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Abstract Annotating digital imagery of historical materi-
als for the purpose of computer-based retrieval is a labor-
intensive task for many historians and digital collection
managers. We have explored the possibilities of automated
annotation and retrieval of images from collections of art
and cultural images. In this paper, we introduce the applica-
tion of the ALIP (Automatic Linguistic Indexing of Pictures)
system, developed at Penn State, to the problem of machine-
assisted annotation of images of historical materials. The
ALIP system learns the expertise of a human annotator on
the basis of a small collection of annotated representative
images. The learned knowledge about the domain-specific
concepts is stored as a dictionary of statistical models in a
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computer-based knowledge base. When an un-annotated im-
age is presented to ALIP, the system computes the statistical
likelihood of the image resembling each of the learned sta-
tistical models and the best concept is selected to annotate
the image. Experimental results, obtained using the Emperor
image collection of the Chinese Memory Net project, are re-
ported and discussed. The system has been trained using
subsets of images and metadata from the Emperor collec-
tion. Finally, we introduce an integration of wavelet-based
annotation and wavelet-based progressive displaying of very
high resolution copyright-protected images.

Keywords Content-based image retrieval · Statistical
modeling · Hidden Markov models · Image annotation ·
Machine learning

1 Introduction

Annotating digital imagery of historical materials is labor-
intensive. Typically, a well-trained human annotator must
go through individual images and type in keywords or lin-
guistic descriptions. As these image databases grow larger
and larger, it is becoming prohibitively expensive to anno-
tate these images manually. In our work, we attempt to study
whether it is possible for computers to learn the expertise
from historians and use the learned knowledge to annotate
collections of images automatically and linguistically.

Digital images of the same type of historical objects of-
ten share similar appearances. We hypothesize that a com-
puter program can learn some of the human expertise based
on the image data and some sample annotations. For in-
stance, the First Emperor of China, Qin Shi Huang Di (259–
210 BC), has his mausoleums surrounded by more than
7,000 life-sized terra-cotta warriors and horses. Each war-
rior is unique, being modeled after an actual guard-of-honor.
It should be possible to train computers with the concept of
“Terracotta Warriors and Horses” with a few sample images
and let computers annotate other such images in the col-
lection automatically. An human annotator can then review
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Fig. 1 Sample images from the Emperor collection and their manually-created image titles (copyright of the original images belongs to C.-c.
Chen)

the machine-generated annotations and make modifications
if necessary. C.-c. Chen of Simmon College, a member of
our project team, created extensive documentary using the
historical materials related to the First Emperor of China [1]
and created The First Emperor of China image collection.
The extensive image collection was further expanded as a
part of this Chinese Memory Net1 image databases since
2000 [2]. Figure 1 shows some examples of this image
collection and the manually-prepared image titles. Chen’s
project staff took thousands of such photos and manually
created extensive metadata including keywords and descrip-
tive annotations. Their effort has enabled computer scientists
to study the suitability of applying state-of-the-art machine
learning techniques to images of historical materials.

1.1 Content-based image retrieval

Content-based image retrieval techniques allow users to
search for visually similar images within an image collection
by comparing and analyzing numerical features extracted
from images [3, 4]. In our prior work, we successfully
applied the SIMPLIcity content-based image retrieval sys-
tem [5] to the Emperor collection so that users can search
for images based not only on annotations but also on visual
similarity (Fig. 2) [6]. We have also shown that text-based
retrieval techniques can help users to find images of histori-
cal materials if these images are annotated (Fig. 3).

Machine annotation of images is generally considered
impossible because of the great difficulties in converting the
structure and the content of a digital image into linguistic
terms. In our work, we explore the use of machine learn-
ing and statistical modeling techniques in automated image
annotation.

The field of content-based image retrieval has been
evolving rapidly. Readers are referred to some recent review

1 The project is now named as Global Memory Net. URL:
http://www.memorynet.org

articles [3, 7], monographs [4, 8], and additional references
[5, 9–19] for more information.

1.2 Automatic linguistic indexing of pictures

Since year 2000, the Penn State research team has been de-
veloping machine learning and statistical modeling-based
techniques for image annotation and image retrieval [8, 19].
The Automatic Linguistic Indexing of Pictures (ALIP) sys-
tem has been developed to learn objects and concepts
through image-based training. The system was inspired by
the fact that a human being can recognize objects and con-
cepts through matching a visual scene with the knowledge
structure stored in the brain. For instance, even a 3-year old
child is typically capable of recognizing a number of con-
cepts or objects.

The ALIP system builds a knowledge base about differ-
ent concepts automatically from training images. Statistical
models are created about individual concepts by analyzing a
set of features extracted from training images using wavelet
transforms [4]. A dictionary of these models is stored in the
memory of the computer system and used in the recognition
process. The team has conducted large-scale learning ex-
periments using general-purpose photographic images rep-
resenting 600 different concepts. In the published work, it
has been demonstrated that the ALIP system with 2-D mul-
tiresolution hidden Markov models (2-D MHMM) [20] is
capable of annotating new images with keywords after be-
ing trained with these concepts [19].

Since late 2002, researchers at Penn State have been col-
laborating with C.-c. Chen of Simmons College on the appli-
cation of ALIP to the problem of annotating digital imagery
of historical materials. We attempt to determine if ALIP can
learn about domain-specific knowledge, i.e., the basis of the
expert annotations of images. The Emperor image collec-
tion is suitable for this task because of both the high quality
of the images and the comprehensiveness of the metadata
descriptions.
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Fig. 2 Textual annotations can be integrated with content-based image retrieval engines. Similarity search results using the SIMPLIcity system
are shown. The top left corner image is the query image. The images are ordered according to their visual similarity to the query image

1.3 Outline of the paper

In the remainder of this paper, we present our machine
annotation approach, our integrated progressive displaying
technique, and the experiments we have conducted. Specif-
ically, Sect. 2 describes the training and annotation process.
In Sect. 3, we introduce the integrated wavelet-based pro-
gressive image displaying technique for very high resolution
copyright-protected images. In Sect. 4, we present the results
of our extended experiments. Discussions on the limitations
of the approach are included in Sect. 5. We present our con-
clusions and suggest future research directions in Sect. 6.

2 Training the ALIP system to annotate images of
historical materials

We now review the ALIP (Automatic Linguistic Indexing of
Pictures) system and introduce its application to the prob-
lem of annotating images of historical materials. The ALIP

system [19] has three major components: wavelet-based fea-
ture extraction, model-based training, and statistical likeli-
hood estimation for annotation.

2.1 The ALIP technology

The first process of the ALIP system is the model-based
learning process. Before we can use the ALIP system to an-
notate any images of historical materials, we must train the
system about the domain. For each concept, we need to pre-
pare a set of training images. Ideally, these training images
should be representative to the concept. For example, if we
would like to train the concept “Roof Tile-End”, we need
to use images of different roof tile-ends rather than different
images of the same roof tile-end.

For each training image, we extract localized features
using wavelet transforms. An image is first partitioned into
small pixel blocks. The block size can vary depending on
the resolution of images in the collection and the subject of
the collection. The block size is chosen to be 4 × 4 in our
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Fig. 3 Textual annotations of images can be used in keyword-based search. Top 10 search results for the search phrase (+"terracotta
warrior" +side -front) are shown

experiments as a compromise between the texture detail and
the computation time. Other similar block sizes may also be
used. The system extracts a feature vector of six dimensions
from each block. Three of these features are the average
color components of pixels in the block. The other three are
texture features representing energy in high frequency bands
of wavelet transforms. Specifically, each of the three features
is the square root of the second-order moment of wavelet
coefficients in one of the three high frequency bands. The
features are extracted using the LUV color space, where L
encodes luminance, and U and V encode color information
(chrominance). The LUV color space is chosen because of
its good perception correlation properties.

We manually prepare a training database of concepts,
each with a small collection of images representing the con-
cept. The system is capable of handling different number of
training images per concept. The images are typically stored
in JPEG format, while our system can process virtually any
standard-image format. It is not required that the training
images for a concept must all be visually similar. However,
intuitively, the more diverse a concept is, the more training
images can be required to obtain a reasonable training of the
system. If it takes many examples to train a human about a
concept, it would take even more images to train a computer
system.

Figure 4 illustrates the training process of the system.
For each concept, we estimate a 2-D MHMM [20] based on
the wavelet-based features extracted from the training im-
ages. These models, stored in computer memory, are used
during the annotation process. A 2-D MHMM captures
both the inter-scale and intra-scale statistical dependence
among training images. The inter-scale dependence is mod-
eled by the Markov chain over resolutions. The intra-scale

dependence is modeled by the HMM. At the coarsest reso-
lution, feature vectors are assumed to be generated by a 2-D
HMM. At all the higher resolutions, feature vectors of sib-
ling blocks are also assumed to be generated by 2-D HMMs.
The HMMs vary according to the states of parent blocks.
The 2-D MHMM can be estimated by the maximum likeli-
hood criterion using the EM algorithm.

In the annotation process, we first extract a collection of
feature vectors at multiple resolutions from the image. The
technique for extracting the features is the same as the tech-
nique used in the training process. We regard the features
of an image as an instance of a stochastic process defined
on a multiresolution grid. The similarity between the image
and a concept of images in the database is assessed by the
log likelihood of this instance under the model trained from
images in the concept. A recursive algorithm [20] is used to
compute the log likelihood. After determining the log likeli-
hood of the image belonging to any concept, we sort the log
likelihoods to find a concept with the highest likelihood.

2.2 Initial experiment

To verify the feasibility of training technique for images of
historical materials, we first present an initial experiment
with five concepts from the Emperor collection. The five
concepts we have chosen are: (1) Terracotta Warriors and
Horses, (2) The Great Wall, (3) Roof Tile-End, (4) Terra-
cotta Warrior—Head, and (5) Afang Palace—Painting.

Figure 5 shows all the images used to train two of the
five concepts. For the concept of “Terracotta Warriors and
Horses,” a total of only eight images are used to train the
ALIP system. For the concept of “Roof Tile-End,” a total of
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Fig. 4 The training process of the ALIP system

four images are used. We purposely use a minimum set of
training images for each concept because the system can be
useful in practice only if it does not require labor-intensive
preparation of training images. One of the key advantages of
the ALIP approach is that training images for a concept are
not required to be all visually similar. The system is highly
scalable because the training of one concept does not involve
images related to other concepts. If we need to add another
concept to the collection of concepts, we simply need to train
a new model based on the training images to this new con-
cept. If more images are added to the training collection for
a given concept, only that concept needs to be retrained.

Because of the small number of training images per con-
cept, only a couple of minutes of CPU time are required to

Fig. 5 All the images used to train the ALIP system to recognize the
concepts “Terracotta Warriors and Horses” and “Roof Tile-End”

train a concept on a Pentium PC running LINUX operat-
ing system. The training process is parallelizable because
the training of one concept requires only images related to
that concept.

To validate the effectiveness of the ALIP training, we
tested ALIP with other Emperor images related to the five
trained concepts. In another word, we give the ALIP system
an examination on its learning progress.

It takes the computer only a few seconds to compute the
statistical likelihoods of an image to all five learned concepts
and sort the results. The concept with the highest likelihood
is used to annotate the image. The experimental results are
summarized as follows:

1. Terracotta Warriors and Horses: A total of 52 images
were tested. We tested all non-training images of this
concept available in the Emperor collection. Only one
image was mistakenly annotated as “The Great Wall”.
The accuracy for this concept is 98%.

2. The Great Wall: A total of 65 non-training images were
tested. Again, we used all available images. Only one
image was mistakenly annotated as “Terracotta Warriors
and Horses”. The accuracy for this concept is 98%.

3. Roof Tile-End: A total of 28 available non-training im-
ages were tested. Three images were mistakenly anno-
tated as “The Great Wall”. Two images were marked as
“Terracotta Warriors and Horses”. The accuracy for this
concept is 82%.

4. Terracotta Warrior—Head: A total of 57 available non-
training images were tested. Two images were mistak-
enly annotated as “The Great Wall”. The accuracy for
this concept is 96%.

5. Afang Palace—Painting: A total of 33 available non-
training images were tested. Six images were mistak-
enly annotated as “The Great Wall”. The accuracy for
this concept is 82%.
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Fig. 6 ALIP mistakenly marked these images. The manually-created
annotations are shown in the figure

This result is remarkable considering the small number
of images we have provided to the system as training exam-
ples. Figure 6 shows all those images mistakenly marked by
the ALIP system. In this initial experiment, we used only 4–
8 images to train each concept. We expect the performance
to improve if more images are used for training or if the
training images are selected more carefully.

3 Wavelet-based progressive displaying and copyright
protection

Copyright concerns are significant obstacles that have pre-
vented the wide use of the Internet for distributing high-
valued and high-resolution images of historical materials.
We developed a technique on the basis of wavelet transforms
to enable both progressive displaying and copyright protec-
tion. In this section, we briefly introduce the coding and de-
coding algorithms.

Some commonly-used existing methods such as user au-
thentication and whole-image watermarking [21] are not
sufficient. For instance, invisible watermarking techniques
are not robust enough to prevent people from illegal copy-
ing. Typical whole-image visible watermarking techniques
are ineffective or distractive for images of very high resolu-
tions. Our approach aims at alleviating these problems.

We developed a wavelet-based progressive displaying
method with dynamic watermarking for viewing very high
resolution copyright-protected images. The encoder, which
dynamically determines levels of transform and partition of
coefficients, is based on a modified Haar wavelet transform.
The decoder retrieves the necessary data and reconstructs
the requested region-of-interest at a scale specified by the
user. The system enables virtually any size of images to
be displayed progressively. The system has low computa-
tional complexity for both the encoding and the decoding
processes.

The core algorithm of the encoder is the modified Haar
wavelet transform, which allows all computation to be done
with integer arithmetic. Integer computation is desired be-
cause it saves storage space. The level of the transform and
partition of coefficients are dynamically determined on the
basis of the spatial resolution of the image to be processed.

The modified Haar wavelet transform is constructed by
ignoring the scaling factor of Haar wavelet transform. Thus
the coefficients are sums and differences of adjacent pixels.
The encoder performs encoding only once when an image
is added to the collection. We assume that the images are in
the RGB color space, consisting of the red component, green
component, and the blue component. Each color component
image is encoded by the modified Haar wavelet transform
and stored separately. The level of transform, s, can be cal-
culated with s = log2(max(m, n)/k), where m is the height
of the image and n is the width of the image, both expressed
in numbers of pixels, and k is a parameter selected manually.
By setting the parameter k, we enforce that coefficient files
are smaller than a certain size for fast online access of large
images. In our experiments, we set k to 100. Depending on
the speed of the computer server systems and the desired
processing speed, the parameter can vary.

After determining the transform level s, the right and
bottom borders of the image need to be padded according
to the transform level so that the size of the image is suitable
to the level of the transform applied. The way that these bor-
ders are padded is not important because the padded borders
are not to be displayed to the users. After the padding, we
apply the s-level transform to each of the three gray-scale
images of a color image.

The transform algorithm is lossless in nature. In order
to save the storage when fully lossless is not critical, the
resulting transform coefficients are quantized in the high-
est frequency. To make the whole process to be of low loss,
we only quantize the highest frequency to fit in the scale
of −128 to 128, which causes a loss of 2 out of a range of
512. Because the coefficient files for higher frequencies can
be too large for fast retrieval of the region-of-interest, we
partition these coefficient files spatially and store them in
separate files. The partition of the coefficient files is dynami-
cally determined by dc = n/(2(s−k)t) and dr = m/(2(s−k)t),
where dc and dr are the numbers of division on the orig-
inal coefficients by column and row, respectively, s is the
total level of the transforms, k is the current transform level,
and t is an adjustable parameter. t determines the size of
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Fig. 7 A user can progressively zoom in the region of interest. The requested region at the requested resolution is dynamically generated from
wavelet coefficients. A light visible watermark is added at the lower right corner of the image before transmission

individual coefficient files. We constrain that each parti-
tioned coefficient file is no larger than a certain size. In our
experiments, we set t to be 1,000.

Wavelet transform decomposes an image into sums and
differences of adjacent pixels. For smooth areas, the differ-
ence elements are near zero. Huffman coding is employed
to further compress the coefficient files and then the com-
pressed files are stored. When a user request comes in, the
decoder retrieves all necessary coefficient files and recon-
structs the image on the fly.

Wavelet transform preserves the localization of data,
which means that if a user queries a small contiguous portion
of a whole image, the decoder only need to retrieve the coef-
ficients corresponding to the queried region. Given a query
with x-location, y-location, and scale variable, the decoder
searches the stored representation files of the image for the
related data files, decompresses them and finds the necessary
coefficients to reconstruct the block of pixels at the specified
scale. The decoding process is the exact reverse of the en-
coding process. Because of the quantization of the highest-
level coefficients, the reconstructed image has a small loss.
We have implemented a Web-based user interface that al-
lows users to magnify any portion of the images in different
resolution scales. Figure 7 shows the some screen shots. The
reconstructed image is converted to a Web-image format,
such as JPEG or PNG, and sent to the client/user through
the Internet.

There are several advantages of this wavelet-based ap-
proach: (1) the image of the region-of-interest is dynami-
cally generated to accurately answer to the user selection;
(2) on the basis of different levels of controlled usage, dif-
ferent user groups can be given permissions to different reso-
lutions; (3) users cannot easily reconstruct the original high-
resolution images; and (4) non-reversible visible watermarks
can be added to all the retrieved regions.

4 Extensive annotation experiments

Because of the promising results from the initial five-
concept annotation experiment described above, we con-
ducted additional tests on this database of images. We would
like to find out the performance of ALIP when additional
variables were introduced to the equation. In this section, we
describe the set up of our experiments and report the results.

4.1 Design of the experiments

The Emperor database has about 2,000 images. It has about
100 different major concepts, though the textual description
of images in the same major concept may vary significantly.
That is, on an average, there are 20 images in a major con-
cept. Because we need to select many sets of training and
testing images from each concept, we need to choose only
those concepts with larger number of images. We have only
about 20–30 concepts to use.

We ran two additional sets of tests on the Emperor im-
age collection. The first set contained nine general training
concepts which included: (1) Black and White Sketches,
(2) The Great Wall, (3) Horses, (4) Pots and Plates,
(5) Roof Tile-Ends, (6) Color Paintings, (7) Maps, (8)
Terracotta Warriors Faces, and (9) Soldiers. It is important to
note that for the Terracotta Warrior Faces concept, both color
and gray-scale faces were used. The reason is because we
wanted this set of concepts to have more general image con-
cepts such as Soldiers, Horses, and Faces. Figure 8 shows
some sample training images from the nine concepts.

In the second set of experiments, we broke apart these
concepts into more specific concepts to determine how ALIP
performed with overlapping image concepts, and to see how
well ALIP could identify specific features of a more general
concept. The second set of testing included all of the above
concepts, with certain concepts divided into two separate
concepts. The additional concepts were: (10) Stones, (11)
Text, (12) Hands, (8) Terracotta Warrior Faces being bro-
ken down into (13) Black and White Faces and (14) Color
Faces, (15) Upper Bodies, (16) Full Bodies, (17) Two Heads,
(18) Feet, (3) Horses being broken down into (19) Horse

Fig. 8 Sample training images of the first nine concepts



Machine annotation and retrieval for digital imagery of historical materials 25

Fig. 9 Sample training images of the second set of 11 concepts

Heads and (20) Horse Bodies. There are slightly less desir-
able concepts in this set because certain concepts had a more
limited amount of total pictures in the original Emperor im-
age collection. Figure 9 shows some sample training images
from this set of 11 concepts.

Both sets were broken down into four subsets. Each sub-
set had different sets of training images. The first subset’s
training images were chosen by our lab. We attempted to
give ALIP the best possible representation of each concept
with the pictures we chose. We did this by providing ALIP a
diverse set of pictures within each concept. The second sub-
set was also chosen by the lab. In this subset, we attempted to
give ALIP the worst possible set of training images. Here we
chose very similar pictures with little diversity, hence giving
a rather centered and poor representation of the concept. The
final two subset’s training images were randomly chosen.

We further broke down the subsets into four different
training image dataset sizes. We began with three images,
and for each additional size, we simply added three more
images to the training set. Therefore, we had training image
sizes of 3, 6, 9, and 12 for each of the four subsets of the two
sets of experiments. In other words, we ran a total of 32 tests
on the Emperor image collection.

4.2 Goals and reasoning

The above experiments were designed specifically to dis-
cover certain characteristics of ALIP. We chose two sets of
training concepts to determine how ALIP’s performance is
affected by more concepts and also by more specific con-
cepts. Here, we expected the performance of ALIP to de-
crease with a larger number of more complicated concepts.

We chose four subsets of concepts so that we could track
the performance of ALIP when given different training im-
ages. We expected that different training images would lead

Fig. 10 Breakdown of 32 tests we ran on the Emperor database

to different levels of performance. Additionally, we expected
that our hand-picked representative training images would
give better results than our hand-picked poorly representa-
tive training images. We also expected that the two randomly
chosen training image subsets would give results somewhere
between the two hand-picked results.

Finally, we wanted to determine what a reasonable train-
ing image size would be. We expected that more training im-
ages would lead to better ALIP performance. However, we
did not want to use too many training images, because that
would defeat the purpose of the ALIP work. Our goal is to
automate as much of the identification process as possible,
which in turn requires minimizing human input.

4.3 Results

Overall, ALIP’s success rate was promising. It ranged from
as low as 36% in the absolute worst case scenario, to close
to 75% in the best case scenarios. Most runs had over a 50%
success rate. Since there have been no previous precedents
set with computer-based image recognition for images of
historical materials, we compare our results with a random-
based classification scheme.

4.3.1 Results of the first set

Results from the first set of nine concepts were very good.
Success rates here were from a low of about 42% to a high
of 74%. Figure 11 shows the general trends of the testing.

As expected, the hand-picked best case test did perform,
on average, better than any of the other subsets. Also, the
hand-picked worst case test performed worse than any other
subsets. The two random subsets were generally between the
best and worst case scenarios.

In terms of training image size, we see that there is an
improvement of roughly 5% per three training images added
in all the four subsets. This is not surprising because of the
small number of training images we have used. We would
not expect the trend to last as we add more and more images.

Fig. 11 Accuracy for the runs in the first set. X: sample size, Y:
accuracy
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We could not add more images to the training due to the size
of the Emperor database.

We also see that all results are far better than the unintel-
ligent random picking of any concept a picture may fall in.
Here, since we have nine concepts of equal size, each image
has an 11% chance of falling into any of the concepts.

4.3.2 Results of the second set

Results were also promising on the more complicated set.
Subset accuracy ranged from 35 to 65%, slightly lower than
the first set but also much better than the random selection
success rate of 5%. Figure 12 shows the testing results with
this set.

As with the first test, the hand-picked best case and worst
case scenarios generally set the upper and lower boundaries
for the percentage correct. Also, the percentage of images
correctly identified again rose roughly 5% on an average for
every three images added to the training pool. Again, we
would not expect the trend to last as even more images are
added.

4.3.3 Comparisons between the two sets

As shown above, the initial accuracy of the second set is
roughly 10% lower than the initial accuracy of the first set.
We hypothesized earlier that this would be the case, due to
the increase of the number of concepts in addition to the
added complexity of the concepts themselves. However, the
accuracy increase with each of the sample sizes is roughly
the same, at 5% per three pictures for both sets. This sug-
gests that additional training can overcome the reduced ac-
curacy of more complex image concepts.

4.4 Experimental findings

There are certain trends and features that became apparent
during the testing, and we believe they are worthwhile to
be noted. These features include extremely successful con-
cepts, general trends, and reasoning why ALIP incorrectly
identified certain images.

Fig. 12 Accuracy for the runs in the second set. X: sample size, Y:
accuracy

4.4.1 Black-and-white sketches

ALIP had the most success in identifying black-and-white
sketches. The success rate for classifying these images was
over 99% for all tests. This is remarkably high, compared
to most other image concepts, especially for the smaller
training samples. This is expected because black-and-white
sketches look very different from photographic images.

4.4.2 Training size vs. accuracy

It appears that a larger set of training images leads to better
accuracy. However, in certain cases, the accuracy occasion-
ally went down after adding training images to each of the
concepts. It is difficult to find out the actual reason for this
behavior as there are so many factors. It can be due to the
limitation of the ALIP approach. It could also be that a par-
ticular image added to the training group was not a good
choice for training ALIP. Figure 13 shows one example of
this behavior.

4.4.3 Training quality vs. accuracy

It appears when images are trained with the worst-case set
of images, certain concepts perform much better than be-
fore. This is shown in Fig. 14 for the horses concept from
the first set of experiments. The worst-case scenario per-
formed better than all other runs in the horses concept,
though it performed worse than the others in nearly every
other concept. These results suggest that there can be per-
formance trade-offs among different concepts in the training
process.

4.4.4 Black-and-white images vs. textual images

Black-and-white graphical images and textual images (i.e.,
images with only text) are very similar visually. Both have
a large amount of white space and very distinct boundaries
where the black ink starts and the white paper stops. Also, in
many images there is text describing the image, leading to a

Fig. 13 Accuracy of classifying paintings in a subset. X: number of
training images, Y: accuracy
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Fig. 14 Accuracy of classifying horses. X: number of training images,
Y: accuracy

further meshing of these two concepts. Though ALIP did a
fairly good job at correctly identifying these two concepts,
most of the misclassified black-and-white images were in-
correctly classified as textual images. These same images
also had text in the foreground.

4.4.5 All faces vs. color or black-and-white faces

Our results suggest that combining both types of faces into
one face concept requires less training for similar results.
Admittedly, our experiment cannot conclusively determine
this due to other changing variables, but the combined suc-
cess of the second set’s black-and-white and color faces are
roughly equal to the success of the first set at most points.
Other misclassifications also affected the success of the sec-
ond set. Some of these stem from the blending of concepts
as described below.

4.4.6 Overlapping semantics

Faces are predominantly featured in the upper body images
of the Emperor image database. It is possible that ALIP was
again thrown off by this blending of concepts. It appears that
roughly half of all errors in the Color Faces, Black and White
Faces, Upper Bodies, and Two Faces concepts were misclas-
sified as one of the other three concepts. Again, depending
on the perspective of the observer, these errors could in fact
be deemed correct because they are returned in part what
was asked for.

Fig. 15 Different aspects of the Terracotta Horses

5 Discussions

If a trained human was asked to classify all the pictures of
the Emperor database, the success rate of the human would
probably be close to perfect. Humans still have many advan-
tages over the training-based computer annotation systems
such as ALIP. For instance, pictures of a certain object, a
horse as an example, are taken from a variety of different
angles (Fig. 15). Humans have developed a 3-D representa-
tion of a horse. If we see a picture of a back horse, we could
still be able to correctly identify the image. It would be diffi-
cult for computer systems based only on 2-D image training
to do this because they do not have 3-D representations of
the horse. A computer program needs to first see a back of
a horse and be told that the image it sees is the back of a
horse, for it to correctly identify that image as a horse. Sim-
ply showing the head of a horse to ALIP is not enough to
allow it to correctly identify other parts of a horse.

Currently, work is being done on creating a system that
can analyze 3-D images [22]. The techniques to deal with
them will be even more sophisticated and computationally
intensive than the current 2-D techniques. However, this
is the natural extension of the current 2-D systems and
algorithms.

Additionally, ALIP needs to be given the flexibility to
deal with image concepts that overlap. If there is a picture
of a soldier with a horse (Fig. 16), should ALIP classify that
picture as a horse or a soldier? What we are searching for
will determine whether this picture is of relevance. If ALIP
classifies this as a horse, but we are searching for soldiers,
we may never see this picture when we query the database
of images.

ALIP currently ranks all the concepts by their likelihood
of being the home concept of the image it currently is ana-
lyzing. Developing some technique to correctly determine
a group of concepts that may be related to a certain im-
age would be useful. The system would have to be flexible
enough to give the user a reasonable amount of good images
without flooding the user with images that have nothing to
do with the search.

The success rate of ALIP must be improved for it to be
useful in more difficult situations. Here, we are dealing with
rather simple images. However, an example of the eventual
goal is to separate soldiers from different cultures into their
respective cultures. Of course, ALIP would probably not
perform well if given this task now. However, our results are
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Fig. 16 A terracotta soldier with a horse

promising, in that we have shown that content-based image
annotation is possible with certain images of art or historical
materials. Future systems, with more computational power
and much better algorithms will be able to do what ALIP
cannot currently do. Even though our success rates may not
be as good as a human’s success rate, they are high enough to
suggest that further research in this area is warranted. ALIP
is just one step in the realization of a highly successful and
flexible content-based image annotation system for our ever
growing digital image collections.

6 Conclusions and future work

In this paper, we demonstrated the application of the ALIP
system to the problem of automatic annotation of digital im-
agery of historical materials. We used categorized images
to train computers with semantic concepts. Wavelet-based
features are used to describe local color and texture in the
images. We have shown a wavelet-based progressive dis-
playing and copyright protection techniques for very high-
resolution and high-valued images. We conducted extensive
experiments with the Emperor image collection. Promising
results have been obtained and reported.

There are many possible future directions. Automatic
linguistic indexing of pictures, as a research field, is just
at its beginning. We envision that the annotation accuracy
can be improved by integrating model-based learning with a
rule-based system so that some human expertise can be in-
corporated. It can be interesting to study ways to improve the
statistical modeling process to include human assistance or
feedback. Three-dimensional image-based statistical model-
ing can be very challenging but useful. Finally, some intu-
itive user interfaces can be developed so that machine learn-
ing and statistical modeling-based annotation can be used in
practice.
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