 2005; Tager-Flusberg

et al., 2009; Thomas, 2010) and that phonetic development
is a major foundation of overall language development in
young children (Vihman, 1996). A detailed analysis of early
vocalizations may provide useful diagnostic information not
only about language development per se, but also about a
child’s overall developmental course.

Child phonetic development includes both phonetic
perception and phonetic production. Although research
examining early child speech and phonetic perception is
important for a complete understanding of child vocali-
zation, speech production, and language development
(Kuhl, 2004; Kuhl & Meltzoff, 1996), we focused only on
child phonetic production and used a novel automated

approach to provide new information on early language
development.

The basis of phonetic and phonological analysis is
the categorization of child vocalizations, which includes
both phonetic production and prelinguistic vocalization
(Davis, MacNeilage, & Matyear, 2002; Dodd & McIntosh,
2010; Ferguson & Farwell, 1975; Kuhl & Meltzoff, 1996;
McCune & Vihman, 2001; Nathani, Ertmer, & Stark,
2006; Oller, 1980, 2000; Pierrehumbert, 2003; Rescorla &
Bernstein-Ratner, 1996; Serkhane, Schwartz, Boë, Davis, &
Matyear, 2007; Stark, 1980; Stoel-Gammon, 1985; Vihman,
1996; Williams & Elbert, 2003). Child vocalizations have
been categorized according to various characteristics—for
example, by depicting them as speech-like or nonspeech-like
(Kuhl, 2004; Kuhl & Meltzoff, 1996; Nathani et al., 2006;
Oller, Eilers, Steffens, Lynch, & Urbano, 1994). Speech-like
vocalizations can be further categorized into phonetic units,
such as consonants, vowels, and/or syllables, as well as higher
level words, phrases, and utterances (Dyson, 1988; Ingram,
2002; Ingram & Ingram, 2001; McCune & Vihman, 2001;
Pierrehumbert, 2003; Rescorla & Bernstein-Ratner, 1996;
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Stoel-Gammon, 1991).1 Prelinguistic vocalization is rela-
tively less well formed compared with phonetic production,
tends to have higher variation, and generally can be sorted
into vegetative sounds, fixed signals (such as cries), and pro-
tophones (Oller, 1980, 2000). Other categorization schemes
have also been developed (Nathani et al., 2006; Stark, 1980).

Conventional phonetic and phonological analyses
of child language development are based on human identi-
fication of consonants and vowels in a child’s spoken words
and have been studied extensively. Various measures are
used to characterize vocal development, including conso-
nant inventories, frequency of occurrence of consonants
and vowels, phonological mean length of utterance, and so
on (Davis et al., 2002; Ingram, 2002; Ingram & Ingram,
2001; McCune & Vihman, 2001; Rescorla & Bernstein-
Ratner, 1996; Saaristo-Helin, Kunnari, & Savinainem-
Makkonen, 2011; Saaristo-Helin, Savinainem-Makkonen, &
Kunnari, 2006; Serkhane et al., 2007; Stoel-Gammon, 1985,
1991, 2010; Vihman, Keren-Portnoy, Bidgood, McGillion,
& Whitaker, 2013; Williams & Elbert, 2003).

A detailed analysis of child phonetic and phonological
development usually exploits data from both elicited and
spontaneous samples. Elicited single words collected via
picture-naming procedures, for example, can virtually exhaust
all possible phonemes and phoneme combinations; however,
some child vocalization phenomena, such as intelligibility
and prosody, are prominent only in spontaneous or conver-
sational speech (Saaristo-Helin, 2011; Stoel-Gammon,
2010). Spontaneous samples can be collected in laboratory,
clinical, or natural home environment settings. Sometimes, nat-
uralistic samples are more desirable (Tager-Flusberg et al.,
2009.)

Studies of child development from phonetic and pho-
nological perspectives have been widely conducted not
only in children with typical development (TD) but also
in children with specific language impairments, children
with language delays, children with hearing impairments,
children with autism, and children with other developmental
disorders (Ertmer, 2001; Ingram, 2002; Oller, Eilers, Bull,
& Carney, 1985; Stark, 1983; Stoel-Gammon, 1988; Tager-
Flusberg et al., 2009; Vihman, 1996). Cross-group or cross-
disorder comparisons are potentially informative about
the different developmental processes for different groups
or disorders (Thomas, 2010.)

Well-established methodologies have been developed
for use in the phonetic and phonological analyses of the
vocalizations of young children. Yet, despite the rigor with
which such studies may be conducted, three key limitations
have been identified: (a) the resource burden (practical,

temporal, financial, etc.) of obtaining sufficiently large
representative vocalization samples from young children
generally limits studies to relatively brief sampling regimens;
(b) the level of environmental control necessary to obtain
recorded data of sufficient quality often dictates that studies
be conducted in laboratory and clinical settings rather than
under more naturalistic scenarios; and (c) the need for
highly specialized training and expertise to collect and man-
ually code or transcribe vocalizations reduces the number
and extent of studies.

The above-mentioned limitations are interrelated.
Incorporating naturalistic vocalization data usually requires
much more frequent sampling and larger data sets because
of the high degree of variation not only in the productions
of interest, but also in confounding factors, such as noise and
behavior in uncontrolled environments. Such factors tradi-
tionally create a bottleneck for phonetic development studies
in naturalistic settings because of the need for laborious man-
ual transcription and coding. Labor-intensive tasks sub-
stantially reduce the potential clinical applicability of such
research, as the high cost and time-consuming requirements
of sample collection and processing are too impractical to
implement outside of a research setting.

With the advance of modern technologies in micro-
electronics, speech signal processing, and pattern recognition,
new possibilities have emerged that can address the limita-
tions of conventional approaches and provide efficient means
to expand previous capabilities. In this study, we equipped
child subjects with a small lightweight digital recorder for
the purpose of recording their full-day natural vocal output
and environment. Computational algorithms were used to
identify child sound segments (traditionally termed “child
utterances”) in the full-day recordings. Phonetic units, such
as consonants and vowels, in child sound segments were
identified by speech recognition software. Average count
per utterance (ACPU) for consonant and vowel was used to
evaluate child vocal development. ACPU measures, which
reflect general language development to some extent, are
associated with the number of words spoken per utterance
or the length or complexity of the words used.

The current study included two parts. The first part
evaluated the new automated computational approach by
comparing its results with those observed using conven-
tional manual approaches. The second part explored the
effectiveness of the new approach using a case study of the
developmental trends and child group differences among
TD children and those with autism spectrum disorder
(ASD) and language delay (LD) not related to ASD. The
following sections of the article are organized accordingly.

Part 1: The Automated Approach
and Its Validation

A diagram of the new approach is shown in Figure 1.
It consists of three major stages: (a) naturalistic recording,
(b) automated sound segmentation to identify child sound
segments (utterances) in audio streams of recordings, and

1Due to the developing and uncertain nature of young child
vocalization, terms such as consonant-like, vowel-like, speech-like,
nonspeech-like, silence-like, etc., are often used to represent “fuzzy”
child vocal categories. Another reason to use such terms is that the
categorization used in this study is based on automated algorithmic
speech recognition and the resulting macrostatistics of large data
samples. For simplicity, we refer to these categories as consonant, vowel,
speech, nonspeech, and silence.
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(c) recognition of phonetic units in child utterances and
estimation of Consonant-ACPU and Vowel-ACPU.

Naturalistic Recording
Naturalistic full-day audio recordings were obtained

using the LENA digital language processor (DLP), a small
lightweight digital recorder. In the current study, DLPs
were worn by children in the chest pocket of specially de-
signed clothing to record vocalizations and surrounding
sounds in the natural environment. The DLP can record
unobtrusively and continuously for up to 16 hr. Additional
technical specifications about the DLP can be found in
Xu et al. (2008) and Oller et al. (2010).

Automated Sound Segmentation
The first step in the segmentation process involved

locating and identifying different types of sound segments in
daylong audio streams. Eight types of sound segments, which
were based on previously trained statistical models, were
delineated in the recordings: key child (i.e., the child who
wears the DLP), other child, adult male, adult female, over-
lapped sounds, noise, electronic media (such as TV), and
silence.2 The seven nonsilence types of sound segments
were further classified as “clear” or “not clear” via

likelihood ratio tests between the winning model and the si-
lence model, which resulted in a total of 15 categories.

The algorithmic processing techniques used in the
current approach are presented conceptually here and
described in more detail in Xu et al. (2008) and Xu, Gilkerson,
Richards, Yapanel, and Gray (2009). The basic segmentation
algorithm can be conceptualized as a “searching” process to
identify the optimal result. With statistical models of sound
categories, the likelihood of any possible segmentation result
(or segment sequence) can be calculated. The conceptual
brute force algorithm can list all possible segment sequences
and calculate their likelihood values, and then select the
one with maximum likelihood. The actual algorithm simply
uses a more efficient method (i.e., dynamic programming)
to find the segment sequence with maximum likelihood. It
does so by eliminating improbable candidates at every stage
in the searching process, thereby resulting in far less com-
putation and the guarantee of finding the optimal solution.
This algorithm was implemented in the LENA software,
which takes audio recordings and child age/gender informa-
tion as input and produces sound segment sequences with
time stamps (Xu et al., 2008).

The validation of the sound segmentation algorithm
was based on two test data sets: Test-Set-70 and Test-Set-94
(see Table 1). A confusion matrix, which shows the percent-
ages of agreement between the machine and the human
transcriber, is presented for each data set.

Test-Set-70 included 70 children ages 2–36 months;
each month-age had two children, and each child had 1 hr
of recorded data (i.e., a total of 70 hr of recorded data).
In Table 1, the first row shows that 76.1% of data tran-
scribed by human listeners as “clear key child sound segments”
was correctly identified by the machine and that 23.9% of
data was identified as “other sound segments.” Clear key
child sound segments are considered approximations to clear
key child utterances. More detailed confusion matrices and
information can be found in Xu et al. (2008).

To replicate the above findings, we recently added
24 additional children between the ages of 37 and 48 months
(2 children per month-age and 0.5 hr of recording data per
child) to the Test-Set-70 data set. The expanded data set
(i.e., Test-Set-94) consisted of 94 children ages 2–48 months.
The confusion matrix for Test-Set-94 showed an accuracy
rate of more than 72% for clear key child sound segments,
which is similar to that for Test-Set-70.

Recognition of Phonetic Units in Child
Utterances and Estimation of ACPUs

Once different sound segments in audio streams have
been identified, they can be further processed for various
purposes. In our study, clear key child segments (utterances)
were further processed for phonetic analysis. Open source
Sphinx speech recognition software, which can be down-
loaded from the Sphinx website (http://cmusphinx.sourceforge.
net/), was used to recognize phonetic units in child utter-
ances. Hub4 adult acoustic phonetic models were used in the
Sphinx speech recognition algorithms, which were trained

Figure 1. Diagram showing the automated approach for sample
collection and data processing. ACPU = average count per utterance.

2Naturalistic recordings may include silent periods (silence), which
differ from within-utterance silence. Within-utterance silence, which
has not been addressed in the current study, is usually short in duration
and may be associated with pauses, phrase boundaries, consonant
production, prosody, and so on.
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from a corpus of well-articulated broadcast news speech
(Seymore et al., 1998; Sphinx website). Thus, the acoustic
models used were based on well-pronounced adult speech.
This process is similar to “relational analysis” of conven-
tional approaches (Saaristo-Helin et al., 2011; Stoel-Gammon,
2010), in which adult models or targets are compared with
child samples. The difference is that the comparison here is
at a phonetic level, not a word level, and is based on acoustic
similarity calculated by machine algorithms, not human
judgment. The goal of phone recognition was to characterize
(a) 39 English phonetic units (24 consonants and 15 vowels),
(b) within-utterance silence, and (c) six additional catego-
ries of other nonspeech sound elements, such as hesitation,
coughing, noise, lip smacking, etc. For each utterance processed,
the software provided phone labels (for the 46 categories,
= 39 + 1 + 6) and time marks, which, in turn, served as the
basis for further analysis. Sphinx phone categories can be
further merged into four types: consonant, vowel, nonspeech,
and silence. In the current study, Consonant-ACPU and
Vowel-ACPU were estimated for each recording.

The interface and algorithm parameters of Sphinx
software may need adjustment to accommodate specific cases.
The phone recognition with Sphinx software was integrated
into the LENA software to ensure that data processing was
fully automated without any human involvement.

Consonants and vowels identified by machine in this
way cannot be the same as those identified by a human;
however, high correlations were expected between the two
methods. The validation of the recognition of phonetic units
in the current study was directly conducted on the final ACPU
measures rather than the details of phone recognition.

A small data set was phonetically transcribed prior
to conducting the current study for other purposes. Human
transcribers were asked to transcribe phonetic units based
on words perceived with context information from audio
streams of 62 recordings. The transcribers selected child
utterances if all sound units of the utterances could be inter-
preted as either consonants or vowels without nonspeech
units. The time marks of phonetic units were not required;
thus, the transcription contained only sequences of labels of
consonants and vowels without time marks. An average of
38.3 child utterances were transcribed for each recording.
A histogram showing the number of transcribed child utter-
ances in each recording is presented in Figure 2.

The above-mentioned data set was used to validate the
automated ACPU measures. Human-transcribed ACPUs

included only Consonant-ACPU and Vowel ACPU. Machine
estimates of ACPUs were calculated based on the phonetic
labels produced by machine and included not only Consonant-
ACPU and Vowel-ACPU, but also Nonspeech-ACPU.
With Nonspeech-ACPU, we can check its impact on machine-
based Consonant-ACPU and Vowel-ACPU.

Figure 3 shows scatter plots of Consonant-ACPU
and Vowel-ACPU (machine vs. human-transcribed estimates).
The green lines represent the points at which machine esti-
mates were equal to human-transcribed estimates, which helps
to illustrate the difference between machine and human
measures. The scatter plots show that both the machine
Consonant-ACPU and Vowel-ACPU were highly correlated
with their corresponding human-transcribed estimates; how-
ever, both were underestimated. Table 2 and Table 3 show
that the correlation between the machine and the human
Consonant-ACPUs was 0.85 (p < .001) and that for the
Vowel-ACPU was 0.82 (p < .001); however, t tests indicate
that the difference between the human and the machine
measures was significantly greater than 0, with a mean of
0.56 and 0.57 for consonant and vowel, respectively.

To understand the lower machine counts for both
consonants and vowels and the impact of machine recog-
nized nonspeech, we further compared variables between

Table 1. Performance of sound segmentation: Confusion matrixes.

Human transcribed

Machine identified

Clear key child segments Other sound segments

Test-Set-70 (70 hr, 70 children, ages 2–36 months)
Clear key child segments 76.1% 23.9%
Other sound segments 3.9% 96.1%

Test-Set-94 (82 hr, 94 children, ages 2–48 months)
Clear key child segments 72.5% 27.5%
Other sound segments 4.0% 96.0%

Figure 2. Number of transcribed child utterances in each recording
of the test set for the validation of ACPU measures.
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machine and human in terms of total counts or sums of
ACPUs. Specifically, on the human side, there was only
one variable: the sum of Consonant-ACPU and Vowel-
ACPU. On the machine side, there were two variables:
the sum of Consonant-ACPU and Vowel-ACPU and the
sum with additional Nonspeech-ACPU. Figure 4 shows
the two corresponding scatter plots, and Table 2 and
Table 3 show the corresponding analyses. Both machine
variables were again significantly and highly correlated
with the human variable (0.86 and 0.89, respectively).
As expected, if machine-recognized nonspeech units were
excluded, the sum of machine ACPUs was underestimated
relative to the human variable; however, if nonspeech
units were included, the sum of the three machine ACPUs
became significantly larger than the human variable.

Part 2: An Application Example Using
the New Automated Approach

One purpose of the current study was to test the effec-
tiveness of the proposed automated approach by examining
the development trends and group differences of three diag-
nostic child groups. In the following section, we begin with

a discussion of our prestudy predictions and then describe
the methods and results of the case study we conducted.

Prediction
The phonetic development of children with ASD has

been compared with that of TD children as well as with
children at high and low risk of ASD, using conventional
approaches (Paul, Fuerst, Ramsay, Chawarska, & Klin,
2011; Tager-Flusberg et al., 2009). In general, within an age
range, children with ASD or those at high risk of ASD pro-
duced fewer consonants and other phonetic units, such as
canonical syllables, than did their TD counterparts or those
in groups at low risk of ASD. Paul et al. (2011) showed that
children in both low- and high-risk groups produced more
phonetic units as their age increased. Based on results from
conventional approaches, we predicted and hypothesized
that both measures of Consonant-ACPU and Vowel-ACPU
would show significant differences among child groups
under study and demonstrate significant developmental
trends based on child age.

Participants
The participants and audio recordings included in

this study were drawn from a previously reported sample,
which is briefly summarized here; additional demographic
data and other details can be found in Oller et al. (2010).
Participants included 106 children with TD ages 8–48 months,
71 children diagnosed with ASD ages 16–48 months, and
49 children diagnosed with LD (not related to ASD) ages
10–44 months. In contrast to the previously reported study,
recordings of children with ASD were excluded on days
when they attended therapy sessions (as confirmed by the
parents) for fair comparison of child behavior in the natural-
istic environment. In total, 1,363 recordings were included,
representing over 1,000 hr of child vocalizations and nearly
3.5 million individual child sound segments. Table 4 pro-
vides a summary by diagnostic group, and Figure 5 shows
the distribution of recordings across different age-months
for different children. We appreciate that longitudinal data
are lacking in the ASD group and should be considered
in subsequent analyses. Overall, the number and lengths of
recordings in this data set demonstrate the efficiency of the
naturalistic data collection using an automated approach.

Figure 3. Scatter plots of machine-estimated ACPUs versus human-
transcribed ACPUs. A blue dot represents one of 62 recordings.
Green lines represent y = x diagonal lines, which help to show that
machine-estimated ACPUs are highly correlated with human
transcribed ACPUs but are underestimated comparatively.

Table 2. Performance of machine-estimated ACPU measures: Correlations between machine-estimated ACPUs and human-transcribed ACPUs.a

Human transcribed Machine estimated Correlation 95% confidence interval t

Consonant-ACPU Consonant-ACPU 0.85* [0.76, 0.91] 12.6
Vowel-ACPU Vowel-ACPU 0.82* [0.72, 0.89] 11.2
Consonant-ACPU + Vowel-ACPU Consonant-ACPU + Vowel-ACPU 0.86* [0.78, 0.92] 13.2
Consonant-ACPU + Vowel-ACPU Consonant-ACPU + Vowel-ACPU +

Nonspeech-ACPU
0.89* [0.83, 0.93] 15.2

Note. ACPU = average count per utterance.
aN = 62.

*p < .001.
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Descriptive Statistics and Data Visualization
The new approach automatically estimated Consonant-

ACPU and Vowel-ACPU for each recording. The group
means and standard errors were estimated for each child group
and each child month-age. These group means and standard
errors were used as descriptive statistics for data visualization
purpose only. The statistical analyses were based on the
original ACPU measures of each recording. As shown in
Figure 5, data were scarce for some month-ages, and some
degree of smoothing was done to partially ameliorate this
problem. We first chose the month-age ranges based on
data availability for each child group as follows: (a) TD
from 13 to 47 months; (b) LD from 15 to 38 months; and
(c) ASD from 24 to 47 months. Second, to smooth results,
we used a ±5-month moving inclusion range (or window)
for each age. For example, the 30-month value represented
the 25- to 35-month range, and in the TD group, the center
month of each window moved from 13 to 47 months. Similar
moving month-windows were applied to the LD and ASD
groups. Within each month-window, child measures (scores)
were obtained by directly averaging the raw recording
measures for each child. Child group means and standard

errors for each month were then estimated using child mea-
sures within the month-window. Group means and standard
errors are plotted in Figure 6. The plots demonstrate the
increasing trends of both Consonant-ACPU and Vowel-ACPU,
especially in the TD group. The following group differences
are also shown in the plots: (a) the differences between the
TD group and the other two groups for both Consonant-
and Vowel-ACPUs increase as children age, (b) the group
differences are clearer for Consonant-ACPU than Vowel-
ACPU, and (c) Vowel-ACPUs for the LD and ASD groups
are basically overlapping, without much group difference
shown in the plot.

Statistical Analyses
Statistical analyses were conducted to test the hypoth-

eses pertaining to both the developmental trends and group
differences of ACPU measures. We used correlational analyses
for the developmental trends with both theoretical estimation
and bootstrap simulation. Analysis of variance (ANOVA) and
t tests were used for the analyses of child group differences
with age-standardized z scores of ACPU measures. Addition-
ally, we included a longitudinal analysis with the hierarchical
linear model (HLM) (Singer & Willett, 2003) for this data set
(see the Appendix). From the HLM analysis, we expected
some additional information but essentially consistent results.
In the following discussion, we focus on the age correlation
analysis and the group differences analyses. All analyses,
including the descriptive statistics and data visualization
mentioned above, used the R statistical programming lan-
guage (R Development Core Team, 2011).

Correlations With Child Age
Child developmental trends can be examined by cor-

relating ACPU measures with child chronological month-
age. One challenge we faced was treating and weighting
children equally despite differences in the number of record-
ings. To deal with this issue, we used a weighted correlation
to combine a child’s multiple recordings in the analysis so
that each child was weighted equally and thus treated equally;
all of the raw recording ACPU measures were directly
involved in the analysis. Specifically, if a child had n record-
ings, each recording was assigned a weight of 1/n, resulting
in an overall weight of 1. Weighted correlations were cal-
culated in a way that was similar to a standard correlation

Table 3. Performance of machine-estimated ACPU measures: Differences between human-transcribed variables and machine estimates.a

Human transcribed Machine estimated Correlation 95% confidence interval t

Consonant-ACPU Consonant-ACPU 0.56* [0.40, 0.72] 6.9
Vowel-ACPU Vowel-ACPU 0.57* [0.44, 0.69] 9.3
Consonant-ACPU + Vowel-ACPU Consonant-ACPU + Vowel-ACPU 1.13* [0.87, 1.38] 8.9
Consonant-ACPU + Vowel-ACPU Consonant-ACPU + Vowel-ACPU +

Nonspeech-ACPU
–0.54* [–0.78, –0.31] –4.6

aOne-sample t test for difference variable (Human_Variable – Machine_Variable), N = 62.

*p < .001.

Figure 4. Scatter plots of the sum of machine-estimated ACPUs
versus the sum of human-transcribed ACPUs. A blue dot represents
one of 62 recordings. Green lines represent y = x diagonal lines,
which help to show high correlations between machine and human
variables and the differences between them. The scatter plots
indicate that the total machine count for consonants and vowels is
underestimated relative to the total human count of consonants and
vowels. When including machine-recognized nonspeech units, the
total machine count exceeds the human count.
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by using ACPU measures of recordings, child month-ages,
and weights. Statistical significances were determined by
both theoretical estimation (Cohen, Cohen, West, & Aiken,
2003) and bootstrap simulation (Chernick & LaBudde, 2011),
methods that are complementary to some extent; higher
p values were chosen to ensure the rigor of the analyses.
Bootstrap simulation was also used to test the significance
of the group differences of the weighted correlations.

Table 5 and Table 6 show the results of the weighted
correlation analysis between ACPUs and child chronologi-
cal age. The TD group demonstrated significant and rela-
tively strong correlations (0.63 for Consonant-ACPU and

0.58 for Vowel-ACPU). Both the LD and ASD groups
showed weak or no significant correlations (below 0.33) for
both Consonant-ACPU and Vowel-ACPU. The relative
weakness of the correlations in the LD and ASD groups
was significant, according to the test on the group differences
of the correlations, which means that developmental trends
are slower in children in the LD and ASD groups than those
in the TD group.

Group Difference Analysis With
Age-Standardized z Scores

As shown in Figure 6, ACPU measures change signif-
icantly with child month-age, and a child may have multiple
recordings across different months. To generate more inter-
pretable overall measures that incorporate all of a child’s
multiple recordings and use such child measures for group
difference analysis, it is first necessary to age-standardize the
measures. For this purpose, we computed age-standardized

Table 4. Participant demographics.

Variable TD sample LD sample ASD sample Total

Participants 106 49 71 226
Age range (months) 8–48 10–44 16–48 8–48
Recordings 802 333 228 1,363
Child hours 634 224 159 1,017
Child utterancesa (segments) in millions 2.15 0.75 0.53 3.43
Phonetic analysis units in millionsb 8.42 2.65 1.82 12.89

Note. TD = typical development; LD = language delay; ASD = autism spectrum disorder.
aChild sound segments in naturalistic recordings were identified by machine algorithm using the new automated method and
were considered an approximation to child utterances. bPhonetic analysis units included machine-recognized consonants,
vowels, nonspeech sound units, and within-utterance silences. (The focus of the current study was on consonants and vowels.)

Figure 5. Distribution of the recordings across child age. The vertical
axis represents child index (i.e., the within-group participant index).
For example, 106 typically developing children were indexed from
1 to 106. A point represents one recording. A flat line connecting
multiple points represents one child with multiple recordings. A
single point without connecting lines represents one child with only
one recording or one child with multiple recordings within 1 month.
Color is used solely for the purpose of better representation. One
child is associated with one color, but a color may be repeated for
different children. Figure 6. Developmental trends using descriptive statistics for

means and standard errors of ACPU measures (machine estimates).
Group differences can also be identified through data visualization,
especially with Consonant-ACPU.
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z scores for ACPU measures in each recording relative to
age means and age variances in the TD group and then
averaged the z scores across each child’s recordings to
obtain child z scores. The LD and ASD samples were also
age-standardized to the TD group. With age-standardized
child z scores, the group difference analysis was straight-
forward using one-way ANOVA to test the significance of
group difference; Welch two-sample t tests were conducted
for each pair of TD, LD, and ASD groups to see which
groups differed.

Figure 7 illustrates the distribution of child z-scores
in the three groups using boxplots for comparison. In our
analysis, Consonant-ACPU and Vowel-ACPU (z-scores)
were significantly higher in the TD group than in the LD
and ASD groups; see Table 7. Consonant-ACPU, but not
Vowel-ACPU, is only significantly higher (although with
relatively small difference) in the LD than ASD group.

Summary
The results of this case study were consistent with

our prestudy predictions, which were based on published
findings using conventional approaches. In short, machine-
based ACPU measures demonstrated significant group
differences among the three child groups studied and showed
that child developmental trends were significantly correlated

with age. Our analysis suggests that the new automated ap-
proach, which is objective, easy to use, and cost effective,
holds great promise because it can accommodate large
numbers of children with fewer resources than used in
conventional approaches.

Discussion
Phonetic development in young children serves as a

foundation for language acquisition, a sufficiently compre-
hensive analysis of which could prove clinically valuable.
Yet, existing research in this area has been limited by high
costs, time investment, and the level of expertise needed
to collect and transcribe phonetic development data on a
large scale in naturalistic settings using conventional methods.
We explored a novel automated approach that provides an
opportunity to alleviate the burden of conventional methods.

The first stage of automated data processing in the
new approach was sound segmentation, which was validated
by 70–82 hr of human-transcribed audio data. Clear key
child sound segments (utterances) were identified with more
than 72% accuracy.

The second stage further processed the identified
child utterances using the open-source Sphinx phone recog-
nizer and produced estimates of Consonant-ACPU and
Vowel-ACPU. The human-transcribed data set showed
that machine estimates were significantly correlated with
human-transcribed ACPUs (greater than 0.82), but were
underestimated. By including machine-recognized non-
speech units, the total machine count for consonants, vowels,
and nonspeech units exceeded the total human count. This
finding suggests that the machine algorithm considered more
details of child utterances than did human transcribers, and
these were based on phonetic acoustic models without any
lexicon and grammar knowledge and were sensitive to affect-
ing factors, such as recording audio quality; environment

Table 5. Weighted correlations between ACPU measures and child
chronological month-age.

Measure
TD sample
(n = 106)

LD sample
(n = 49)

ASD sample
(n = 71)

Consonant-ACPU 0.63***, †††, ǂǂǂ 0.32*, †, ǂǂ 0.32*, †, ǂ

Vowel-ACPU 0.58***, †††, ǂǂǂ 0.19 0.25*, †, ǂ

Note. The statistical significances of the weighted correlations were
obtained using two methods: theoretical estimation and bootstrap
simulation, shown in Table 6. Theoretical estimation is based on
certain assumptions, which may or may not be true for a specific
sample, whereas bootstrap simulation is a nonparametric approach
that resamples the distribution of the statistics of interest, which
cannot be repeated exactly and needs more computation. The
two methods are complementary to some extent. For a rigorous
analysis, higher p values of the two methods were chosen as
combined final p values. As shown, the two methods provided
consistent statistical significances most of the time.

*p < .05. ***p < .001 (combined final p value).
†p < .05. †††p < .001 (p value using theoretical estimation).
ǂp < .05. ǂǂp < .01. ǂǂǂp < .001 (p value using bootstrap simulation).

Table 6. Mean group differences of weighted correlations using
bootstrap simulation.

Measure TD–ASD TD–LD LD–ASD

Consonant-ACPU 0.31** 0.31*** 0.01
Vowel-ACPU 0.33** 0.39*** –0.06

**p < .01. ***p < .001 (combined final p value).

Figure 7. Box plot of child z scores of ACPU measures. The box
plot demonstrates data distribution by showing median values,
maximum and minimum values, and lower and upper quartiles with
outliers, if any.
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noise; and not-well-formed pronunciations, with the tendency
of recognizing “contaminated” or “distorted” sound units as
nonspeech units. In contrast, human transcribers perceived
words using contextual information and knowledge of lexi-
con and grammar, so could therefore filter out some of the
affecting factors and ignore certain details. This helps to
explain the higher overall machine count, but fewer machine-
recognized consonants and vowels. In general, the high cor-
relation between machine and human ACPUs indicates that
when human ACPUs are relatively higher or lower for a
child among some children or compared among this child’s
different ages, the corresponding machine ACPUs would
also be higher or lower relative to the machine ACPUs of
other children or different ages of the same child. Relative
values are more important than absolute values in depicting
relative comparisons.

The effectiveness of the new approach was exemplified
by its application to the study of group differences using
Consonant-ACPU and Vowel-ACPU and child developmen-
tal trends. Our study showed that the Consonant-ACPU in
the TD group was significantly correlated with child age
(as high as 0.63), whereas such correlations in the LD and
ASD groups were significantly weaker (0.32). When the three
child groups were compared in terms of age-standardized
z scores, children with TD produced significantly more con-
sonants than did children with LD, who in turn produced
significantly more consonants than did children with ASD.
These results were consistent with those in the literature
(Paul et al., 2011) and were essentially supported by the longi-
tudinal analysis using the HLM method, as presented in
the Appendix.

Child phonetic development in terms of vowel count
has not often been reported in the literature. Paul et al. (2011),
for instance, studied the counts for consonants and canoni-
cal syllables, but not individual vowel counts. Tager-
Flusberg et al. (2009) recommended “expressive language
benchmarks for children with ASD,” but these included only
consonant inventory and consonant-vowel combination as
phonological variables without individual vowel variables. In
the current study, however, we collected large samples with
the opportunity to check vowel counts individually. The ana-
lyses showed that children with TD produced significantly
more vowels per utterance as they grew older (0.58 correlates
with child age), which was significantly higher when compared
with those of children with LD and ASD. Nevertheless,
vowel count per utterance (Vowel-ACPU) cannot be used
to distinguish children with LD from children with ASD.

These results were also essentially supported by the addi-
tional longitudinal analysis presented in the Appendix.

Distinguishing children with developmental prob-
lems from children with TD is an important goal. Equally
important would be the ability to distinguish among dif-
ferent child developmental issues using this methodology.
The differences observed between the children with LD and
ASD in the current study are of particular interest. The
LD group produced significantly more consonants per
utterance (Consonant-ACPU) than did the ASD group,
which may suggest that phonetic development in the
ASD group may be even more delayed than that in the
LD group or that the “sound quality” of the phonetic
units produced by children with ASD may not be as good
as that of children with LD. This difference was captured
by the adult acoustic phonetic models used, which resulted
in fewer consonants being recognized by machine in chil-
dren with ASD. Further investigation in this area, including
more detailed analyses with matched samples in language
development and further grouping of the ASD group into
high- and low-functioning subgroups, are clearly needed
and warranted.

Given the strong developmental trends and patterns
of differences among groups shown here, we conclude that
the automated approach used in this study can efficiently
and effectively produce meaningful estimates related to
phonetic development. These results suggest great potential
for this approach to be incorporated into standard scientific
research and clinical practices.

Clinically, the automated approach could be helpful
in the efforts of early screening, diagnosing, and interven-
tion of development delay and disorders that may otherwise
be cost prohibitive (e.g., in rural communities and under-
served populations).

Aside from cost factors, the vast data samples that
one is able to collect using the automated approach (liter-
ally millions of utterances in this study) also provide a new
degree of robustness (i.e., resistance to the confounding
effects of behavior variation and measurement errors).

Despite the promising results observed in the current
study, several limitations to the current approach are acknowl-
edged. First, it is not clear—even with our large quantity of
sampling—how many daylong recordings over what dura-
tion of time would be necessary to establish a reliable and
consistent estimate of any vocal measure, nor is it clear to
what extent the number of recordings affects the robustness
of the acquired data. More detailed phonetic categorization

Table 7. Diagnostic group comparisons with age-standardized z scores of ACPUs.

Measure

Mean and standard deviation
ANOVA:
F(2, 223)

t values of two-way comparison

TD (n = 106) LD (n = 49) ASD (n = 71) TD-ASD TD-LD LD-ASD

Consonant-ACPU –0.05 (0.75) –0.83 (0.84) –1.22 (1.16) 37.4*** 7.55*** 5.60*** 2.16*
Vowel-ACPU –0.08 (0.75) –0.73 (0.89) –1.00 (1.24) 21.3*** 5.59*** 4.48*** 1.35

Note. ANOVA = analysis of variance.

*p < .05. ***p < .001.
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may be needed to allow for a more comprehensive phonetic
analysis and the study of additional acoustic, phonetic, and
prosodic features.

Although computational approaches for gathering
and analyzing data are widely applied in physics, chemistry,
biology, the social sciences, and other areas of research,
the fundamental paradigm in child language development
research—and especially phonetic development—remains
based primarily on subjective human efforts. Results from
the current study indicate that automated, computational,
and objective approaches are efficient and effective tools for
obtaining and analyzing large samples of child phonetic
data and providing new windows into the study of early
child development.
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Appendix

Longitudinal Analysis With Hierarchical Linear Modeling in Three Child Groups With ACPU Measures

Some analyses in the main text were based on nonparametric methods. Comparatively, model-based parametric
analyses may enable better data summary and provide differing views. We also conducted a longitudinal analysis using
hierarchical linear modeling (HLM), the results of which are described here to offer additional (but essentially consistent) evidence
to supplement the findings in the main text.

We considered two issues before starting the analysis with HLM or linear models. First, we confirmed the linearity or
nonlinearity of the data. Based on the descriptive statistics of age means and age standard errors of ACPU measures (see
Figure 6), we observed that the development curves were not always linear in large age ranges but were linear in some smaller
age ranges. Considering both data linearity and availability in different age ranges, we chose the following for analysis and
comparison: children with typical development (TD) ages 15–38 months, children with language delay (LD) ages 15–38 months,
and children with autism spectrum disorder (ASD) ages 16–38 months.

Second, longitudinal data were lacking for the ASD group. As shown in Figure 5, most of the children had recording(s)
in only 1 month, and only a few children had recordings spanning over only 3 or 4 months. According to Singer and Willett
(2003), the slope or rate of change cannot be reliably estimated from the data with short time span, and our analysis verified
their assertion. Therefore, the ASD group was treated as cross-sectional data and modeled with weighted least squares
(WLS), using the weight of 1/n for each of the recordings of a given child, if the child had n recordings. In so doing, each child
had an overall weight of 1 and was treated equally in the modeling process. All analyses used the R programming language
(R Development Core Team, 2011) and the “nlme” package (Pinheiro et al, 2008) for the longitudinal analysis with HLM.

Given that within-group variations for each child’s linear model (i.e., the intercept and the slope of the model) could
differ between two groups, TD and LD were not modeled together to share the same distribution for within-group intercept and
slope residuals but were instead modeled separately.

The means and standard errors of the intercepts and slopes of the linear models for the three groups were individually
estimated and were further two-way compared using the Welch two-sample t test. The results are shown in Table A1, and the
linear models are illustrated in Figure A1.

The analyses conducted here were mixed in type and were not uniform; however, the results can be used as a reference
for comparison with the previous analyses. For the TD and LD groups with longitudinal data, a standard longitudinal analysis
would model both groups together, sharing distributions of within-group variations. To further explore and verify the consistency
of the results, the two groups were modeled together using the HLM method (see Table A2).

Table A2 shows that the results of the “standard” longitudinal analysis using HLM are consistent with those in Table A1,
which partially supports the mixed analyses scheme used in Table A1. We focus on the results in Table A1 and the illustration
in Figure A1 to present a brief summary here. First, we observed the following with regard to the intercepts in the linear models
or the ACPU measures at 30 months: (a) all were significantly above 0, (b) ACPUs in the TD group were all significantly higher
than those in the other two groups, and (c) the LD group was significantly higher than the ASD group in Consonant-ACPU
but not Vowel-ACPU. Second, we observed the following with regard to the slopes or rates of change in the linear models: (a) only
the TD and LD groups were significantly higher than 0, (b) the rate of change of the ASD group did not differ significantly from
0 for both ACPU measures, and (c) group differences were significant only when TD was compared with ASD for both ACPUs
or Vowel-ACPU was compared in the TD and LD groups. These results provide a perspective from linear growth models and are
essentially consistent with findings in the analyses of the main text.

Table A1. ACPU HLM and WLS modeling results: Diagnostic group statistics and comparisons.

Measure

Mean and standard error t values of two-way comparison

TD (618, 90)a LD (284, 44)a ASD (93, 42)a TD-ASD TD-LD LD-ASD

Consonant-ACPU intercept at 30 months 2.25*** (.040) 1.95*** (.064) 1.72*** (.039) 5.59*** 4.11*** 2.23*
Consonant-ACPU slope: Change/10 months .363*** (.037) .232*** (.069) .069 (.075) 3.12** 1.81 1.34
Vowel-ACPU intercept at 30 months 1.61*** (.026) 1.44*** (.037) 1.35*** (.032) 3.99*** 3.55*** 1.41
Vowel-ACPU slope: Change/10 months .227*** (.026) .114* (.048) .063 (.062) 2.46* 2.25* 0.59

Note. The TD and LD groups were analyzed using HLM. ASD was modeled as a standard cross-sectional analysis using WLS. Group
means and standard errors for both intercepts and slopes were thus estimated individually using their respective methods. ACPU = average
count per utterance; HLM = hierarchical linear modeling; WLS = weighted least squares; TD = typical development; LD = language delay;
ASD = autism spectrum disorder.
a The first number is the number of recordings; the second number is the number of children.

*p < .05. **p < .01. ***p < .001.
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Figure A1. Group linear models for children with TD, LD, and ASD. The intercepts and slopes of the linear models shown here are further
described in Table A1. The solid lines represent the results using the hierarchical linear modeling method for both the TD and LD groups,
whereas the dashed lines represent the results using the weighted least squares method for the ASD group (as explained in Table A1). The
dots represent the intercepts at 30 months for each group.

Table A2. Longitudinal analysis of ACPUs of TD and LD groups using HLM.

Measure

Mean and standard error

TD (618, 90)a LD (284, 44)a TD – LD (Mean difference between TD & LD)

Consonant-ACPU intercept at 30 months 2.25*** (.041) 1.97*** (.058) 0.28*** (.071)
Consonant-ACPU slope: Change/10 months .361*** (.039) .261*** (.066) .100 (.076)
Vowel-ACPU intercept at 30 months 1.61*** (.027) 1.44*** (.037) 0.17*** (.045)
Vowel-ACPU slope: Change/10 months .225*** (.026) .108* (.047) .117* (.053)

Note. The ASD group was not included in this analysis because it lacked longitudinal data; therefore, the slopes of each child model could
not be reliably estimated. TD and LD groups were analyzed together using HLM as a standard longitudinal analysis. The results were
consistent with and partially supported the corresponding results in Table A1.
a The first number is the number of recordings; the second number is the number of children.

*p < .05. ***p < .001.
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