
12 inFoRmation tEcHnoLoGY anD LiBRaRiEs | sEptEmBER 2008

MyLibrary: A Digital Library
Framework and Toolkit Eric Lease Morgan

This article describes a digital library framework and
toolkit called MyLibrary. At its heart, MyLibrary is
designed to create relationships between information
resources and people. To this end, MyLibrary is made up
of essentially four parts: (1) information resources, (2)
patrons, (3) librarians, and (4) a set of locally defined,
institution-specific facet/term combinations intercon-
necting the first three. On another level, MyLibrary is a
set of object-oriented Perl modules intended to read and
write to a specifically shaped relational database. Used in
conjunction with other computer applications and tools,
MyLibrary provides a way to create and support digital
library collections and services. Librarians and developers
can use MyLibrary to create any number of digital library
applications: full-text indexes to journal literature, a
traditional library catalog complete with circulation, a
database-driven website, an institutional repository, an
image database, etc. The article describes each of these
points in greater detail.

n Background and history

The term “MyLibrary” was coined by Keith Morgan, Doris
Sigl, and myself in 1997 when we worked in the Department
of Digital Library Initiatives at the North Carolina State
University Libraries. At that time it denoted a personaliz-
able/customizable user interface to sets of library collec-
tions and services. It was a reaction to the then-popular
portal applications called My Netscape, My Yahoo!, and
My Dejanews.1

In that form, MyLibrary was a monolithic turnkey
application. Librarians were expected to use the admin-
istrative interface to organize information resources into
three distinct groups: databases, electronic texts, and
library links (services). Each item in each group was
expected to be associated with one or more discipline
terms. Patrons were expected to come to the system,
register, select a discipline, and use the databases, texts,
and library links to do library research. Patrons had
three additional functions at their disposal. The first
was the ability to add “personal” links—bookmarks to
their favorite websites. Second, they had the ability to

select multiple disciplines and thus refine the number
of resources associated with “their” page. Finally, and
to a small degree, patrons had the ability to change the
graphic design of the page. Because of these customizable
features and its implementation at NCSU Libraries, the
system was officially called MyLibrary@NCState.

MyLibrary@NCState was packaged and distrib-
uted as open-source software, a newly coined term
at that time. It was subsequently downloaded and
installed in roughly two dozen libraries across the
world. Some of these libraries used it in exactly the man-
ner it was designed, and some of them are still acces-
sible today.2 Other libraries used parts and pieces of the
system to build their own applications. For example,
the OpenUniversity used only the underlying database
structure.3 On the other hand, Los Alamos National
Laboratory used to MyLibrary@NCState concept and
completely re-wrote the Perl modules.4

 More importantly, the concept of MyLibrary—a user-
driven, customizable interface to sets of library collec-
tions and services—became very popular. MyLibrary-like
applications sprang up all over the library landscape.
These implementations did not use the Perl modules and
scripts written under the MyLibrary@NCState rubric, but
they did organize content in an underlying database and
allowed patrons to mix and match the content for their
specific purposes.5

As a turnkey application, MyLibrary@NCState func-
tioned correctly. It did not crash and it did not output
invalid data. At the same time, MyLibrary@NCState
did not fare very well when it came to usability tests.
For example, Gibbons describes how the usability of
MyLibrary was improved to meet the needs of course
offerings.6 In another article, Brantley describes how
users had difficulty “understanding the discipline-spe-
cific nature” of MyLibrary@NCState.7

Its installation process was nonstandard and therefore
difficult to implement. As written, MyLibrary@NCState
was difficult to extend and enhance, and thus it did not
truly benefit from its open-source nature. Data entry was
tedious and for this reason its content was difficult to
initialize and maintain. The idea of actively customizing
a user interface was foreign to many users. People do not
take an active role in customizing their user interfaces.
They accept the defaults or unconsciously expect the
user interface to adapt to their needs.8 For all these rea-
sons, MyLibrary@NCState’s popularity lasted about five
years, but for many of the reasons outlined previously,
the concept of MyLibrary still seems viable.

The balance of this article describes two things: (1) how
the current implementation of MyLibrary has evolved
beyond the turnkey nature of MyLibrary@NCState,
and (2) how the “new and improved” MyLibrary has
been and can be used to create a number of digital library
applications.

Eric Lease morgan is head of the Digital Access and
Information Architecture Department, hesburgh Libraries,
University of Notre Dame, Indiana.

mYLiBRaRY: a DiGitaL LiBRaRY FRamEwoRK anD tooLKit | moRGan 13

n MyLibrary, relationships, and facet/
term combinations

More than anything else, MyLibrary is intended to pro-
vide a framework for creating relationships between
information resources and people. Most of the time
these information resources are the traditional things
of libraries such as books, journals, indexes, catalogs,
manuscripts, and photographs. The people of MyLibrary
are patrons and librarians. Relationships can be drawn
between information resources and people through the
use of facet/term combinations—a locally defined and
institution-specific controlled vocabulary.

Information resources and people can be described in
similar fashions. Resources, for example, are described
with subjects. They are described according to their phys-
ical format and function. Patrons and librarians focus
much of their energies in specific subjects: “I am major-
ing in philosophy.” Sometimes people focus their atten-
tion on specific formats: “I need a journal article on . . .”
Sometimes people are interested in particular functions: “I
need a definition for . . .” People can belong to particular
audiences and they might want to use audience-specific
resources: “These resources are particularly useful for
students in GEOG 203.”

In our increasingly networked environment, it is just
as important to create relationships between people as it
is to create relationships between information resources
and patrons. Librarians are not seen as the only author-
ity on data and information. The opinions of one’s peers
play an important role too. Users want to read reviews,
rank items according to various weights, and make deci-
sions based on the thoughts of people like them. Through
facet/term combinations applied to users, this is possible.
Moreover, since users do not visit libraries as often as
they used to, librarians need to figure out ways of staying
in touch with their populations. By applying facet/term
combinations to librarians as well as users, the librarians
can know who their users are and users can easily iden-
tify subject experts.

Intended for use as the framework for a controlled
vocabulary, the facet/term combinations of MyLibrary
give the librarian and developer an opportunity to
describe and relate the primary components of librar-
ies—information resources and people. Through these
facet/term combinations, conceptual links can be created
between information resources and users, between users
and librarians, and between librarians and resources.
After creating a set of facet/term combinations, the
librarian and developer can address increasingly popular
desires such as but not limited to:

n As a librarian, this is the set of resources
I curate . . .

n Because you are in this class, you might want

to use . . .
n Here is a list of all the encyclopedias on the

topic of . . .
n Here is a list of patrons who use the resources

I curate . . .
n Here is a list of the full-text article indexes . . .
n Here is a list of articles on . . .
n The library owns the following special

collections . . .
n These special collections can be used for

this class . . .
n Other people in this class have also used . . .
n Other people like you have used . . .
n Recommended resources for this subject are . . .
n Resources for this subject are . . .
n The subject-specific librarian is . . .

To be able to address these issues, the librarian and the
developer first create sets of facet/term combinations and
then assign one or more of them to information resources,
patrons, and/or librarians. After the assignments have
been made, lists of relevant MyLibrary objects (informa-
tion resources or people) can be generated by specify-
ing—“joining” in relational database parlance—facet/
term combinations held in common between the objects.
For example, if many information resources, patrons, and
librarians were classified using a Subjects/Astronomy
facet/term combination, then the librarian and devel-
oper can create a list of astronomy-related resources
for patrons, a list of astronomy-interested patrons for
librarians, and list of astronomy-responsible librarians
for patrons.

n MyLibrary facets and terms

MyLibrary facets are intended to be the headings for
very broad categories. MyLibrary terms are expected to
denote examples of the facets. Facet/term combinations
are expected but not required to be defined for every
MyLibrary implementation. Every librarian and devel-
oper who uses MyLibrary is expected to define his or
her own set of facet/term combinations. In the form of a
simplified entity-relationship diagram, figure 1 illustrates
how the relationships between information resources and
people are modeled in MyLibrary.

An easy-to-understand facet might be Formats denot-
ing the physical manifestation of an information resource.
Terms associated with a Formats facet might include
Books, Manuscripts, Journals, Microforms, Articles,
Maps, Pictures, Movies, or Datasets. Given just about any
information resource, a Formats facet/term combination
can be assigned to it. For example, a library that owns
the Encyclopaedia Britannica might “catalog” it with the

14 inFoRmation tEcHnoLoGY anD LiBRaRiEs | sEptEmBER 2008

Formats/Books facet/term combination:

Title—Encyclopaedia Britannica
Facet/Term—Formats/Books

Another easy-to-understand facet might be called
Research Tools, denoting things used to find data and
information. Example terms might include Dictionaries,
Thesauri, Manuals, Journal indexes, Library catalogs,
Internet indexes, Encyclopedias, Atlases, or Almanacs.
Continuing with the example above, Encyclopaedia
Britannica might have an additional facet/term combina-
tion assigned to it:

Title—Encyclopaedia Britannica
Facet/Term—Formats/Books
Facet/Term—Research tools/Encyclopedias

An Audience facet might be created to denote
classes of users. In an academic library, possible Terms
might include Freshman, Sophomores, Juniors, Seniors,
Graduate students, Instructors, Faculty, and Staff. Using
a different information resource—say, Dissertation
Abstracts—we might come up with a different set of
facet/term combinations:

Title—Dissertation Abstracts
Facet/term—Research tools/Bibliographic indexes
Facet/term—Audiences/Graduate students

Using MyLibrary’s facet/term combinations, it is
almost trivial to create an authorities list. An Authors
facet can be created to denote the creators of works.
Specific names can be used as terms. Similarly, there
might be a need or desire to include genre headings.
Consequently, The Adventures of Huckleberry Finn might
be described like this:

Title—The Adventures of Huckleberry Finn
Facet/term—Audiences/Adolescents
Facet/term—Authors/Mark Twain
Facet/term—Formats/Books
Facet/term—Genre/Coming of age stories
Facet/term—Genre/Novels

n MyLibrary objects

Facet/term combinations are used to describe and create
relationships between MyLibrary objects. These objects
include information resources and people, and the people
consist of users and librarians. The idea of facet/term
combinations has been described above. This section
describes the MyLibrary objects—information resources
and people—in greater detail.

information resources

Information resources are the traditional information-

carrying “things” of a library. Typically they include
books, journals, articles, manuscripts, indexes, catalogs,
finding aids, etc. In order to organize and increase access
to these materials, libraries systematically describe col-
lections using rigorous cataloging procedures. With the
advent of ubiquitous computing and the Internet, at
least two things have happened regarding the “things
of a library.” First, they are increasingly less biblio-
graphic in nature. While the number of books, journals,
and articles is certainly not decreasing, the number of
conference presentations, simulations, images, sounds,
movies, and data sets is multiplying at an astounding
rate. Second, because of this additional content, the
traditional rigorous cataloging procedures of librari-
anship do not scale to the amount of work that needs
to be done. Dublin Core metadata elements were cre-
ated to address these problems. Facet/term combina-
tions form the foundation for creating simple but local
controlled vocabularies. Facet/term combinations plus
Dublin Core metadata elements plus a number of other
attributes brought along from MyLibrary@NCState for
backwards compatibility are used to describe informa-
tion resource objects in MyLibrary.

attributes
A few things ought to be noted about some of the
MyLibrary attributes. First, many of the Dublin Core ele-
ments can be duplicated with facet/term combinations.
The prime candidates are elements that can be expressed
as database many-to-many relationships. The Dublin
Core element called creator is an excellent example. Any

Figure 1. Simplified MyLibrary entity-relationship diagram. Facets
have a one-to-many relationship with terms. Terms have a many-
to-many relationship with resources, patrons, and librarians.
After defining sets of facet/term combinations, the MyLibrary API
allows librarians and developers to build interconnections between
resources, patrons, and librarians.

mYLiBRaRY: a DiGitaL LiBRaRY FRamEwoRK anD tooLKit | moRGan 15

single information resource may have many creators,
and any creator may be associated with many resources.
Librarians and developers who use MyLibrary are able to
place creator information in an attribute of a MyLibrary
resource object and/or in a facet/term combination.
The former usage is similar to traditional library catalog-
ing technique and consequently requires additional over-
head for editing records. The application of facet/term
combinations makes it much easier to maintain database
integrity as well as create browsable lists.

Just like creators, subjects might be better imple-
mented as facet/term combinations, and the MyLibrary
subject attribute might be used as a placeholder for
keywords or non-controlled vocabulary terms. Each
MyLibrary resource object might have multiple sub-
jects. Using the facet/term approach, this is no prob-
lem to implement. Using the Dublin Core subject field
approach, this is challenging, since the field is not
repeatable. To circumvent this, librarians and develop-
ers are encouraged to delimit subject term values with
predefined characters (such as “|”). Upon indexing or
display, the subject attribute can be parsed into multiple
values.

identifiers
MyLibrary resource objects possess three distinct types
of identifiers, and each has it own explicit use. The first
is the MyLibrary resource identifier, which is a relational
database key. It is non-assignable and non-editable by
librarians or developers. It is an internal value used to
maintain relational database integrity.

The second type of MyLibrary resource identifier is
called the fkey, and it is used to denote a foreign key. This
attribute is primarily intended to contain the value of
an identifier from a remote information system like the
001 field of a MARC record. A better example includes
the harvesting of records from OAI data repositories.
Each record in each OAI repository has an Internet-wide
unique identifier. This value is not a URL, but usually a
combination of characters and numbers analogous to the
001 field of a MARC record. Each repository may also
implement a concept called “sets,” and each record might
belong to multiple sets. When harvesting from a reposi-
tory, the librarian and developer can save the OAI iden-
tifier as an fkey value, and when the same record from
an alternative set is discovered, the associated resource
object can be updated instead of duplicated.

The third type of identifier are Resource::Location
objects. They are primarily intended for but not limited
to URLs. Unlike all of the other resource attributes,
Resource::Location objects are intended to have many
values because information resources have many loca-
tions. For example, a library might have a printed version
of The Adventures of Huckleberry Finn, and its location is
denoted by a call number. A library might also have an

electronic version, and its location is a URL. An online
bibliographic database might be located at a particular
URL, but its locally developed help text might be located
at a different URL. Each Resource::Location object has
three qualities: (1) a key, (2) a type, and (3) a value. The
key is an internal relational database identifier. The type
is an institution-defined value denoting the kind of loca-
tion. Examples might include primary URL, help text
URL, call number, local file name, and ISBN or ISSN. The
value is an example of the type, and, in the case of Dublin
Core elements, might very well be the identifier. Using
MyLibrary Resource::Location objects, single information
resources can be displayed and multiple locations can be
associated with them.

Library services
Think creatively regarding the definition of resource
objects. Think library services as well as books, journals,
and databases.

Libraries are about more than collections. They are
also about services applied against those collections.
Libraries want to promote their services just as much as
they want to promote access to bibliographic indexes,
special collections, and the wealth of monographs. These
services include bibliographic and information literacy
sessions, circulation services (such as interlibrary loan,
item recalls, renewals, or document delivery), library
tours, one-on-one reference consultations, and online
chats.

Each of these services has a title, a description,
and probably a URL where details can be read online.
MyLibrary resource objects provide a means to embody
this information in a concise package. All that is miss-
ing are facet/term combinations to relate them to other
information resources or people. Consider an Audience
facet. Putting things on reserve is something of inter-
est to instructors. Consider an Audience term called
Instructors. Assign an Audience/Instructors facet/term
combination to instructions for putting things on reserve.
Things put on reserve are intended for use by students.
Again, consider assigning something like an Audience/
Students facet/term combination to instructions for using
the reserve book room.

people—patrons and librarians
MyLibrary includes two types of objects representing
people: patrons and librarians. Like information resource
objects, librarian and patron objects are characterized
using a number of attributes plus facet/term combina-
tions. On one level, the patron attributes are simple and
rudimentary only including things like first name, last
name, username, password, e-mail address, URL, and
image. This type of information was explicitly designed
to map to the FOAF (Friend of a Friend) architecture
in the hopes of future compatibility. Patron objects also

16 inFoRmation tEcHnoLoGY anD LiBRaRiEs | sEptEmBER 2008

include attributes for things like last date visited and total
number of visits. This information forms the basis for
potential What’s New? functionality. The patron object
also includes functionality to record personal links for
bookmarking features. The MyLibrary librarian object is
even simpler than the patron object since it only includes
attributes for name, e-mail address, and URL.

Just like the MyLibrary information resource objects,
both the patron objects and the librarian objects can
be mapped to facet/term combinations. Just as MLA
Bibliography might be “cataloged” using a Subjects/
English literature facet/term combination, a patron or
librarian object can be “cataloged” in the same way. Once
these sorts of relationships are established, recommenda-
tions can begin to take shape. Once patrons start book-
marking and associating particular resources and services
to their identity, the system can take the next step and
address things such as “People like you also used . . . ”
or “Popular resources in this area are . . .” Moreover, once
facet/term combinations are associated with people,
then relationships between people can be created and
the system can answer statements such as “Other people
interested in this topic include . . .” or “The patrons who
are interested in this subject are . . .”

Establishing facet/term combinations for people is
not as difficult as it may seem at first. In an academic
library, much of this information can be gleaned from
human resources data or the institution’s registrar office.
Libraries probably already get this information in one
shape or another to populate their integrated library
system circulation module. At the very least, this infor-
mation includes a first name, a last name, and a unique
institution identifier (possibly a username). Given this
information, the librarian and developer could query the
institution’s directory services to discover institutional
department and/or major field of study. Just as this
information is loaded into the integrated library system
to support borrowing, it can be loaded into a MyLibrary
instance. Each department or major can then be mapped
to facet/term combinations.

Privacy is a real issue with the inclusion of patron
information in a MyLibrary instance. It should be taken
very seriously. The use of MyLibrary does not assume the
inclusion of patron information; it is more than possible
to use MyLibrary and not have it contain any information
about people. On the other hand, without this informa-
tion a library prevents itself from providing the sort of
services increasingly expected by its patrons. A discus-
sion of the professional ethics of providing personalized
services to library users in a computer-networked envi-
ronment is beyond the scope of this article. Each library
must weigh for itself the strengths, weaknesses, advan-
tages, and threats of using information about patrons to
provide individualized services.

n Combining MyLibrary with other
“toolboxes”

As a framework or toolbox, MyLibrary is intended to
support only certain aspects of a digital library, namely,
the collection of content, information about people, and a
means of making relationships between them. MyLibrary
is not intended to be an “integrated library system.” It
has no acquisitions module. It has no circulation mod-
ule. It includes the only the most basic functionality
for searching. Instead, librarians and developers are
expected to combine MyLibrary with other tools to fulfill
these functions.

For example, acquisitions functionality can be
implemented by harvesting OAI content. By combin-
ing MyLibrary with another set of Perl modules called
Net::OAI::Harvester, librarians and developers can
import OAI-based content into a MyLibrary instance.9
Feed Net::OAI::Harvester an OAI root URL, and it will
systematically harvest remote metadata in any number of
metadata formats. Since Dublin Core metadata is required
of all OAI data repositories, and since MyLibrary sup-
ports a one-to-one mapping to Dublin Core elements, it
is trivial to create MyLibrary resource objects based on
each of the harvested records. Appendix A illustrates a
simple yet complete OAI acquisitions application. It har-
vests journal article metadata from the Directory of Open
Access Journals.

Just about any bibliographic metadata format can
be mapped to Dublin Core. Examples include MARC,
MARCXML, MODS, EAD, and TEI. To get content in
these forms into a MyLibrary instance, the librarian and
developer need to write a program reading bibliographic
data, parsing out the desired information, and saving it
to MyLibrary. Considering MARC data, the venerable
Perl module called MARC::Record could be used to read
and parse the data.10 The other data formats are XML-
based, and a Perl-based application supporting XSTL or
XPath could be used to read and parse the data. In all of
these cases the content of the MyLibrary instance should
be considered brief and the fkey value might point to
the original file on the local file system. Such MyLibrary
resource objects are useful for syndication, search result
displays, or browsable lists. If more detail is required,
then the brief records can point to the full metadata
through the fkey value.

MyLibrary is not intended to support search. That is
because search is best supported not by a database but by
an indexer.11 There are myriad indexers available. Some of
them include Swish-e, KinoSearch, Zebra, and Lucene.12
To search the content of a MyLibrary instance, librarians
and developers are expected to write reports against
the instance and use them as the content for indexing.
Appendix B illustrates a rudimentary but complete pro-

mYLiBRaRY: a DiGitaL LiBRaRY FRamEwoRK anD tooLKit | moRGan 17

gram creating a KinoSearch index against a MyLibrary
instance. Once the index is created, librarians and devel-
opers are expected to write interfaces to search the index.
Appendix C illustrates one searching technique: get a
query as input, search the index, return a record’s ID
value, lookup the record in MyLibrary, display.

In summary, MyLibrary first defines a number funda-
mental library objects (information resources, people, and
a controlled vocabulary). It then supports a Perl-based
application programmer interface (API) for doing input/
output against these objects. The input can be garnered
from any number of streams—manual data entry, tab-
delimited text files, MARC or XML files, OAI, etc. The
output can be XML files, RSS or Atom feeds, OAI, HTML
subject pages, e-mail messages, or PDF files.

n Production and demonstration
applications

A number of diverse applications have been created with
MyLibrary. Some of them are production services. Some
of them are not fully developed and only exist to dem-
onstrate the possibilities. This section briefly describes a
number of them.

alex catalogue of Electronic text

The Alex Catalogue of Electronic Text is a collection of
just less than 14,000 public-domain documents from
American literature, English literature, and Western
philosophy. Much of the content comes from Project
Gutenberg, but it also includes content from the defunct
Eris Project of Virginia Tech and the Internet Wiretap
Archive. Each MyLibrary resource object includes as
much Dublin Core data as possible. The description
attribute of each MyLibrary resources includes not an
abstract of the electronic text, but an RDF/XML ver-
sion of the original text. A report was written against
the MyLibrary instance that saves the RDF/XML to the
local file system. These files were then indexed with an
open-source indexer called Zebra, and access to the index
was provided through a Web Services–based protocol
called SRU (Search/Retrieve via URL). Consequently,
the catalogue is full-text searchable as well as searchable
via title, creator, and subject. The contents of the subject
fields were computed by analyzing each document and
extracting statistically significant words. The searchable
interface supports a Did You Mean? service by compar-
ing search terms to alternative spellings and a WordNet
thesaurus. The Catalogue’s title and creator browsable
lists are static HTML files built by a script written against
the underlying MyLibrary instance. Finally, links to all of
the documents and their subjects have been uploaded to

Del.icio.us. To facilitate this, a script was written against
the database extracting all the titles, their creators, and
subjects (“tags”). These things were then sent to Del.icio
.us via a Perl module implementing the Del.icio.us API.

article index

The Directory of Open Access Journals includes an OAI
interface to its journal titles as well as some of its articles.
The Article Index system harvested the article metadata
and saved it to a MyLibrary instance. Along the way,
journal titles and publishers were saved to underlying
facet/term combinations and linked to each article. This
enabled the creation of browsable lists via publisher and
source. The content of the database was indexed using
KinoSearch and made accessible via a Perl module written
to implement SRU. Search results are displayed in a brief
format. Details are available via a simple Asynchronous
JavaScript and XML (AJAX-y) link. Appendixes A, B, and
C illustrate the core of this application.

catholic Research Resources alliance

The Catholic Research Resources Alliance (CRRA) is a
“portal” intended to highlight rare and unique materials
of interest to Catholic scholars. Much of this content exists
in archives. Archives use an XML format called EAD to
describe their holdings. The CRRA provides a mechanism
for ingesting these EAD files, parsing out controlled vocab-
ularies, populating facet/term combinations accordingly,
full-text indexing the EAD, and supporting a searchable/
browsable interface to the entire content via SRU. The
CRRA also supports ingesting MARC records as well as
getting its input from online data-entry forms. Reports are
written against the underlying MyLibrary instance allow-
ing the CRRA’s content to be accessible via OAI.

Facebook

A Facebook application has been written against the
MyLibrary data of the Hesburgh Libraries University of
Notre Dame’s database-driven website. After Facebook
users load the application into their profile, they are
presented with a set of default recommended resources.
The user then has the option to select a different set of
resources based on subject terms presented in a pop-up
menu. The resulting list of resources is then saved to the
user’s profile pane, giving easy access to the pertinent
databases and indexes of his or her selected subject.

Library catalog

MyLibrary has been used to create a demonstration library
catalog. About 300,000 MARC records were downloaded

18 inFoRmation tEcHnoLoGY anD LiBRaRiEs | sEptEmBER 2008

from the Library of Congress. A program was written that
reads each MARC record, crosswalks it to Dublin Core,
and creates MyLibrary resource objects accordingly. Each
MARC record is saved as an individual file on the file
system. The whole collection is indexed with KinoSearch,
and an SRU interface provides access to the index. As
search results are returned, the existence of ISBN num-
bers is checked. If found, cover art and user reviews are
retrieved and displayed from Amazon. Each record is dis-
played in a brief format, but links to a fully tagged format
is available as well as MARCXML and MODS formats.
Each record is also associated with a “Get it for me” link.
Once clicked, the item is essentially checked out to the
user. Each user then has a “bookshelf” link displaying the
items they have borrowed.

Hesburgh Libraries, university of notre Dame’s
database-driven website

The Hesburgh Libraries’ database-driven website is prob-
ably the most extensive MyLibrary application in exis-
tence, and its primary purpose is to support the majority
of the libraries’ website. The system begins with the
integrated library system where much (but not all) of the
library’s website content has been cataloged using tradi-
tional methods. Each item in the catalog destined for the
website has been flagged with a local note denoting such.
Each item’s description has also been enhanced with
facet/term combinations. On a nightly basis, all of the
items destined for the website are exported from the cata-
log as MARC records. On a nightly basis, another script
reads these records and updates a MyLibrary instance.
Reports are written against the instance creating sub-
ject pages, format pages, tool pages, etc., complete with
descriptions, recommendations, and links to associated
librarians. Some information resources on the website are
not deemed worthy of a record in the catalog. For these
items, a manual data-entry form was created allowing
bibliographers and subject specialist librarians to supple-
ment the website’s content. These resources are seam-
lessly integrated into the website along with the resources
from the catalog. To facilitate search, reports are written
against the MyLibrary instance and fed to Swish-e. The
resulting index is then supplemented with the content of
static Web pages to support Search This Site functionality.
Using this database-driven and MyLibrary-based system,
the content of the libraries’ website has many fewer bro-
ken links because the links are all centrally maintained.
The site also sports a common look and feel, making
it easy for users to know where they are located in the
system. This process also eliminates the need for selec-
tors and subject specialist librarians to know any HTML.
They can focus on content and the system can focus on
presentation.

n Future directions and conclusion

The MyLibrary modules work in the manner in which
they were intended, and they continue to be distributed
and supported as open-source software, but software is
never complete.

MyLibrary is available from CPAN (Comprehensive
Perl Archive Network). It is supported by a website com-
plete with voluminous documentation, sample applica-
tions, access to a CVS repository, blog commentaries, and
a mailing list with about 150 subscribers.13 Yet despite
the support, use of MyLibrary outside the University of
Notre Dame has been underwhelming. I assume this is
true because the number of Perl programmers in libraries
is shrinking as the number other programming languages
(PHP, Python, Ruby, Java, etc.) grows. The modularity of
the system may also be a factor since most of the library
profession can not write a computer program and there-
fore will have a difficult time understanding how to put
MyLibrary into practical use. The idea of facet/term
combinations used to describe information resources
as well as people may be off-putting. Finally, because
MyLibrary requires an underlying database to operate,
the normal Perl installation process (perl Makefile.PL;
make; make test; make install) can only be done after a
bit of pre-installation processing. This is possibly another
impediment to adoption—the installation process is a bit
unusual.

Despite these issues, MyLibrary works very well for
the University of Notre Dame, and a number of improve-
ments are planned. First, the underlying database con-
tains a table for user reviews, and a Perl module needs
to be written allowing input/output against these tables.
Similarly, MyLibrary presently includes tables for keep-
ing track of how often a particular resource is used and by
whom, but there is no module to update the table. Future
work will enhance this statistics table and implement the
statistics module. Finally—and most importantly—work
will be done to make it easy to do input/output against a
MyLibrary instance through a REST-ful (Representational
State Transfer) interface. As defined by REST, this inter-
face will exploit the four transfer methods of HTTP (GET,
POST, PUT, and DELETE) to retrieve, create, edit, and
remove MyLibrary objects from the underlying database.
By exploiting REST-ful computing techniques, at least
two things will be enabled. First, application program-
mers will be able to use their favorite computer language
to maintain a MyLibrary instance. There will be no need
to know Perl; REST is computer-language indepen-
dent. Second, through the use of REST-ful computing
MyLibrary content will be more easily syndicated. For
example, the output of a REST-ful MyLibrary interface
could be manifested in many flavors of XML. Atom
comes to mind, but an RDF/XML representation may be

mYLiBRaRY: a DiGitaL LiBRaRY FRamEwoRK anD tooLKit | moRGan 19

more expressive. The output of a REST-ful interface to
MyLibrary could also be manifested as a JSON (Javascript
Object Notation) data structure, making it easier to inte-
grate MyLibrary content in AJAX-y interfaces.

As more and more library collections and services
are manifested in a computer-networked environment,
the need to provide these collections and services in new
and different ways increases. MyLibrary is an attempt to
address this issue, and it has met with qualified success.

Acknowledgments

An enormous debt of gratitude goes to Rob Fox of the
Hesburgh Libraries, University of Notre Dame for writ-
ing the bulk of the MyLibrary Perl modules. Rob and I
sat down together for a couple days in 2003 to learn about
object-oriented Perl programing techniques from Ed
Summers (now working at the Library of Congress). We
then coupled that experience with the needs and desires
of the libraries to articulate and design MyLibrary as it is
today. While I wrote bits and pieces of the modules and
used them to write many applications, Rob was the per-
son who really got his hands dirty.

References and Notes

 1. Keith Morgan and Tripp Reade, “Pioneering Portals:
MyLibrary@NCState,” Information Technology and Libraries 19,
no. 4 (Dec. 2000): 191–98.

 2. The author has identified at least four MyLibrary@
NCState implementations still up and running from across the
world, including The Wellington City Libraries in New Zea-
land, www.wcl.govt.nz/mylibrary (accessed Feb. 19, 2008); the
Buswell Library Electronic Access Center of Wheaton College,
http://libweb.wheaton.edu/mylibrary (accessed Feb. 19, 2008);
the Biblioteca Mario Rostoni at the Universita Carlo Cattaneo,
http://mylibrary.liuc.it/mylibrary (accessed Feb. 19, 2008); and
Auburn University, http://mylibrary.auburn.edu (accessed Feb.
19, 2008).

 3. Anne Ramsden, James McNulty, Fiona Durham, Helen
Clough, and Nicola Dowson created MyOpenLibrary for the
OpenUniversity in the United Kingdom. “MyOpenLibrary
is an online personalised library system developed for Open
University students and staff. Every individual user can have
a virtual library ‘shelf’ or space which is tailored to meet their
particular needs. The system is based on the MyLibrary soft-
ware originally developed at North Carolina State University
and now supported at Notre Dame University. The software
has a simple basic interface, groups resources under clear
headings, and provides a tick box facility for selecting and
removing resources. Users sign in because it is a personalised
service, but then they can customise the colour and settings of
their page according to need, and if they are familiar with the
Internet, they add their own personal favourite links. There is
a quick search facility for searching individual databases and

Internet search engines. The system is currently being used by
20 Open University courses and this is expected to increase
year on year. For more information see http://myopenlibrary.
open.ac.uk/.” MyOpenLibrary includes 80,768 patrons (79%
of the total student population of OpenUniversity), 111 dis-
ciplines, 12,731 e-books, 500 databases, and 38,708 journals.
From personal correspondence between the author and James
McNulty (Feb. 19, 2008).

 4. “The LANL implementation of MyLibrary @ LANL is an
object oriented redesign of the Mylibrary source code created
by Eric Lease Morgan of North Carolina State University. The
code was designed by two summer students Andres Monroy-
Hernandez and Cesar Ruiz-Meraz from Monterrey, Mexico.
The code is currently maintained by Mariella di Giacomo and
Ming Yu.” From http://library.lanl.gov/lww/mylibweb.htm
(accessed Feb. 19, 2008).

 5. A search against Google for “mylibrary” returns myriad
results, many of which are MyLibrary-like applications and
services. Representative samples include MyLib of Malaysia’s
National Digital Library, www.mylib.com.my (accessed Feb.
19, 2008); My Library of Hennepin County Library, www.hclib
.org/pub/ipac/MyLibrary.cfm (accessed Feb. 19, 2008); and
MyLibrary of Coastal Carolina University, www.coastal.edu/
library/mylibrary.html (accessed Feb. 19, 2008).

 6. Susan Gibbons, “Building Upon the MyLibrary Concept to
Better Meet the Information Needs of College Students,” D-Lib
Magazine 9, no. 3 (Mar. 2003), www.dlib.org/dlib/march03/
gibbons/03gibbons.html (accessed Feb. 19, 2008).

 7. Steve Brantley, Annie Armstrong, and Krystal M. Lewis,
“Usability Testing of a Customizable Library Web Portal,” Col-
lege and Research Libraries 67, no. 2 (Mar. 2006): 146–63, www.ala
.org/ala/acrl/acrlpubs/crljournal/backissues2006a/marcha/
Brantley06.pdf (accessed Feb. 19, 2008).

 8. Udi Manber, Ash Patel, and John Robison, “Experience
with personalization on Yahoo!” Communications of the ACM 43,
no. 8 (Aug. 2000): 35–39.

 9. Net::OAI::Harvester, http://search.cpan.org/dist/OAI
-Harvester (accessed Feb. 19, 2008).

 10. MARC::Record, http://search.cpan.org/dist/MARC
-Record (accessed Feb. 19, 2008).

 11. Search is a function best supported by an indexer, not a
relational database. Relational databases are tools for organizing
and maintaining data. Through the process of normalization,
relational databases store data unambiguously and efficiently.
Because relational databases store their information in tables,
records, and fields, it is necessary to specify the tables, records,
and fields when querying a database. This requires the user
to know the structure of the database. Moreover, standard
relational databases do not support full-text searching nor
relevance-ranked output. Indexers excel at search. Given a
stream of documents, indexers parse tokens (words) and associ-
ate them with document identifiers. Searches against indexes
return document identifiers and provide the means to retrieve
the documents without the necessary knowledge of the index’s
structure. Indexers are weak at data maintenance. In a well-
designed database, authority terms can be updated in a single
location and reflected throughout the database. Indexers do not
support such functionality. Databases and indexers are two sides
of the same information retrieval coin. Together they form the
technological core of library automation.

20 inFoRmation tEcHnoLoGY anD LiBRaRiEs | sEptEmBER 2008

 12. There are a growing number of open-source indexers
available on the Web, including Swish-e, http://swish-e.org
(accessed Feb. 19, 2008); KinoSearch, www.kinosearch.com/
kinosearch (accessed Feb. 2008); Zebra, http://indexdata.com/

zebra (accessed Feb. 19, 2008); and Lucene, http://lucene
.apache.org (accessed Feb. 19, 2008).

 13. The canonical home page for MyLibrary version 3.x is
http://mylibrary.library.nd.edu (accessed Feb. 19, 2008).

APPENDIx A

harvest DOAJ articles into a MyLibrary instance

require

use MyLibrary::Core;

use Net::OAI::Harvester;

define

use constant DOAJ => ‘http://www.doaj.org/oai.article’; # the OAI repository

MyLibrary::Config->instance(‘articles’); # the MyLibrary instance

create a facet called Formats

$facet = MyLibrary::Facet->new;

$facet->facet_name(‘Formats’);

$facet->facet_note(‘Types of physical items embodying information.’);

$facet->commit;

$formatID = $facet->facet_id;

create an associated term called Articles

$term = MyLibrary::Term->new;

$term->term_name(‘Articles’);

$term->term_note(‘Short, scholarly essays.’);

$term->facet_id($formatID);

$term->commit;

$articleID = $term->term_id;

create a location type called URL

$location_type = MyLibrary::Resource::Location::Type->new;

$location_type->name(‘URL’);

$location_type->description(‘The location of an Internet resource.’);

$location_type->commit;

$location_type_id = $location_type->location_type_id;

create a harvester and loop through each OAI set

mYLiBRaRY: a DiGitaL LiBRaRY FRamEwoRK anD tooLKit | moRGan 21

$harvester = Net::OAI::Harvester->new(‘baseURL’ => DOAJ);

$sets = $harvester->listSets;

foreach ($sets->setSpecs) {

 # get each record in this set and process it

 $records = $harvester->listAllRecords(metadataPrefix => ‘oai_dc’, set => $_);

 while ($record = $records->next) {

 # map the OAI metadata to MyLibrary attributes

 $FKey = $record->header->identifier;

 $metadata = $record->metadata;

 $name = $metadata->title;

 @creators = $metadata->creator;

 $note = $metadata->description;

 $publisher = $metadata->publisher; next if (! $publisher);

 $location = $metadata->identifier; next if (! $location);

 $date = $metadata->date;

 $source = $metadata->source;

 @subjects = $metadata->subject;

 # create and commit a MyLibrary resource

 $resource = MyLibrary::Resource->new;

 $resource->fkey($FKey);

 $resource->name($name);

 $creator = ‘’; foreach (@creators) { $creator .= “$_|” }

 $resource->creator($creator);

 $resource->note($note);

 $resource->publisher($publisher);

 $resource->source($source);

 $resource->date($date);

 $subject = ‘’; foreach (@subjects) { $subject .= “$_|” }

 $resource->subject($subject);

 $resource->related_terms(new => [$articleID]);

 $resource->add_location(location => $location, location_type => $location_type_id);

 $resource->commit;

 }

}

22 inFoRmation tEcHnoLoGY anD LiBRaRiEs | sEptEmBER 2008

done

exit;

APPENDIx B

index MyLibrary data with KinoSearch

require

use KinoSearch::InvIndexer;

use KinoSearch::Analysis::PolyAnalyzer;

use MyLibrary::Core;

define

use constant INDEX => ‘../etc/index’; # location of the index

MyLibrary::Config->instance(‘articles’); # MyLibrary instance to use

initialize the index

$analyzer = KinoSearch::Analysis::PolyAnalyzer->new(language => ‘en’);

$invindexer = KinoSearch::InvIndexer->new(

 invindex => INDEX,

 create => 1,

 analyzer => $analyzer

);

define the index’s fields

$invindexer->spec_field(name => ‘id’);

$invindexer->spec_field(name => ‘title’);

$invindexer->spec_field(name => ‘description’);

$invindexer->spec_field(name => ‘source’);

$invindexer->spec_field(name => ‘publisher’);

$invindexer->spec_field(name => ‘subject’);

$invindexer->spec_field(name => ‘creator’);

get and process each resource

foreach (MyLibrary::Resource->get_ids) {

 # create, fill, and commit a document with content

 my $resource = MyLibrary::Resource->new(id => $_);

 my $doc = $invindexer->new_doc;

 $doc->set_value (id => $resource->id);

mYLiBRaRY: a DiGitaL LiBRaRY FRamEwoRK anD tooLKit | moRGan 23

 $doc->set_value (title => $resource->name) unless (! $resource->name);

 $doc->set_value (source => $resource->source) unless (! $resource->source);

 $doc->set_value (publisher => $resource->publisher) unless (! $resource->publisher);

 $doc->set_value (subject => $resource->subject) unless (! $resource->subject);

 $doc->set_value (creator => $resource->creator) unless (! $resource->creator);

 $doc->set_value (description => $resource->note) unless (! $resource->note);

 $invindexer->add_doc($doc);

}

optimize and done

$invindexer->finish(optimize => 1);

exit;

APPENDIx C

search a KinoSearch index and display content from MyLibrary

require

use KinoSearch::Searcher;

use KinoSearch::Analysis::PolyAnalyzer;

use MyLibrary::Core;

define

use constant INDEX => ‘../etc/index’; # location of the index

MyLibrary::Config->instance(‘articles’); # MyLibrary instance to use

get the query

my $query = shift;

if (! $query) { print “Enter a query. “; chop ($query = <STDIN>)}

open the index

$analyzer = KinoSearch::Analysis::PolyAnalyzer->new(language => ‘en’);

$searcher = KinoSearch::Searcher->new(

 invindex => INDEX,

 analyzer => $analyzer

);

search

$hits = $searcher->search(qq($query));

get the number of hits and display

$total_hits = $hits->total_hits;

24 inFoRmation tEcHnoLoGY anD LiBRaRiEs | sEptEmBER 2008

print “Your query ($query) found $total_hits record(s).\n\n”;

process each search result

while ($hit = $hits->fetch_hit_hashref) {

 # get the MyLibrary resource

 $resource = MyLibrary::Resource->new(id => $hit->{ ‘id’ });

 # extract dublin core elements and display

 print “ id = “ . $resource->id . “\n”;

 print “ name = “ . $resource->name . “\n”;

 print “ date = “ . $resource->date . “\n”;

 print “ note = “ . $resource->note . “\n”;

 print “ creators = “;

 foreach (split /\|/, $resource->creator) { print “$_; “ }

 print “\n”;

 # get related terms and display

 @resource_terms = $resource->related_terms();

 print “ term(s) = “;

 foreach (@resource_terms) {

 $term = MyLibrary::Term->new(id => $_);

 print $term->term_name, “ ($_)”, ‘; ‘;

 }

 print “\n”;

 # get locations (URLs) and display

 @locations = $resource->resource_locations();

 print “ location(s) = “;

 foreach (@locations) { print $_->location, “; “ }

 print “\n\n”;

}

done

exit;

