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Many embedded Java software platforms execute two types of Java classes: those installed

statically on the client device and those downloaded dynamically from service providers at
runtime. For higher performance, it would be desirable to compile static Java classes by ahead-

of-time compiler (AOTC) and to handle dynamically downloaded classes by just-in-time

compiler (JITC), providing a hybrid compilation environment. This paper proposes a hybrid
Java compilation approach and performs an initial case study with a hybrid environment, which

is constructed simply by merging an existing AOTC and a JITC for the same Java virtual

machine. Both compilers are developed independently for their own performance advantages

with a generally accepted approach of compilation, but we merged them as e±ciently as
possible. Contrary to our expectations, the hybrid environment does not deliver a performance,

in-between of full-JITC's and full-AOTC's. In fact, its performance is even lower than full-

JITC's for many benchmarks. We analyzed the result and found that a naive merge of JITC and

AOTC may result in ine±ciencies, especially due to calls between JITC methods and AOTC
methods. Based on these observations, we propose some ideas to reduce such a call overhead.

We also observed that the distribution of JITC methods and AOTC methods is also important,

and experimented with various distributions to understand when a hybrid environment can
deliver a desired performance. Finally, we discuss how JITC and AOTC should be designed for

e±cient hybrid execution.

Keywords: Hybrid Java compilation; ahead-of-time compiler; just-in-time compiler; JVM.

1. Introduction

Java is a popular software platform for many embedded systems, including digital

TVs, mobile phones, or bluray disks. This is mainly due to its advantage in platform
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independence, security, and software development. That is, the use of a virtual

machine allows a consistent runtime environment for diverse client devices that have

di®erent CPUs, OS, and hardware components. Moreover, Java has little security

issues such that it is extremely di±cult for malicious Java code to break down a

whole system. Finally, it is much easier to develop software with Java due to its

su±cient, mature APIs and its robust language features such as exception handling

and garbage collection.

The advantage of platform independence is achieved by using the Java virtual

machine (JVM) that executes Java's compiled executable called the bytecode. The

bytecode is a stack-based instruction set which can be executed by an interpreter on

any platform without porting the original source code. Since this software-based

execution is obviously much slower than hardware-based execution, compilation

techniques for translating bytecode into machine code have been used, such as just-

in-time compilers (JITC)1 and ahead-of-time compilers (AOTC).2�5 In embedded

systems, JITC performs an online translation on the client device at runtime, while

AOTC performs an o²ine translation on the server before runtime and the trans-

lated machine code is installed on the client device.

Generally, AOTC is more advantageous in embedded systems since it obviates

the runtime translation overhead of JITC, which would waste the limited computing

power and runtime memory of embedded systems, and may a®ect the real time

behavior of the client devices. On the other hand, many embedded systems such as

digital TVs, mobile phones, and bluray disks may download classes dynamically at

runtime, which cannot be handled by AOTC and thus, should be executed by the

interpreter. However, the performance bene¯t achieved by AOTC can be easily o®set

by such interpretive execution. So it would be desirable to employ JITC as well to

handle dynamically loaded classes for complementing AOTC. That is, we need a

hybrid compilation environment.

We actually constructed such a hybrid environment by merging an AOTC6�8 and

a JITC,9 each of which takes the most generally accepted approach of compilation,

commonly used by others. We evaluated the environment with an experimental setup

for hybrid compilation. Although both the AOTC and the JITC were developed

independently for their own performance advantages, we merged them as e±ciently

as possible to reduce any overhead of hybrid execution. Consequently, our experiences

with this environment can help those who want to build their own hybrid environ-

ment and warn them of any possible ine±ciencies. We also discuss how JITC and

AOTC should be designed for e±cient hybrid execution, which will provide a useful

insight on their interface problem. These are the main contributions of this paper.

The rest of this paper is organized as follows. Section 2 introduces the approach of

hybrid compilation environment and motivates readers by presenting an initial

evaluation result with our hybrid environment. Section 3 reviews the JITC and the

AOTC used for the hybrid environment and Sec. 4 describes how they are merged.

Section 5 includes our experimental results and analyzes with the environment. It also
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investigates how we could possibly achieve a better hybrid performance. Comparison

to the previous work is in Sec. 6. A summary and a future work follow in Sec. 7.

2. The Approach of Hybrid Compilation and an Initial Case Study

Our proposed hybrid compilation environment targets an embedded Java software

platform which can download classes at runtime. For example, a software platform

for digital TVs (DTV) is typically composed of two components: a Java middleware

called OCAP or ACAP (and Java system classes) which are statically installed on

the DTV set-top box, and Java classes called xlets which are dynamically down-

loaded through the cable line or the antenna. Also, a software platform for mobile

phones is composed of the MIDP middleware on the phone and midlets downloaded

via the wireless network. Bluray disks consist of the BD-J middleware on the BD

player and xlets on the BD titles. We believe these dual-component systems will be a

mainstream trend for embedded Java software architecture.

Another trend of these dual-component systems is that both the Java middleware

and the downloaded classes become more complex and substantial. The initial

downloaded Java classes were mainly for displaying idle screen images or for deli-

vering simple contents, but now more substantial Java classes such as games or

interactive information that take a longer execution time are being downloaded. In

order to reduce the network bandwidth (wired or wireless) for downloading, the Java

middleware also gets more substantial to absorb the size and the complexity of

downloaded classes. In mobile phones, for example, the ¯rst MIDP middleware pro-

vided libraries for user interfaces only, yet its successor middleware called the JTWI

provided an integrated library for the music players and the SMS as well. Now a more

substantial middleware called the MSA with more features is being introduced.

For achieving high performance on these substantial, dual-component systems, it

would be desirable to employ hybrid acceleration such that the Java middleware is

compiled by AOTC while the downloaded classes are handled by JITC. However, our

point is that a naïve merge of an existing AOTC and a JITC would not lead to a

performance level that we would normally expect from a hybrid environment. In

order to motivate readers, we actually constructed a hybrid environment by merging

an AOTC and a JITC, which we developed independently for the same JVM, and

then we experimented with it as follows.

Both the AOTC and the JITC targets Sun's CDC VM (CVM). The AOTC takes

a bytecode-to-C approach such that the bytecode is translated into C code, which is

then compiled with the CVM source code using a GNU C compiler. The JITC uses

adaptive compilation method, where Java methods are initially executed by the

CVM interpreter until they are determined to be hot spots, and then are compiled

into native code.

After merging both compilers, we could compile some methods by the AOTC

before runtime and compile some methods by the JITC at runtime (which we call
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AOTC methods and JITC methods, respectively). Calls between JITC methods and

AOTC methods are handled appropriately by executing additional code to meet the

calling conventions between them; we do not use the JNI (Java native interface) for

interoperation of the translated C code and Java code since JNI would be too slow.

The details of the JITC, the AOTC, and the hybrid environment will be described in

detail in Secs. 3 and 4.

Based on this hybrid environment, we experimented with a dual-component Java

system using conventional Java programs, by compiling the Java system library

classes with the AOTC, while handling regular application classes with the JITC.

This is assuming that the system classes correspond to the middleware on the client

device, while the application classes correspond to downloaded classes from the

service provider. We thought that this experimental setup is a reasonable simulation

of our target embedded environment since the interaction between system classes

and application classes would exhibit a similar behavior to the interaction between

middleware classes and downloaded classes (unfortunately, this is not exactly true,

as we will see later).

We compare the performance of this hybrid environment (hybrid) with the per-

formances of the full-AOTC and the full-JITC environments, where both library

classes and application classes are handled solely by the AOTC and by the JITC,

respectively. In this way, we can evaluate the constructed hybrid environment.

Our experimental environment is as follows. The experiments were performed

with the AOTC and the JITC implemented on CVM reference implementation (RI).

Our CPU is a MIPS-based SoC called AMD Xilleon which is popularly employed in

Digital TVs. The MIPS CPU has a clock speed of 300MHz and has a 16KB I-cache/

16KB D-cache, with a 128MB main memory. The OS is an Embedded Linux. The

benchmarks are SPECjvm98 (except for javaca) and EEMBC.b

Figure 1 shows the performance ratio of the full-JITC, the hybrid, and the full-

AOTC, compared to the performance of interpreter execution (full-interpreter) as

1.0x for each benchmark. The performance of the full-AOTC, which is an average of

4.0x over the interpreter, is consistently higher than the performance of the full-

JITC, which is an average of 2.7x over the interpreter, as we expected. The problem

is the performance of the hybrid. Contrary to our expectation, its performance is not

positioned in-between of the full-JITC's and the full-AOTC's, and even lower than

the full-JITC's in many benchmarks. This is somewhat surprising since we expected

a performance at least better than the full-JITC's, by handling library methods using

the more powerful AOTC while handling others by the same JITC used in the full-

JITC environment.

aJavac could not run in our MIPS board in the hybrid mode due to memory over°ow caused by one huge

method whose JITC requires huge memory.
bAny performance numbers for these benchmarks shown in this paper are relative numbers to demonstrate
the value of our environment, so they should not be interpreted as o±cial scores.
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We may speculate on the reasons for this performance anomaly as follows. One

possibility would be the call overhead between AOTC methods and JITC

(interpreter) methods due to additional code executed for meeting the calling con-

ventions. Or, it might be related to JVM features such as garbage collection (GC) or

exception handling (EH), which should work correctly even in the hybrid environ-

ment (e.g., an exception raised by an AOTC method can be handled by a JITC

method, or GC can occur when the call stack is mixed with AOTC methods and

JITC methods). This might cause additional overhead in the hybrid environment for

their correct operation. Finally, it might be related to the characteristics of library

classes such that their performance would not increase when they compiled with

AOTC, compared to when compiled with JITC.

In order to ¯nd out the major reason(s) for the performance anomaly of our

hybrid environment, we ¯rst need to understand how the AOTC, the JITC, the

interpreter, and the hybrid environment are constructed. We will describe them in

the next two sections, especially focusing on the issues raised above.

3. The JITC and the AOTC

Although our AOTC and JITC target the same CVM, they have been developed

independently without any consideration of hybrid execution (in fact, no JITC or

AOTC has been developed considering hybrid execution, as far as we know, and it is

not clear at this point how to build such a hybrid-execution-aware JITC and AOTC,

as will be discussed later). On the other hand, each compiler was developed as

reasonably and generally as possible for its best performance bene¯t, so although the

experimental results in Sec. 2 were obtained with our speci¯c implementation, a

similar result is likely to be expected with other implementations. This section

describes both compilers, especially focusing on their calling conventions, optimiz-

ations, and how GC and EH are handled. We start with an overview of the JVM and

the CVM interpreter.

Fig. 1. Performance of the full-JITC, the full-AOTC, and the hybrid with AOTC and JITC, compared to

the interpreter (1.0x).
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3.1. JVM and the interpreter

These become local variables of the callee, and are followed by the callee's other local

variables, method/frame information of the callee, and the callee's operand stack.

When a method returns, the callee's stack frame is popped and the return value is

copied from the callee's operand stack to the top of the caller's operand stack.

As a GC-based, object-oriented language, garbage objects are reclaimed auto-

matically. GC requires tracing all reachable objects from the root set to reclaim all

unreachable objects. The root set is composed of operand stack slots and local

variables of all methods in the call stack (Java stack) and static variables, whose

types are object references.

The CVM requires all threads to wait at their GC-point before it performs GC,10

which is a point in the program where GC can possibly occur. Examples of GC-points

include memory allocation requests, method calls, loop backedges, etc. So, a thread

should check if there is any pending GC request whenever they pass through a

GC-point, and wait there if there is one. When all threads wait at their GC-point, the

CVM can start GC by ¯rst computing the root set. For this computation, GC needs a

data structure describing the location of each root at the GC-point, which is called a

GC-map. When GC occurs during interpretation, the interpreter is supposed to

analyze the bytecode for each method in the call stack and to compute the GC-map

at each GC-point in the method (it saves the GC-maps at the method block for their

reuse when GC occurs again). When GC occurs, this GC-map is consulted to decide

which stack slots and local variables in the call stack are reference-typed thus being

included in the root set. Reference-type static variables are already included in the

root set.

Java supports EH such that when an error occurs in a try block, the error is

caught and handled by one of subsequent catch blocks associated with the try block.

One problem is that the exception throwing try block and the exception-handling

catch block might be located in di®erent methods on the call stack, so if no catch

block in the method where the exception is thrown can handle the exception, the

CVM searches backward through the call stack to ¯nd a catch block which can

handle it. This mechanism is called stack unwinding11 and is performed by the

exception handler routine included in the CVM interpreter.10

3.2. The JITC

Our JITC uses adaptive compilation, where a method is initially executed by the

CVM interpreter until it is determined as a hot spot method.9 Then, the method is

compiled into native code, which then resides in the memory and is reused whenever

the method is called again thereafter. Our JITC performs many traditional optim-

izations for the compiled method including method inlining. The operand stack slots

and the local variables are allocated to registers, with copies corresponding to pushes

and pops being coalesced aggressively.
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As to the JITC calling convention, all machine registers mapped to the operand

stack locations and the local variables at the time of a method call are ¯rst spilled to

the Java stack (to their mapped locations) before the call is made. Consequently, the

Java stack is maintained exactly the same as in the case of interpreter execution

during method calls. This is for simplifying argument passing for calls between

interpreted methods and JITC methods. Moreover, GC and EH can be handled more

easily with this calling convention, as will be explained shortly.

As to GC, unlike in the interpreted methods, there is no GC-time computation of

the GC-map in the JITC methods; instead the JITC itself computes and saves a

GC-map at each GC-point during translation by checking which Java stack locations

(not registers) have a reference at that GC-point. This is so since all registers mapped

to the Java stack locations are also spilled to the Java stack at a GC-point if there is a

pending GC request (exactly as in method calls; actually, a method call itself is a

GC-point). So the GC-map in JITC methods includes only Java stack locations as in

the interpreted method and the Java stack is maintained the same when GC occurs.

As to EH, the exception handling routine in the CVM interpreter is supposed to

handle exceptions even for JITC methods such that if an exception occurs in a JITC

method, it will jump to the handling routine which will perform stack unwinding.

When a catch block is found in a JITC method, the bytecode of the catch block will

be executed by the interpreter, so there is no need to compile the catch block by

the JITC. This is ¯ne since an exception would be an \exceptional" event, so the

performance advantage of executing compiled catch blocks would be little. This

interpreter-based execution of catch blocks requires the Java stack to be maintained

exactly the same as in the interpreter execution, so registers are also spilled to the

Java stack when an exception occurs even in a JITC method.

3.3. The AOTC

Our AOTC translates the bytecode of classes into C code, all of which are then

compiled and linked together with the CVM source code using gcc to generate a new

CVM executable.8 We took this particular approach of AOTC rather than other

alternatives considering a few aspects, as explained below.

We took the approach of bytecode-to-C5 rather than bytecode-to-native,4 since

we can resort to an existing compiler for native code generation, which allows a faster

time-to-market and a better portability. In addition, we can generate high-quality

code by using full optimizations of gcc, which would be more reliable and powerful

than our own optimizer. In fact, most AOTCs take the approach of bytecode-to-

C,2,3,12,13 including commercial ones such as Jamaica,14 IBM WebSphere Real-time

VM,15 PERC,16 and Fiji,17 so we believe that anyone who wants to build a hybrid

environment is likely to employ the b-to-C AOTC. Our AOTC also performs some

Java-speci¯c optimizations that gcc cannot handle, such as elimination of redundant

null pointer checks or array bound checks.8
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We statically compile and link every translated C code with the CVM source code,

instead of compiling each C code separately and loading its machine code to the

CVM dynamically at runtime. This allows method calls or ¯eld accesses to di®erent

classes to be resolved at translation time, obviating runtime resolution. Also, inlining

between di®erent classes is much easier.

In our AOTC, each local variable and operand stack slot is translated into a

C variable with a type name attached. For example, a reference-type operand stack

slot 0 is translated to s0 ref. We then translate each bytecode to a corresponding

C statement, while keeping track of the operand stack pointer. For example, aload 1

which pushes a reference-type local variable 1 onto the stack is translated into a

C statement s0 ref ¼ l1 ref; if the current stack pointer is zero when this bytecode is

translated.

The calling convention of our AOTC follows the format of a regular C function

call. That is, a method call in the bytecode is translated into a C function call whose

name is composed of the Java class name and the method name (similar to a JNI

method naming convention). The argument list consists of an environment variable

for capturing the CVM state, followed by regular C variables corresponding to the

argument stack locations at the time of the call. Such a C function call will be

compiled and optimized by gcc and arguments will be passed via registers or the C

stack, so AOTC calls will be much faster than JITC calls or interpreter calls. Our

AOTC also performs inlining for some method calls.

As to GC, since our AOTC translates stack slots or local variables that have root

references into C variables, it is di±cult to know where gcc will place those variables

in the ¯nal machine code. So the AOTC cannot make a GC-map. Our solution is

generating additional C code that saves references in the Java stack frame whenever

a reference-type C variable is updated such that when GC occurs, all Java stack slots

of AOTC methods constitute a root set.6 For this purpose, a Java stack frame is still

allocated and extended during the execution of AOTC methods, although the ma-

chine code of AOTC methods (including calls) is based only on the C stack and the

registers. In order to reduce the runtime overhead caused by the additional C code,

we perform optimizations to reduce the number of references saved in the stack frame

and the number of stack extensions.

There is one more issue in GC with the AOTC. Since the CVM employs a moving

GC algorithm, objects can be moved during GC. CVM GC is supposed to update the

addresses of moved objects for those references saved in the Java stack frame, but not

the updated reference C variables. So after GC, we need to copy the addresses from

the Java stack frame back to the reference C variables, which require additional

C statements.

As to EH, when an exception occurs in an AOTC method, the environment

variable will be set appropriately and the control will transfer to a catch block if the

method has one that can handle it. If there is no catch block, the method simply

returns to the caller. In the caller, we check if an exception occurred in the callee and
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if so, we try to ¯nd an appropriate catch block in the caller. If there is no catch block,

then the method also returns and this process repeats until a catch block is found.

This means that we need to add an exception check code right after every method

call, which would certainly be an overhead. However, it is a simple check and merged

with the GC check for copying references back, so the overhead is not serious.7

4. Hybrid Compilation Environment

Previous section described the AOTC and the JITC, each of which has been

developed e±ciently for its own performance advantage. This section describes how

wemerged them tobuild a hybrid environment.Weaddress howmethod calls,GC, and

EH are made across di®erent environments. Since the interpreter and the JITC have

already worked collaboratively together for adaptive compilation, the merge across

AOTC and JITC (interpreter) would be the primary issue of a hybrid environment.

When there is a call between a JITC method and an AOTC method, some recon-

ciliation process is needed to meet the calling convention between them, especially for

parameter/return value passing and the stack management. Since an AOTC method

passes parameters using registers and the C-stack, while a JITC method passes par-

ameters using the Java stack, appropriate conversion between them is required.

When a JITC method calls an AOTC method, a stack frame for the AOTC

method is ¯rst pushed on the Java stack and is marked as an AOTC frame. Then,

parameters in the Java stack of the JITC method are copied into registers (and into

the C-stack if there are more than four parameters in MIPS). Finally, a jump is made

to the AOTC method entry. This process is depicted in Fig. 2 and is performed by an

assembly function. When an AOTC method returns back to a JITC method, a

similar process is needed to copy the return value in a register of the AOTC method

to the Java stack of the JITC method.

If there are updates of reference C variables in the AOTC method, the Java stack

is extended to accommodate those references for preparation of GC, as explained in

Sec. 3.3 (depicted as a reference stack in Fig. 2). If the AOTC method calls another

AOTC method which also updates reference C variables, the Java stack frame is

extended again. Consequently, a single stack frame is shared among consecutively

called AOTC methods and is extended for saving references whenever necessary.

When an AOTC method calls a JITC method, a new stack frame is pushed on the

Java stack (marked as a JITC frame), and the parameters that are in C variables are

copied to the operand stack and a jump is made to the JITC method.

When GC occurs in a hybrid environment, all the root references are guaranteed

to be located in the Java stack, but identifying Java stack slots that contain refer-

ences depends on the type of the stack frame. If it is an AOTC frame, all stack

locations will have references since we saved only references there. If it is a JITC

method or an interpreter method, we check with the GC-map at the GC-point to tell

the stack slots which have references.
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Handling exception across AOTC and JITC methods is relatively simple, which is

done with exception checks for both AOTC and JITC methods. When a JITC

method calls an AOTC method, there should be an exception check added right after

the call, as we did in an AOTC method. If an exception occurs somewhere in the call

chain at an AOTC method and if it is not caught before returning to this JITC

method, it will be checked at the added exception check code. Then, the control is

transferred to the exception handling routine of the interpreter, which performs stack

unwinding starting from this JITC method.

When an AOTC method calls a JITC method, we add a check code right after the

call as usual. If an exception occurs somewhere in the call chain at a JITC method,

the exception handling routine of the interpreter will perform stack unwinding. It

checks for each method on the call stack, one by one, if there is a catch block who can

handle the exception. It can also tell if a method on the call stack is a JITC method or

an AOTC method using the frame type, so when the caller AOTC method is

eventually met during stack unwinding, the interpreter will simply make a call

return, which will transfer the control back to the AOTC method as if the JITC

method returns. Then, the exception check code is executed and the normal AOTC

exception handling mechanism based on the exception check proceeds.

As one can notice easily, supporting EH or GC correctly in the hybrid environ-

ment causes a relatively little overhead since they are essentially the same as in

AOTC and JITC. On the other hand, method calls may cause some overhead due to

di®erent calling conventions. We will analyze method calls in the following section.

Fig. 2. AOTC method call from interpreter in MIPS.
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5. Analysis of the Hybrid Environment

Previous section described our hybrid environment, which we think is a reasonable

merge of high-performance JITC and AOTC. In this section, we analyze our per-

formance results in Sec. 2 to understand the root causes of its performance anomaly.

5.1. Call behavior of benchmarks

We ¯rst examine the call behavior of our benchmarks. Figure 3 depicts the distri-

bution of calls and execution time between application methods and library methods

in each benchmark. The call distribution varies widely from benchmark to bench-

mark. Since most calls in crypto, png, regEx, compress, jess, mpegaudio, and mtrt are

application method calls, compiling library methods by AOTC in the hybrid would

not improve performance much compared to the full-JITC. However, most calls in

parallel, DB, and jack and around half of the calls in chess and kxml are library calls,

although the library execution time takes a less portion. So we should expect some

reasonable performance improvement at least for these benchmarks with the hybrid

compared to the full-JITC. Unfortunately, the hybrid led to worse performance in

these benchmarks as well as the ¯rst set of benchmarks, as we saw previously in Fig. 1.

Generally, our benchmarks tend to spend more time in applications rather than in

libraries, which would not exactly be the case in the middleware and downloaded

classes. As the middleware gets more substantial, much of the execution time should

be spent in the middleware, as explained in Sec. 2. However, even when the libraries

are dominant as in db and jack, Fig. 1 shows that the hybrid performs worse than the

full-JITC. In fact, even when the libraries are not dominant, there should be, in

theory, no performance degradation compared to the full-JITC. We suspect the call

overhead as one reason, as analyzed below.

5.2. Call overhead

In the hybrid environment, we classi¯ed the call types. We measured how many calls

are from JITC methods to AOTC methods, from AOTC to AOTC methods, from

Fig. 3. Call behavior of each benchmark.
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JITC to JITC methods, and others (e.g., JNI methods calls) which is shown in Fig. 4.

Those benchmarks which include many library calls have many JITC-to-AOTC

calls, as expected.

We then measured the call overhead from a JITC method to an AOTC method

(J-to-A), which is supposed to occur frequently in our hybrid environment, compared

to the call overhead of a JITC method to a JITC method (J-to-J). For this evaluation

we made a simple Java method which makes a return. We compiled this method with

our AOTC and made a JITC method to call it ¯ve million times with a variable

number of arguments. We measured the running time and then isolated the loop

and argument pushing overhead in order to identify the J-to-A call overhead

only. Then, we compiled this method with the JITC and measured the J-to-J call

overhead similarly. Finally, we compiled all methods with the AOTC and measured

the A-to-A call overhead. We experimented both with a static method call and

a virtual method call.

Figure 5 depicts the call overhead (in microseconds) of a single J-to-A call, J-to-J

call, and A-to-A call for the static method call and the instance method call. It shows

that the call overhead of J-to-A is around 2.5 times to that of J-to-J. It is also shown

that the J-to-A call overhead increases as the number of arguments increases, due to

argument copying. We also estimated the total J-to-A call overhead during

Fig. 4. Call count distribution among di®erent types of calls.

Fig. 5. The call overhead of invokestatic and invokevirtual.
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execution, by multiplying a single J-to-A call overhead and the J-to-A call counts. Its

ratio to the whole running time is found to be signi¯cant for chess (20%), kxml

(23%), db (19%), jack (16%), and parallel (7%) which have many J-to-A calls.

These results indicate that J-to-A calls are much slower than J-to-J calls and they

take a signi¯cant portion of running time when they are frequent. We estimated the

execution time of some hypothetical \faster" hybrid environment when the J-to-A

call overhead is replaced by the J-to-J call overhead (i.e., for each J-to-A call,

compute the overhead di®erence from a J-to-J call with the same number of argu-

ments, multiply it by the call count, and subtract the result from the execution time

of the original hybrid environment). Figure 6 shows the performance of such a faster

hybrid environment, compared to those of the original hybrid and the full-JITC. The

faster hybrid outperforms the original hybrid tangibly in chess, kxml, parallel, DB,

and jack, which have a higher ratio of the total J-to-A call overhead to the running

time, and even outperforms the full-JITC in parallel and DB. Consequently, it

appears that the J-to-A call overhead signi¯cantly contributes to the performance

degradation of the original hybrid.

The J-to-A call overhead is primarily due to interfacing the AOTC calling con-

vention based on the C stack and the JITC calling convention based on the Java stack.

It might be argued that this interface problem would not occur if we perform AOTC

using the JITC module, with the full-°edged optimizations that are missing in JITC

enabled. This JITC-based AOTC would certainly obviate the interface problem

for J-to-A calls, yet there is one important issue in our hybrid environment. That

is, even for every A-to-A call, the caller ¯rst needs to spill registers to the Java stack so

as to keep the Java stack exactly the same as in interpreter execution, as we did

with JITC methods. This will certainly slow down A-to-A calls, which are supposed

to occur frequently with a substantial Java middleware, and would a®ect the per-

formance negatively. Another minor issue is that we cannot use the approach of

bytecode-to-C anymore, losing many of its advantages described in Sec. 3.3, such as

faster time-to-market, portability, and powerful and reliable optimizations with an

existing compiler.

Fig. 6. Performance of hybrid environment, faster hybrid environment, and full-JITC.

Hybrid Java Compilation for Embedded Systems

1240001-13



5.3. Application methods and library methods

We also tried with an opposite hybrid environment where we compiled application

methods by the AOTC and handled library methods by the JITC. This is for

understanding the characteristics of library methods and application methods in

terms of their pro¯tability achievable by AOTC compared to by JITC.

Figure 7 shows the performance of a new hybrid environment compared to the

full-JITC and the full-AOTC. This time this hybrid environment exhibits a per-

formance level in-between of the full-JITC's and the full-AOTC's for crypto, parallel,

compress, jess, mpegaudio, and mtrt, where application methods are dominant

(application method calls in parallel are scarce, yet the execution time of application

methods takes more than 70%, as seen in Fig. 3). For other benchmarks where

application methods are not dominant, the hybrid performance is still lower than the

full-JITC's. This also appears to be due to the call overhead from AOTC methods to

JITC methods, which is even higher than JITC-to-AOTC calls.

It is questioned why the hybrid environment can improve the performance of the

full-JITC when compiling applications by AOTC for application-dominant bench-

marks, while it cannot when compiling libraries by AOTC for library-dominant

benchmarks. One possible reason is that hot application methods often include

computation loops, which will be better optimized when compiled by AOTC than by

JITC, since AOTC includes more powerful optimizations. On the other hand, hot

library methods tend to have no computation loops but are called many times, so the

bene¯t of compiling them by AOTC is easily o®set by the J-to-A call overhead. For

example, the hot library methods in db are called frequently but they either have no

loops or have a loop which calls many methods, so the bene¯t of AOTC for them

would be small.

Consequently, the characteristics of methods are also important in deciding

whether their performance could be improved when compiled with AOTC compared

to when compiled with JITC. This can be used e®ectively in choosing AOTC can-

didates. In fact, the real characteristics of the middleware and downloaded classes

Fig. 7. Performance of another hybrid environment that AOTC applications and JITC libraries.
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might be di®erent from those of the library and the application used in our exper-

iment, so we need to investigate the real cases further.

5.4. Improving hybrid performance

Previous section analyzed the performance problems of the hybrid environment. In

this section, we investigate how we could possibly achieve the desired hybrid per-

formance. We ¯rst describe how to reduce the JITC-to-AOTC call overhead. We

then explore the performance impact of the distribution of JITC methods and AOTC

methods.

5.4.1. Reducing the JITC-to-AOTC call overhead

The analysis result in the previous section indicates that the call from JITC methods

to AOTC methods is problematic since its overhead is higher than other type of calls.

One solution would be reducing the JITC-to-AOTC call overhead itself. The over-

head of copying arguments from the operand stack of the JITC method to the

registers and the C stack of the AOTC method by an assembly routine appears to be

substantial. We can reduce this overhead by allowing the callee to access the caller's

operand stack directly for retrieving the argument. This can increase the overhead of

AOTC-to-AOTC calls slightly, though, since an AOTC method should ¯rst check if

its caller is an AOTC method or a JITC method. In fact, our AOTC is designed to

maximize its performance only, including the AOTC-to-AOTC calls, so it would be

reasonable to slow down AOTC-to-AOTC calls slightly to increase the overall per-

formance of a hybrid environment.

We actually implemented this idea and experimented with it. Figure 8 shows the

performance of the new calling convention, hybrid(Mix), compared to the original

hybrid, hybrid(Original), the full-JITC, and the full-AOTC. For those benchmarks

whose JITC-to-AOTC calls are frequent such as chess, kxml, DB, and jack (where

there were improvements in Fig. 6), the hybrid(Mix) improves the performance

tangibly, outperforming the full-JITC in some benchmarks. Comparing this graph

Fig. 8. Performance of mixed argument passing in AOTC.
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with Fig. 1, we can see that most of the anomaly results are gone away, placing the

hybrid performance at least equal to the full-JITC performance in most benchmarks.

However, we still could not see any hybrid performance that is de¯nitely better than

the full-JITC's.

5.4.2. Performance impact of the distribution of JITC methods

and AOTC methods

Although the call overhead optimization in the previous section could remove the

performance degradation of the hybrid environment, placing its performance closer to

the full-AOTC's would be dependent upon the distribution of execution time among

JITC methods and AOTC methods. That is, if we spend more time in the AOTC

methods than in the JITC methods, the bene¯t of AOTC over JITC will take e®ect,

leading to a higher performance than the full-JITC's. In embedded Java platforms,

this means that the middleware is well-designed such that downloaded classes are

implemented mainly by calls to the middleware rather than by their own compu-

tations, which allows spending more time in the middleware than in the downloaded

classes. In this section, we want to explore the impact of the distribution of JITC

methods and AOTC methods on the performance of the hybrid environment.

For this experiment, we compiled the library methods by the AOTC as pre-

viously. Then, we compile additional application methods by the AOTC, depending

on their call depths from the main method. That is, we measure the minimum call

depth of each method (e.g., if a method has a call depth of three for a call chain and

four for a di®erent call chain, its minimum call depth is three), and if it is higher than

a given threshold T , we compile it by the AOTC. The remaining application methods

will be compiled by the JITC as usual. Consequently, a lower T value will make more

methods to be compiled by the AOTC. Since we have the estimated execution time

pro¯le of each method, we can sum up the distribution of JITC methods and AOTC

methods, and we can understand the relationship between the hybrid performance

and the distribution.

Figure 9 shows the hybrid performance of the EEMBC benchmark with a diverse

T value. We experimented with T ¼ 2; 4; 8; 12, and 16 (we use the calling convention

of Sec. 6.1). When T ¼ 8, for example, we perform AOTC for those application

methods whose minimum call depth is higher than or equal to 8, in addition to the

library methods. For each T value, each graph also includes the proportion of the

estimated execution time of AOTC methods to the estimated execution time of all

(AOTCþ JITC) methods. As T decreases, more methods are compiled by the

AOTC (the proportion of AOTC methods comes closer to 1), boosting the hybrid

performance closer to the AOTC performance (we could observe a similar results for

the SPECjvm98 benchmarks). These graphs indicate that the distribution of AOTC

methods and JITC methods a®ect our hybrid performance seriously, meaning that

the hybrid compilation can be e®ective only when enough running time is spent in

the middleware, which are compiled by the AOTC.
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We actually studied the DTV environment of Korea using the data broadcasting

of the MBC channel. There are four menus in its data broadcasting application

including stock, news, weather, and tra±c information. We analyze the number of

methods called during the execution of each menu, i.e., those methods executed until

the ¯rst picture appears on the TV screen when we select the menu. Our analysis

shows that more than 90% of methods executed belong to the system classes or the

ACAP middleware classes, and xlet methods take a small portion.19 Although we

could not measure the exact execution time, we can be assured that much of the

running time is spent in the system classes and the middleware classes, which can be

compiled by the AOTC. This distribution behavior might change in the future as

more substantial xlets for sophisticated data broadcasting (e.g., T-commerce) are

introduced, but it is likely that enough running time will continue to be spent in the

AOTC methods, justifying the adoption of the hybrid compilation environment.

6. Comparison to Related Work

We can say that existing JITCs and AOTCs already employ some form of a hybrid

execution environment. For example, most JITCs are using adaptive compilation

where the interpreter is used for hot spot detection. In addition, most AOTCs require

the interpreter for supporting dynamic class loading. However, this interpreter

execution is simply for supplementing JITC or AOTC, so this is not a genuine form of

a hybrid environment.

QuickSilver is a quasi-static compiler developed for the IBM's Jalapeno system for

servers.18 It saves all JITC methods in the ¯les at the end of execution, and loads

them directly without JITC when they are used in later execution. Therefore, it

employs a form of AOTC, yet it is based on a JITC, not on a separate o²ine

compiler. There are no interface issues between JITC methods and AOTC methods

in this hybrid environment because their machine code is generated by the same

Fig. 9. Performance of hybrid compilation with di®erent T values for the EEMBC benchmarks.
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compiler, unlike our AOTC�JITC hybrid environment. However, the bene¯t is

merely reducing the JITC overhead without any improvement for the AOTCed code

quality. Actually, there still is the class loading overhead of constant pool (CP)

resolution or building class data structures for the AOTCed classes, unlike our

bytecode-to-C AOTC where the translated C code is compiled together with the

JVM source, hence no such overhead (already-resolved CP entries and class data

structures are romized in the JVM). This also obviates any loading process of the

AOTC machine code into the memory, while QuickSilver can su®er from a relocation

and CP resolution overhead during the loading process.

There is a commercial JVM that takes a similar approach to QuickSilver. Sun's

phoneME Advanced has an AOT option which allows compiling a list of prechosen

methods using its JITC module and saves their machine code in a ¯le on a persistent

storage. When the JVM starts o±cially, it will use the compiled machine code

directly without interpretation or JITC, when they are executed. There are no

interface issues between AOT methods and JITC methods since they are based on

the same compiler as in QuickSilver. However, unlike QuickSilver, the machine code

is generated statically irrespective of program execution, so the AOT-generated code

is not exactly the same as the JITC-generated code but worse. For example, the AOT

inlining is ine±cient since it is not based on the runtime pro¯le information unlike

JITC. Moreover, a few code optimizations in JITC are disabled due to the relocation

and code patch issues. Fundamentally, JITC would not perform any time-consuming

optimizations since the compilation overhead is part of the running time, so a JITC-

based AOTC is likely to underperform the bytecode-to-C AOTC, as indicated by the

comparison graph of the full-AOTC and the full-JITC in Fig. 1.

We actually constructed a hybrid environment using the AOT for a commercial

DTV software platform where the downloaded xlets are handled by the JITC, while

the ACAP middleware and system classes are compiled by the AOT.19 We observed

little performance improvement compared to the full-JITC's for commercial xlets

broadcasted in Korea because of the problems listed above, although the AOT

obviates the JITC overhead for the AOT methods.

Jikes RVM includes two kinds of compilers: a baseline compiler and a tiered set of

optimizing compilers.20 The baseline compiler translates bytecode into machine code

before execution starts, while the optimizing compilers recompile hot methods with

optimizations at runtime. So, the baseline compiler and the optimizing compiler

correspond to an AOTC and a JITC, respectively. However, what the baseline

compiler generates is machine code corresponding to what the interpreter does, so

the relationship between the two compilers is more like our JITC-interpreter, not our

JITC�AOTC.

The .NET platform of Common Language Runtime VM also employs a JITC,

which translates MSIL (MS intermediate language) into machine code.22 It is also

possible to invoke the JITC o²ine so as to compile ahead-of-time. This JITC-based

AOTC can save only the JITC overhead, as QuickSilver can.
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7. Summary and Future Work

We believe that an embedded Java platform architecture with the middleware

classes on the client device and downloaded classes from the service provider will be a

mainstream. This paper proposes a hybrid compilation environment with both

AOTC and JITC for accelerating this dual-component software architecture. As

far as we know, our work is the ¯rst one which proposes a hybrid compilation

environment, after identifying the trend of the embedded Java software architecture.

We performed a case study by merging an existing JITC and AOTC, yet found

some performance anomaly with such a hybrid environment. Our analysis shows that

the anomaly is primarily due to method calls between JITC methods and AOTC

methods which cause serious call overhead. We also found that it is related to the

characteristics of methods. An optimization to reduce the call overhead could reduce

the anomaly, but the desired hybrid performance with our environment appears to

be achievable only when enough running time is spent on the AOTC methods.

Fortunately, the middleware and system classes are dominantly executed in a DTV

environment, justifying the proposed hybrid compilation.

Fundamentally, it is questioned how we should design an e±cient hybrid

environment in general. One idea is that we employ a common IR (intermediate

representation) for both the JITC and AOTC so as to reduce the interface issues

between them. However, it appears that one root problem of the hybrid environment

is still related to the Java stack that we should maintain around the method call, GC,

and EH boundaries. We can think of three cases.

If all of our compilers are based on the Java stack, meaning that the AOTC is

based on the JITC as in Sun's AOT, yet with full-°edged optimizations added for the

purpose of the AOTC, there will be no interface problem and a better performance

will be achievable than a JITC-only environment. However, the method call with the

Java stack will be slower than the one with the C stack with register-based argument

passing (as in our AOTC-to-AOTC calls), unable to achieve the best performance.

If the AOTC is based on the C stack while the JITC is based on the Java stack as

in our proposed environment, there is a serious interface problem as discussed in this

paper.

If all of our compilers are based on the C stack, even with the interpreter being

replaced by a low-end JITC, then we can achieve a high performance with register-

based argument passing and with no interfacing problems. The question is if we can

redesign GC and EH easily so that they work correctly and e±ciently even without

the Java stack. Also, it is questioned if such a JITC-only-based AOTC can always

achieve a fast call, as the AOTC-to-AOTC call in our bytecode-to-C AOTC,

considering that its AOTC code should also work with the low-end, JITC-gener-

ated code; this might lead to slower JITC-to-AOTC calls than its AOTC-to-AOTC

calls probably due to the additional overhead of copying arguments to registers

similarly as in our hybrid environment, unless the low-end JITC can perform
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high-performance register allocation. Finally, the class loading overhead and the

machine code loading overhead discussed in the QuickSilver case might a®ect

the AOTC performance negatively compared to the bytecode-to-C. Consequently,

this stack issue should be resolved ¯rst for building an e±cient hybrid environment.

Another way of building a compilation environment based only on the C-stack is

performing AOTC for the downloaded classes at the provisioning server and sending

the compiled binary to the client. In fact, there is a commercial Java platform for

mobile phones called WIPI (Wireless Mobile Platform for Interoperability) which

takes this approach of compilation. In WIPI, not only the Java middleware on the

mobile phone but the downloaded classes from the service provider are compiled into

binaries by the b-to-C AOTC, which can then be downloaded into mobile phones.

Both the middleware classes and the downloaded classes are compiled into separate

binary ¯les, so newly downloaded classes or updated classes can readily work with

the existing ones and the JVM without any special handling. Obviously, there is no

stack interface issue between downloaded classes and middleware classes, but

downloading binaries instead of Java classes can raise portability and bandwidth

issues, thus being rarely used.

Another idea is performing a C-stack-based AOTC for the downloaded classes at

the client. In fact, we performed AOTC for the downloaded xlets for the DTV during

the idle time of the DTV,19 yet its AOTC was based on the Java-stack-based JITC. If

we employ a separate, C-stack-based AOTC for the downloaded classes and if there

is indeed an idle time, we can have a C-stack-based binaries for both the middleware

and downloaded classes. One issue is that since the AOTC is performed on the online

client device, not on an o²ine server, such an AOTC would have both time and

memory constraints, as the low-end JITC mentioned above. So it might have similar

performance issues.

As to the code optimization, JITC has the advantage of fully exploiting the runtime

pro¯le informationwith its dynamic compilation, while the bytecode-to-C can perform

pro¯le-based static compilation only, so the JITC-based AOTC might lead to better

code quality. However, this can be exploited only when we obtain the machine code

after the execution of programs as inQuickSilver, not in Sun's AOT, thus requiring the

class loading overhead and the machine code loading overhead as well. Actually, no

matter which AOTC approach is taken, we need more elaborate code optimizations to

improve the hybrid performance, such as the collaborative, static, and dynamic op-

timizations between AOTC and JITC, similar to but extending the idea of dynamic

compilation.21 Investigation of these issues is also left as a future work.
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