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Java is growing in appropriateness and usability for high per-
formance computing. With this increasing adoption, issues
relating to combining Java with existing codes in other lan-
guages become more important. The Java Native Interface
(JNI) API is portable but too inconvenient to be used directly
owing to its low-level API. This paper presents Janet – a
highly expressive Java language extension and preprocessing
tool that enables convenient integration of native code with
Java programs. The Janet methodology overcomes some of
the limitations of JNI and generates Java programs that ex-
ecute with little or no degradation despite the flexibility and
generality of the interface.

1. Introduction

In only a few years Java has evolved from a web and
embedded-deviceprogramming language to a powerful
general-purpose framework for numerous applications
on a variety of hardware platforms. It has already
penetrated the enterprise market, is gaining increasing

∗Corresponding author: Piotr Luszczek, Department of Computer
Science, 1122 Volunteer Blvd., Suite 203, Knoxville, TN 37996-
3450, USA. Tel.: +865 974 8295; Fax: +865 974 8296; E-mail:
luszczek@cs.utk.edu.

adoption in the field of scientific computing [1,8,14,20,
22,25], and is even encountering use in system level
programming and real-time systems.

There are multiple reasons for such an interest in Java
technology. The “write once, run anywhere” phrase
has evolved into much more than just a catchword and
in most cases, Java allows applications to run unmod-
ified on different architectures as well as in heteroge-
neous environments.1 Simplicity of the language gives
developers an opportunity to focus on the problem at
hand, rather than syntax nuances and compiler distrac-
tions. Automated memory management helps in avoid-
ing common programming mistakes, thus reducing de-
bugging time. Security concerns are addressed through
the ability of a Virtual Machine to restrict access to un-
derlying operating system facilities. Yet another fea-
ture is dynamic code loading that enables Java byte
code to be downloaded from a network or even to be
generated on-the-fly during program execution.

The performance of modern Java Virtual Machines
is already close to that of native code, and contin-
ues to improve [6,11] over time. Although this most
commonly cited issue of performance is fast becoming
a non-issue, there are still compelling reasons to use
legacy native codes in conjunction with Java. From
the software engineering perspective, reuse of existing
codes with a resulting reduction in design and testing
time is highly desirable. Even for code that is com-
pletely rewritten in Java, an appropriate interface to the
existing version of the software makes the transition to
a new implementation smoother.

The Java Native Interface (JNI) [15,16,18] defines
a platform-independent API for interfacing Java with
native languages such as C/C++ and Fortran. Unfor-
tunately, its level of abstraction is rather low, which
makes JNI error-prone and inconvenient to use, and
results in large codes that are difficult to debug and
maintain. In this paper, we present the Janet (JAva

1The GUI-related Java portability issues rarely apply to high-
performance applications.
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Native ExTensions) project – a language extension that
provides a preprocessing tool and enables convenient
development of native methods and Java interfaces to
legacy codes. Janet facilitates the use of JNI so that
no explicit calls to the JNI API have to be made. Fur-
ther, Janet allows Java and native codes to coexist in
the same source file which contributes significantly to
clarity and readability.

The remainder of this paper is organized as follows:
Section 2 discusses similar projects, while Section 3
provides an overview of JNI. Sections 4, 5, 6, and 7
describe the Janet tool in detail including syntax and
semantics aspects. In Section 8 performance results for
Janet interfaces are presented, including benchmarks
for wrappers to a parallel library called LIP. Finally,
conclusions and future work are discussed in Section 9.

2. Related work

The JCI tool is an automatic Java interface generator
for C language codes [7,21]. As input, the tool accepts
a C header file with declarations of native library func-
tions, and generates JNI wrappers for these functions.
Although such an automated approach is very conve-
nient, the lack of provisions for user input, combined
with substantial semantic differences between Java and
C unavoidably leads to wrappers that do not conform
to the Java programming style, i.e., they are not object
oriented, unsafe in many respects, and use function re-
turn codes rather than exceptions to report erroneous
situations.

The Jaguar project [24] introduces extensions to the
JIT technology and Java bytecode. It bypasses the JNI
layer and enables direct access to the underlying com-
puting platform. This approach is promising as it leads
to much more efficient codes than those employing
JNI. Unfortunately, it also binds the resulting code to
a particular architecture (currently only Intel x86) and
is therefore not very flexible. In contrast, our approach
is solely based on JNI and thus retains a high level of
portability.

The Jalapeño project [12] implements a Java Virtual
Machine written almost entirely in Java itself. Due
to the fact that a VM must be able to access main
memory directly without the usual safety restrictions,
the authors use a special MAGIC class with methods
implemented in machine code. The Jalapeño project
emphasizes high performance rather than portability
and as such is not intended to provide general purpose
support for interfacing Java with native languages.
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Fig. 1. Use of a native library in a Java application.

An alternative way of wrapping legacy code is to use
shared stubs [18]. This technique allows invocation
of arbitrary functions residing in shared libraries and
uses system-level routines for dynamic linking. Such a
technique is, again, platform-dependent and introduces
substantial overheads in native function calls. Nonethe-
less, Janet can be used simultaneously with this ap-
proach as they do not exclude each other.

3. Java Native Interface overview

JNI [15,18] is an Application Programming Inter-
face (API) that allows Java code (running inside a Java
Virtual Machine) to interoperate with applications and
libraries written in other programming languages, such
as C/C++ or Fortran. One of the most important ben-
efits of JNI is that it imposes no restrictions on the
implementation of the underlying Java VM.

JNI allows the implementation of Java methods
which have been declared as native in a class defini-
tion. Figure 1 shows interactions between a Java appli-
cation, the Java VM, JNI and native code in the situation
where native methods serve as an interface between the
Java application and the legacy native library.

The essential feature of JNI is that it allows na-
tive code to have the same functionality as pure Java
code. In particular, it provides means to create, inspect
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(a) array access

JNIEXPORT jint JNICALL

Java_IntArray_sumArray(JNIEnv *env, jobject obj, jintArray arr) {

jint *carr; jint i, sum = 0;

jint len = (*env)->GetArrayLength(env, arr);

if (!(carr = (*env)->GetIntArrayElements(env, arr, NULL))) return 0;

for (i=0; i<len; i++) sum += carr[i];

(*env)->ReleaseIntArrayElements(env, arr, carr, 0);

return sum; }

(b) field access

JNIEXPORT void JNICALL

Java_lip_Lip_maptableFree(JNIEnv *env, jclass cls, Maptable mtab) {

jclass mtc; jfieldID fid; jlong l;

if (!(mtc = (*env)->FindClass(env, "lip/Maptable"))) return;

if (!(fid = (*env)->GetFieldID(env, mtc, "data", "J"))) return;

l = (*env)->GetLongField(env, mtab, fid);

LIP_Maptable_free(l); }

(c) method invocation and exception handling

JNIEXPORT void JNICALL

Java_dummy_method(JNIEnv *env, jobject obj) {

jthrowable exc;

jclass cls = (*env)->GetObjectClass(env, obj);

jmethodID mid = (*env)->GetMethodID(env, cls, "callback", "()V");

if (mid == NULL) return;

(*env)->CallVoidMethod(env, obj, mid);

if (exc = (*env)->ExceptionOccurred(env)) {

jclass newExcCls;

	 JNI_EXCEPTION_DESCRIBE();

	 if (!(newExcCls = (*env)->FindClass(env,

		 	 "java/lang/IllegalArgumentException"))) return;

	 (*env)->ThrowNew(env, newExcCls, "from C code"); }}

(d) synchronization

JNIEXPORT void JNICALL

Java_dummy_foo(JNIEnv *env, jobject obj, jobject bar) {

(*env)->MonitorEnter(env, bar);

native_foo();

(*env)->MonitorRelease(env, bar); }

Fig. 2. Examples of native methods using JNI features.

and modify objects (including arrays), invoke methods,
throw and catch exceptions, synchronize on Java mon-
itors and perform runtime type checking by calling ap-
propriate functions of the JNI API. Several examples
are shown in Fig. 2.

The main problem in using JNI is the fact that it is
much closer to the Java VM than Java language itself,
so its level of abstraction is rather low. This makes
the development process long, inconvenient and error-
prone. Most of the programming mistakes (which are
rather easy to make) in the created interfaces lead to un-
defined behavior at runtime, resulting in hard-to-track
and platform-dependent errors. The following are ex-
amples of such error-prone situations.

– In order to access Java arrays of primitive data
types, native code must invoke a special JNI func-
tion to lock an array and obtain a pointer to it.
When the array is no longer being accessed, an-
other function must be called to release the array.

The JNI specification does not define the behavior
of a program which fails to release an array. In ad-
dition, access functions to arrays of different types
have different names. The use of improper func-
tions causes runtime errors rather than compilation
warnings (see Fig. 2(a)).

– Accesses to fields of Java objects must be per-
formed through opaque field descriptors. To ob-
tain such a descriptor, the user must know not only
the name of the field, but also a signature string
of the field type. Again, native methods compile
with no errors but fail at runtime if the type of the
accessed field has changed. Moreover, JNI pro-
vides separate functions for each type and storage
attribute of a given field (see Fig. 2(b)).

– Invocation of Java methods is even more compli-
cated. Methods are invoked through opaque de-
scriptors that are obtained for a specific method
name and signature. However, the method sig-
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nature depends on the types of all its parameters,
which makes native code even more sensitive to
changes in Java classes on which it depends. As
before, distinct JNI functions are required for in-
vocation of methods with varying return types and
invocation modes, i.e., instance, static, and non-
virtual (see Fig. 2(c)).

– Exceptions that may occur in native methods, e.g.,
as a result of a JNI call that invokes a Java method,
cannot be handled like an ordinary Java exception
and caught by a Java exception handler. Instead, an
explicit query is necessary. This query is manda-
tory since the behavior of subsequent JNI calls is
undefined when there are pending exceptions (see
Fig. 2(c)).

– Lock and unlock operations on Java monitors are
independent of each other, so frequently the latter
is mistakenly omitted at runtime, especially within
exception handling code (see Fig. 2(d)).

4. Overview of Janet

Janet is a Java language extension and preprocessing
tool that enables the convenient development of native
methods and Java interfaces to native code by removing
the need for explicit calls to JNI.

With JNI, the definitions of native methods must be
written in separate source files. In contrast, Janet allows
Java and native source codes to coexist in a single file.2

Moreover, such an embedded native code can directly
perform Java operations such as accessing Java fields
and variables, invocation of Java methods, use of Java
monitors, exception handling, etc. These operations
can be carried out using ordinary Java language syntax
– no cumbersome JNI function calls are required.

Currently, the only native language that is supported
is C. However, due to the open architecture of Janet,
support for other languages may be added with little
effort.

A Janet file is transformed by Janet preprocessor
into Java and native language source files, as shown in
Fig. 3. The translation process separates a native code
from Java code, and inserts appropriate JNI function
invocations. The JNI code, automatically generated for
the user, performs the following operations: it deter-
mines necessary type signatures, chooses JNI functions

2A native code can appear as an implementation of a native
method, or inside newly introduced native statements analogous
in syntax to the synchronized statement.

Janet
Translator

Janet
source file

Java source file native source file(s)

Fig. 3. Janet translation process.

to call, loads Java classes, obtains field and method de-
scriptors, performs array and string lock and release op-
erations, handles and propagates Java exceptions, and
matches monitor operations.

A simple example of the canonical “Hello World”
program that uses Janet (file HelloWorld.janet),
is presented below. This example demonstrates the use
of a single native method whose body is embedded in
Java source code.

class HelloWorld {
native "C" {
#include <stdio.h>
}
public native "C" void display
HelloWorld() {
printf("Hello world!\ n");

}
public static void main
(String[] args) {

}
}
The translation process generates three source files

in this case: the first contains stripped Java source with
only a native method declaration, the second contains
the native method implementation, and the third is an
auxiliary C source file. The first two files are presented
below:

– File HelloWorld.java:
class HelloWorld {
/* . . . code that loads library
goes here . . . */
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public native void displayHello
World();
public static void main(String
args) {
new HelloWorld().displayHello
World();
}

}
– File HelloWorldImpl.c:
#include <janet.h>
#include <stdio.h>
Janet HelloWorld displayHello
World(JNIEnv * janet jnienv,

jobject janet obj)
{
printf(‘‘Hello world!\ n’’);

}
Next, all native source files must be compiled into a

shared libraryHelloWorld (e.g.,libHelloWorld.
so on Linux and Solaris operating systems).

A Java VM will search for libHelloWorld.so
during the initialization of the class HelloWorld (for
brevity, the code for linking the library is not shown).
The name for a library is established by the Janet pre-
processor using the following naming convention – if
the class appears in the default (unnamed) package as
it does in this example, the class name is used as the
library name. Otherwise, the package name (mangled
if necessary, see [15,18]) is used instead. In future re-
leases, we will add more flexibility in assigning names
to native libraries.

The following two sections present several examples
of Java operations (expressions and statements) that are
allowed to appear inside native code (embedded within
back-tick characters, ‘. . .’) and that are transformed
by Janet preprocessor into JNI function invocations.
Up-to-date source code for all the examples as well as
detailed documentation can be obtained from [13].

5. Embedded Java expressions

5.1. Simple expressions

Field access operations belong to the most com-
monly performed JNI operations. Janet simplifies these
operations by allowing Java syntax to be embedded di-
rectly inside the C code. The following example is
taken from the interface to the LIP [5] library:

static native void maptableFree

(Maptable mtab) {
LIP Maptable free(‘mtab.data’);

}
In this example, the C function LIP Maptable

free receives a parameter whose value is fetched from
the data field of an object of Maptable class which
in turn is passed as a parameter to the Java method
maptableFree.

Other Java expressions that are slightly more com-
plicated but also commonly used inside native meth-
ods are method invocations. Consider the following
example:

class C {
int bar(int a, int b) { . . . }
int bar1() { throw new Runtime
Exception(); }
int bar2() { . . . }
native void foo() {
some C routine(‘bar(bar1(),
bar2())’);

}
}
Native method foo contains a Java expression (as

a parameter of some C routine) that contains three
invocations of Java methods. Janet translates these
pieces of code into an appropriate sequence of JNI calls.
What is important in this example is the preservation
of exact Java semantics (see [9] §15.5 and §15.6), e.g.,
in the case when the method bar1 throws an excep-
tion, neither the bar nor bar2 methods are invoked.
In general, the native code generated by Janet guaran-
tees the same evaluation order and precise exception
handling as Java code does.

5.2. Native subexpressions of embedded Java
expressions

Let us consider a situation when the user wants to in-
voke a Java method bar that has to be passed the value
of some native variable as a parameter. Since Java and
native code namespaces are separated by Janet, such an
operation requires the user to specify explicitly that a
given expression references native code’s namespace.
This is done with a #(expr) syntax as in the following
example:

native void foo() {
int i = 0;
‘bar(i, 0)’: /* compilation
error: what ss ‘i’? */
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‘bar(#(i), 0)’; /* OK: ‘i’ comes
from native code side */

}
The Java type of such an embedded subexpression is

inferred from the context (the original native type is not
considered). In the example, Janet casts the expression
to this type before passing the value from the native
method because the first parameter of method bar has
Java type int. In ambiguous cases, the type cast must
be performed explicitly:

class C {
void bar(int i) { . . . }
void bar(boolean b) { . . . }
native void foo() {
int i = 0;
‘bar(#(i))’; /* compile error:
ambiguous */
‘bar((boolean)#(i))’; /* OK */

}
}
Embedded native expressions are not limited to sim-

ple variable accesses as in the above examples. In fact,
they may be fairly complex and may even contain em-
bedded Java expressions. This process of embedding
may be repeated recursively.

5.3. Accessing arrays

Arrays are simple and yet powerful data structures.
They are probably the most commonly used in scientific
codes. A large number of native libraries operate on
arrays and they could be effectively used in Java if an
appropriate interface is provided. For this reason, we
considered it crucial for Janet to provide efficient and
convenient support for operations on Java arrays.

Janet allows embedding Java array access expres-
sions into native code in the same fashion as other ex-
pressions. Consider the following code example of a
native method which computes the sum over elements
of a Java array:

native int sum(int[] arr) {
int i, sum = 0;
for (i = 0; i < ‘arr.length’;
i++) {
sum + = ‘arr[#(i)]’; /* C
variable indexes Java array */

}
‘return sum;’

}

In this example we have two embedded Java expres-
sions: one is the read of the array field length, and
the other performs array access. Note that the array
is indexed using the native variable i, and there is no
type ambiguity as the array index in Java has always
type int. Janet takes advantage here of the fact that
the field length is final. Thus, the JNI routine that
obtains length’s value is invoked only once, even
though the expression that uses it is evaluated multiple
times. Additionally, the array access itself is optimized:
Janet obtains the pointer to the whole array during the
first access, and once it is done, subsequent iterations
are executed without any JNI calls. Finally, the array
pointer is released at the end of the method sum.

Such an array access scenario, although very com-
mon, is still not sufficient. If, for example, one wants to
use a legacy native routine which operates on the array
passed as a pointer argument, the pointer to the Java
array must be obtained explicitly. To solve this prob-
lem, Janet introduces address-fetch operator & which
can be used with arrays and strings.3 As an example,
consider how the sorting routine qsort from the stan-
dard C library can be used in a Java method qsort
(note again separate namespaces for C and Java):

native void qsort(int[] arr) {
jint* ptr;
ptr = ‘&arr’;
qsort(ptr, ‘arr.length’,
sizeof(jint), . . .);

}
The last concern is that Java arrays store platform-

independent primitive data types rather than native
ones, and these are not necessarily the same.4 The &
operator does not perform any type conversion – it sim-
ply exposes the array as it is. If explicit conversion is
desired, the #& operator may be used:

native void polint(float[] xa,
float[] ya, . . .) {
/* assume that polint() accepts
native C float[] */
polint(‘#&xa’, ‘#&ya’, . . .);

}

3Due to JNI limitations, the address-fetch operator & cannot
be used with arrays of reference types, including multidimensional
arrays.

4JNI defines jint, jlong, jboolean, jchar, jbyte,
jshort,jfloat and jdouble as native equivalents of Java prim-
itive data types.
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Table 1
Java to C type mapping for & and #& operators

Java type & operator #& operator

boolean[] jboolean* unsigned char*
byte[] jbyte* signed char*
char[] jchar* unsigned short*
short[] jshort* short*
int[] jint* int*
long[] jlong* long*
float[] jfloat* float*
double[] jdouble* double*
String (UNICODE) const char* (UNICODE) const char* (UTF-8)

The #& operator can also be applied to Java strings,
converting them from UNICODE to UTF-8 format:

native void print(String s) {
/* simple Java strings can be
printed from C */
printf(‘#&s’);

}
The mapping of types from Java to C that is per-

formed by & and#& operators is shown in Table 1. The
array conversion performed by the #& operator intro-
duces no performance degradation on platforms where
appropriate array element types are equivalent. How-
ever, it requires allocation and copying of the entire
array in cases when they are different.

6. Embedded Java statements

6.1. Declaring variables

Java variables can be declared inside a native method
implementation and used in subsequent embedded Java
expressions:

native void method(BookStore bs) {
‘Book b;’
. . .
‘b = bs.getBook();’
. . .
printf(’’%d\n’’,
(int)‘b.getPageCount()’);

}
Additionally, such variables give explicit control

over occurrences of the array get/release operations
(Fig. 2) in the code generated by Janet. Arrays are not
released as long as any variables referencing them re-
main in the current scope. Otherwise, they are released
upon reaching the end of the block that surrounds the
array access expression, or when a different array ref-

erence is produced by an expression. This is shown in
the following sample code:

class Dummy {
int[] arr0, arr1;
. . .
native void foo() {
‘int local[];’
{
‘arr0[0]’; /* get contents
of arr0 */
‘local = arr1;’ /* new
reference to arr1 */
‘local[0]’; /* get contents
of arr1 */
} /* arr0 released (end of
block) */

. . .
} /* arr1 released (‘local’ goes

out of scope) */
}

6.2. Exception handling

Exception handling is one of the most error-prone
aspects of JNI. The user must explicitly check for ex-
ceptions in every possible place where they may occur
(essentially after every JNI call) and provide code to
handle them. As exceptions usually break normal flow
of program execution, it becomes easy to mismatch ar-
ray or monitor lock/release operations within exception
handling code. In contrast, Janet provides a convenient
syntax for exception handling, by adapting Java’s ex-
ception model and employingtry, catch, finally
and throw statements. The following example illus-
trates these concepts:

native void method() {
‘try {
callback();

} catch (Throwable e) {
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‘JNI EXCEPTION DESCRIBE();’
throw new IllegalArgument
Exception(’’from C code’’);

}’
}
Again, the semantics of the generated native code

strictly conforms to the Java language definition. In
particular, exceptions are handled as soon as they oc-
cur, arrays and monitors are guaranteed to be always
released, and the finally clauses are always eval-
uated. The only segment of native code involved is
theJNI EXCEPTION DESCRIBEmacro call – the re-
mainder is Java code that handles exceptions. Such a
syntax simplification is possible because Janet allows
the merging of subsequent embedded Java operations,
which eliminates extra back-tick delimiters. (Compare
this example with the analogous JNI code shown in
Fig. 2(c).)

6.3. Synchronization

JNI provides separate functions for monitor lock and
unlock operations. In contrast, Janet adapts the Java
synchronized statement for this purpose:

native void foo(Object bar) {
‘synchronized(bar)’ {
native foo();
}

}
Again, the generated code is exception-aware. The

monitor is unlocked even if exceptions occur inside
synchronized body. This is achieved through a
construct similar to thetry statement with afinally
clause that contains code to unlock the monitor.

6.4. Java-style return statement

In general, the C languagereturn statement should
not be used inside native methods when using Janet. In-
stead, the Java-style return statement is introduced:

native int foo() { /* will always
return 1 */
‘try’ {
‘return 0;’

} ‘finally’ {
‘return 1;’

}
}

There are two reasons why C’s return statement
should not be used. First, during compilation, it pre-
vents type checking for the returned value and can po-
tentially lead to runtime errors. Secondly, it prevents
Janet from executingfinally clauses as was required
in the example above.

6.5. Unconditional branch statements

Currently Janet uses a complete parser for Java code
and a simplified one for embedded C. This approach
has the advantage of extensibility as it is easy to add
new parsing modules for additional native languages.
Also, it increases the portability of the tool and gener-
ated interfaces. However, it limits the syntax of native
codes. Consider the following example:

do {
‘synchronized(foo)’ {
break;
} /* monitor unlock would occur
here */

} while (false);

The Janet preprocessor does not recognize seman-
tics of the break statement and inserts a monitor un-
lock code at the end of the block. Therefore, this
code unlocks the Java monitor when the native method
returns (rather than when do-while loop termi-
nates). To avoid such situations, Janet forbids uncondi-
tional branch statements, namely break, continue,
goto, as well as the longjmp() function call, to
be used in native code if they could prematurely exit
the block in which they appear. Also, the use of the
return statement is strongly discouraged for the rea-
sons described in Section 6.4. This issue pertains only
to the C language. With C++, it is possible to avoid
this problem by using object destructors.

7. Portability

One of the main goals of the Janet project is to retain
a high level of portability of both the tool itself and the
code it generates. The Janet preprocessor is therefore
written entirely in Java and it can run on any Java 2 plat-
form. The whole system consists of approximately 130
source files and 30,000 lines of code. The generated C
source code fully conforms to the ANSI C standard and
may be used with JNI version 1.1 onwards; therefore,
it works with JRE 1.1. At the same time, it can also
take advantage of the JNI 1.2 extensions introduced in
Java 2.
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Table 2
Performance results on Solaris OS with JDK 1.3 and HotSpot VM (time shown in mi-
croseconds)

Java JNI Janet

private native method inv. 0.11 + 0.025*argc
virtual native method inv. 0.14 + 0.025*argc
private method invocation 0.04 + 0.005*argc 6.7 + 0.9*argc 7 + 0.9*argc
virtual method invocation 0.05 + 0.005*argc 12.5 + 0.9*argc 13 + 0.9*argc
field access 0.025 0.45 0.5
dynamic cast 0.035 0.4 0.45
try (no exception) 0.045 0 0.25
throw 20 50 50
catch (exception thrown) 0 1 1.5
synchronized 0.2 1.5 1.5
array access (normal) 8*size 8*size
array access (fast) 0.75 20
per-method – arrays & locks 1.5
per-method – exceptions 0-0.25

argc – number of parameters passed to a method
size – size of array in KB

8. Performance results

JNI provides a highly portable and abstract interface
layer, e.g., it makes no restrictions as to how a Java
VM represents objects internally. While this approach
facilitates writing portable native methods, it also in-
troduces an overhead much higher than if the objects
could be accessed directly. Since Janet is built on top
of JNI, Janet performance is highly influenced by the
performance of JNI itself. To measure these overheads,
we performed a series of benchmark experiments on
different platforms.

Table 2 shows performance results for the HotSpot
Java VM from Java 2 Standard Edition v1.3 for Solaris.
The host platform was a 4-processor Sun Enterprise 450
with 4 UltraSPARC 400 MHz CPUs with 4 MB of
ECache and 1280 MB RAM running SunOS 5.7. Ta-
bles 3 and 4 show performance results for HotSpot and
Classic Java VMs, respectively, from the Java 2 Stan-
dard Edition v1.3 for Linux. The host platform was
a PC with a Pentium II 440 MHz CPU and 128 MB
RAM running RedHat Linux 6.2. All numbers show
CPU time in microseconds (µs).

The test methodology was as follows. For each test,
two separate functions were provided. They differed
only in the use of the operation to be measured. A sin-
gle test run involved a number of iterative executions
of both methods, so that cumulative execution times
could be compared. The number of iterations was cho-
sen empirically (from the range of 103 to 108) for each
test, to ensure low deviation between execution times
and provide accuracy of at least 1.5 significant digits.
Immediately before measurements were started, each

Virtual Machine was allowed to execute the same num-
ber of “warm-up” iterations in order to optimize the
code. The numbers in all tables are average times over
at least 8 test runs. For the JNI test routines, safety
features were omitted to obtain the highest possible
performance, e.g., the exception checks after method
invocations were not included.

To begin with, the efficiency of both private and
virtual native method calls was measured as these
are the basis of any native code interface. Next,
a series of tests was performed to compare execu-
tion overhead of different kinds of Java expressions
and statements as they appear in pure Java, in na-
tive methods written using pure JNI, and in native
methods written using Janet. Then, the performance
of Java array access from within native code was
measured for JNI and Janet, using both traditional
Get<type>ArrayContents JNI routines (nor-
mal) as well as theGetPrimitiveArrayCritical
routine (fast) introduced in JNI 1.2.

Finally, the additional Janet-specific method invoca-
tion overhead was measured in the situations where ar-
rays of primitive type or synchronized statements
are used, and when the method handles Java exceptions,
i.e., when callback method invocations are involved.

As might have been expected, obtaining Java func-
tionality from native code via JNI function calls turned
out to be much slower than pure JIT-optimized Java.
Nevertheless, the overhead factor rarely exceeded 30
which is acceptable in most cases, as JNI functions typ-
ically take only a small part of the total native method
execution time. Therefore, overall JNI performance
seems to be adequate for most applications. However,
there are several issues that one has to be aware of:
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Table 3
Performance results on Linux OS with JDK 1.3 and HotSpot VM (time shown in microseconds)

Java JNI Janet

private native method inv. 0.1 + 0.012*argc
virtual native method inv. 0.12 + 0.012*argc
private method invocation 0.02 + 0.002*argc 4.2 + 0.65*argc 5 + 0.65*argc
virtual method invocation 0.022 + 0.0035*argc 9 + 0.65*argc 10 + 0.65*argc
field access 0.005 0.28 0.3
dynamic cast 0.02 0.16 0.18
try (no exception) 0.002 0 0.45
throw 36 74 83
catch (exc. thrown) 0.4 1–2.5 1–2.5
synchronized 0.04 1.2 1.5
array access (normal) 21*size 21*size
array access (fast) 0.35 17
per-method – arrays & locks 1
per-method – exceptions 0–0.45

argc – number of parameters passed to a method
size – size of array in KB

Table 4
Performance results on Linux OS with JDK 1.3 and Classic VM (time shown in microseconds)

Java JNI Janet

private native method inv. 0.55 + 0.05*argc
virtual native method inv. 0.45 + 0.06*argc
private method invocation 0.27 + 0.016*argc 1.3 + 0.06*argc 1.4 + 0.06*argc
virtual method invocation 0.27 + 0.02*argc 1.3 + 0.06*argc 1.45 + 0.06*argc
field access 0.05 0.18 0.22
dynamic cast 0.1 0.25 0.25
try (no exception) 0.02 0 0.45
throw 8 23 15
catch (exc. thrown) 0.28 0.5 0.5
synchronized 0.8 0.6 0.8
array access (normal) 1.4 6.2
array access (fast) 1.4 6.7
per-method – arrays & locks 1.5
per-method – exceptions 0–0.45

argc – number of parameters passed to a method

– Copying arrays and strings instead of pinning them
down can degrade the performance substantially.
Unfortunately, even Get . . . Critical() rou-
tines (which introduce restrictions on the enclosed
native code and therefore cannot be always used)
do not guarantee that copying will be avoided.
Nevertheless, they seem to be the most efficient
way to access Java arrays and strings.

– For native methods with very small amounts of
computation, the additional invocation overhead
can exceed any native code performance benefits.

– Excessive callbacks from native methods can be
expensive and should be used with caution.

– As JNI implementations are not the most important
parts of Java Virtual Machines, their performance
is not necessarily going to improve. In fact, it is
possible that a new VM version from the same
vendor executes JNI calls less efficiently than an

older version. This was the case with HotSpot VM
for Linux, where the JNI implementation is much
less efficient than that of the Classic VM.

A large overhead is also introduced when a native
method throws an exception, but it is not a real issue
because in properly written programs exceptions are
thrown rarely. It was observed that the execution of
the throw statement in pure Java code also takes an
enormous amount of time.

In most cases, Janet adds no more than 20% to the JNI
overhead. The additional time is spent in retaining the
safety of the running code i.e., for method invocations,
Janet checks if they did or did not cause an exception
(note that every Java method not declared to throw ex-
ceptions may still throw RuntimeExceptions and
Errors). A notable difference between JNI and Janet
performance is evident only for array accesses. This
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Fig. 4. Performance results of the code using the lip library from C and Java (n = 100).
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Fig. 5. Performance results of the code using the lip library from C and Java (n = 1000).

is because Janet invokes an additional method to avoid
aliasing problems with multiple references pointing to
the same array. This initial overhead however, is usu-
ally amortized over the time of actual array processing
and has little overall effect.

The Janet project was originally developed as a Java
interface to the LIP programming library [3–5]. The
LIP library is built on top of MPI [8,17,19] and sup-
ports both in- and out-of-core (OOC) parallel irregular
problems [2,23] (i.e. problems that indirectly access
large data arrays). To test the performance of Janet,
a generic irregular OOC problem was written in Java.
Its scalability in comparison to the C version is pre-
sented in Figs 4 and 5. All computations in the Java
test code were performed on the Java side, while the
native libraries were provided only as a communication

layer and the OOC I/O environment. The amount of
computation was proportional to the variable n, while
the communication overhead remained constant across
all tests. Unlike the previous results, here the perfor-
mance of Janet is shown in relative terms. They are
presented to give a perspective on a real-world paral-
lel application behavior, which involves complex inter-
actions between software and hardware components.
These interactions are not present in the benchmark
tests. Absolute performance values are as indicated by
the previously shown test results.

These results demonstrate that Java can be efficiently
employed in large scale scientific parallel computa-
tions, adding rapid software development and safety to
the power of existing native computing environments.
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9. Conclusions and future work

This paper has described a new approach to creat-
ing Java interfaces to native codes. The proposed Java
language extensions and the Janet preprocessing tool
enable simple, fast and convenient development of ef-
ficient interfaces while retaining full control over their
low-level behavior. For the immediate future, our goal
is to provide a visual environment (with a graphical
user interface) to enable the user to graphically design
the structure of Java wrappers for a native library. The
tool would then generate Janet code which could be
further refined by the user. A fully automatic wrapper
generator is also under consideration with its output
being subject to potential refinement with the GUI tool.
We also intend to apply Janet to enable the usage of
native resources in the Harness Metacomputing Frame-
work [10,20]. Finally, support for native languages
other than C is under development. The first candidate
here is C++ as it would eliminate the aforementioned
problems with unconditional branch statements.
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