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Abstract A significant current software engineering
problem is the conceptual mismatch between the ab-
stract concept of an association as found in modelling
languages such as UML and the lower level expressive
facilities available in object-oriented languages such as
Java. This paper introduces some code generation pat-
terns that aid the production of Java based implementa-
tions from UML models. The work is motivated by a pro-
ject to construct model driven development tools in sup-
port of the construction of embedded systems. This in-
volves the specification and implementation of a number
of meta-models (or models of languages). Many current
UML oriented tools provide code generation facilities,
in particular the generation of object-oriented code from
class diagrams. However, many of the more complex as-
pects of class diagrams, such as qualified associations are
not supported. In addition, several concepts introduced
in UML version 2.0 are also not supported.The aim of
the work presented in this paper is to develop a num-
ber of code generation patterns that allow us to support
the automatic generation of Java code from UML class
diagrams that support these new and complex associa-
tion concepts. These patterns significantly improve the
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ful automation facility that bridges the gap between the
concept of an association and lower level object-ori-
ented programming languages.
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1 Introduction

With the continuing rise in the complexity of embedded
systems (i.e. computer systems placed within domestic
and industrial devices such as washing machines, mo-
tor vehicles, watches, etc.) developers and manufactur-
ers often experience a significant increased difficulty in
ensuring the correct operation and reliability of their
systems. Although system verification techniques can be
employed to provide additional confidence in the cor-
rect working of the systems, the creation of the formal
verification models is time consuming and requires a
high degree of expertise that is expensive and in short
supply.

The design process for embedded systems moves from
abstract high level descriptions (models), such as block
diagrams, to low level specific implementations details,
such as a microchip circuit diagram. This paper reports
on work that forms part of an international project,
ModEasy [24], which aims to produce integrated
software tools for the development and verification of
embedded systems.

Using Model Driven Development techniques (MDD
[32]), the project intends to provide automated sup-
port for mapping embedded system designs on to both
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low level implementations and system verification tool-
kits. There is a clear advantage in providing this kind
of automated support – namely that there is a single
specification written by the designer, which is used to
both verify and implement the system, thus avoiding
the significant problem of the introduction of differ-
ences between the verified and implemented versions
of the system. This approach relies extensively on the
necessity for the transformations from high level design
specification to verification model1 and high level de-
sign specification to implementation to be correct. The
key point is that if we can prove that these transforma-
tions are both correct, then the model of the system that
is verified will match the model of the system that is
actually implemented.

One primary task within the process of providing
MDD based tools is the production and implementa-
tion of models or meta-models (models of models, or
the model of a modelling language). For instance, to
produce our ModEasy toolkit we require meta-models
for a design language, for a verification language, and
for any of the implementation frameworks we intend to
map the designs to.

Within the current work, the design and verification
support tools are provided within the Eclipse IDE [15]
which requires us to implement our models using the
Java programming language [34]. The Java program-
ming language is not (and was never intended to be)
a modelling or meta-modelling language. The Object
Management Group’s (OMG) [26] Meta Object Facil-
ity (MOF) [27] has, however, been designed specifically
as a set of concepts with which to define (or model)
other languages. Therefore, in order to best support our
needs to define meta-models of a system design lan-
guage, verification and implementation frameworks, we
chose to use the MOF as the language for defining those
meta-models. Of course this then leads us to the issue of
how to implement models in Java that are defined using
MOF. There are a couple of choices regarding a general
implementation approach:

• To implement the models directly in Java (using an
approach such as EMF [16])

• To implement the models as instances in a meta-
model repository (using an approach such as MDR
[23])

1 A verification model is a representation of the system design in
a language that is suitable for input to a verification toolkit. For
example, a potential target could be the language of timed auto-
mata, facilitating the verification (by model-checking) of timing
properties of the system

Both of these choices have their advantages and
drawbacks. Use of a meta-model repository provides
a quick way to provide support for a given model. One
needs only to provide a specification of the model (possi-
bly using XMI [31]) and the meta-model repository can
be used as a repository for instances of the given model.
Another advantage is that the meta-repository could
easily provide support for serialising and un-serialising
instances of the given model in a standard format (again
potentially XMI). The drawbacks of this approach are
efficiency issues introduced by the meta-level objects
that represent each of the given model objects, and
the consequent reliance on the (probably third party)
meta-model repository itself. This latter issue is partially
resolved by the standardization of the Java Metadata
Interface (JMI) [17] that forms part of the libraries is-
sued with Java 5, which provides a standard interface for
MOF repositories, i.e. JMI (version 1.0) defines a Java
mapping for the MOF (version 1.4).

The direct implementation approach requires more
effort up front (i.e. specifying the mappings from mod-
elling concepts to programming concepts, as addressed
in this paper); additionally serialising model instances is
more complex. The advantages of the direct approach
are that there is no reliance on a third party library, and
if you have control of the code generation templates you
can have complete control of the implementation pat-
terns and hence some control over the efficiency choices.

Even though it is not desirable practice and a good
round trip engineering tool should reduce the problem,
it is still the case that code implementations and design
models can easily become separated. Considering this,
it is quite important that any code that is automatically
generated from a model be produced in a way that is
easy to understand. Thus we have two main goals for
code generation from models:

1. Readable code
2. No use of bespoke or third party libraries

Even though the modelling community has been using
MOF and UML [30] based languages for several years,
and there are a number of tools that generate Java code
from UML models, there are still some significant is-
sues regarding how to implement some of the concepts
(especially due to the introduction of some new ones
with the advance to UML 2.0). In particular, one of the
major abstractions used in object-oriented (OO) mod-
elling languages such as MOF and UML is the concept
of an association. This concept does not exist in OO pro-
gramming languages such as Java (or any of the other
mainstream OO languages). Consequently, in order to
generate code from a UML or MOF model it is necessary
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Table 1 Evaluation of existing tools—part 1

Rational Rose (8.3) Octopus (2.0) Poseidon (3.0) Fujaba (4.2) Omondo (2.0)

Field Yes Yes Yes Yes Yes
Accessor No Yes Yes Yes, but no Yes

‘get’ method for
collections

Mutator No Yes Yes Yes yes
Bi-directional No Yes Partial Yes No
Multiplicities Yes – no bounds Yes – can execute Yes – no check on Yes – no check on Yes – no check on

check a bounds check bounds bounds bounds
Collection types All as arrays Yes Orderd/unorderd as Orderd/unorderd as Java types

TreeSet/ArrayList bespoke Fujaba types
Derived No No No No No
Composition No No No No No
Qualifiers No No No Yes, using bespoke Yes, using Map

fujaba types
N-ary associations No No No No No
Subsetting No No No No No
Derived Union No No No No No
Redefinition No No No No No

to devise a mapping from associations on to the chosen
OO programming language.

The concept of an association is a complex abstrac-
tion facilitating a variety of specification variations all
of which affect the semantics of the association. There
are many modelling tools that claim to support code
generation from UML models; however, none of the
tools reviewed by the authors address the generation
of code for the complete set of possible variations of
an association specification. In particular, some tools
do not correctly implement the bi-directional semantics
of an association and most do not address generation
from the more complex qualified and n-ary associations.
Additionally, the new UML 2.0 set of standards has been
recently released including some new concepts such as
redefinition and subsetting which of course the tools do
not yet support. Supporting code generation from UML
to Java is made easier for some of these new features
by the changes to the Java programming language intro-
duced with Java 5.

This paper focuses on providing solutions to the issues
of mapping qualified associations and the new (UML
2.0) semantic variations of an association into the Java
5 programming language. Section 2 provides a review
of the association related code generation facilities of
a number of UML based tools and a review of exist-
ing research that addresses the generation of code from
associations and the semantics of associations. Section
3 gives an overview of the basic problem regarding the
implementation of associations. Section 4 looks at how
to implement UML 2.0 (unlinked) properties and in par-
ticular the more complex aspects of redefined, subsetted
and qualified properties. Sections 5 and 6 subsequently

look at how the implementation of uni-directional and
bi-directional associations differs from the basic prop-
erty implementation. We demonstrate the proposed
implementation approaches using tools from the Kent
Modelling Framework (KMF) as discussed in Sect. 7.

2 Background

There are many UML based tools that offer code
generation features (for examples see the Tables 1 and 2).
The code that is generated by the majority of these
tools treats the UML model as something very close
to a ‘picture of the code’, i.e. there is not much concep-
tual difference between the low level generated code
and the source model; in these tools the modelling con-
cepts are effectively not much more complex than the
concepts available in the target programming language.
Although this can be useful, it is not quite as useful
as providing support for converting high level, complex,
modelling concepts into lower level code that represents
a true implementation of them.

In Tables 1 and 2 we show the results of evaluating
the association related code generation facilities of a
number of major UML tools. A value of Yes indicates
that the modelling concept is supported by the tool and
use of it in a model correctly affects the generated code;
and value of No implies that either the concept is not
supported, or if it is, using it has no effect on the code
generated.

Some of these tools allow you to specify your own
code generation templates; however, they are evaluated
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Table 2 Evaluation of existing tools—part 2

EMF (2.02) Artisan (5.0.22) MagicDraw (9.0) Visual Enterprise
UML (4.14) Architect (4.51)

Field Yes Yes Yes Yes Yes
Accessor Yes No No No No
Mutator Yes No No No No
Bi-directional Yes No No No No
Multiplicities Yes, no No No No Yes, no

bounds check bounds check
Collection types Ordered/Unordered All as arrays No No User specifiable

as bespoke types java types
Derived No No No No No
Composition Yes No No No No
Qualifiers No No No No No
N-ary associations No No Yes – as a class No No
Subsetting No No No No No
Derived union No No No No No
Redefinition No No No No No

with what comes “out of the box”; additionally some of
the tools perform differently when generating code for
languages other than Java, but for the purpose of this
paper they are evaluated against their Java code gener-
ation facilities.

The UML standard does not include a complete
semantics of n-ary associations so it is not surprising
that the tools do not support them. Also the last few
concepts (subsetting, derived union, and redefinition)
are concepts only introduced with version 2.0 of the
UML, so it is not surprising that at the time of writing
this paper they are not yet supported. However, it is dis-
appointing that only three of the reviewed tools (EMF,
Octopus and Fujaba) generate code that correctly sup-
ports the bi-directional semantics of an association; and
only one of these (Octopus) supports the full comple-
ment of different collection types.

The Fujaba and Omondo tools are the only ones
reviewed that provide some support for qualified asso-
ciations; The Fujaba tool makes use of bespoke class li-
braries to provide the implementation and the Omondo
tool uses the java.util.Map class, thus only providing
facility to implement single qualifier values (see later
section for details).

2.1 Implementing associations

In addition to tools, there is a significant amount of
literature that addresses the meaning, or implementa-
tion, of UML associations. The most obvious reference
for the semantics of associations and properties is the set
of UML standards. This currently consists of four docu-
ments: UML Infrastructure, UML Superstructure, MOF
Core and OCL [27–30], amounting to over 1,000 pages.

They give pretty complete information on the semantics
of the concepts of Property and Association. These doc-
uments are an evolution of earlier standards which were
less complete and thus inspired a fair amount of re-
search, such as [33] which addresses some of the seman-
tic issues of Associations and in [12] the authors discuss
a number of transformations that aid understanding of
the semantics of associations. In [5] the authors give a
valuable discussion regarding the UML 2.0 semantics of
overriding and redefinition with respect to operations.
Unfortunately, even though these issues have been ad-
dressed to some extent, there are still problems regard-
ing the semantic interpretation of some of the latest
UML 2.0 concepts.

With respect to implementing associations in a
programming language, there are some books that touch
on the subject, however, none cover the issues com-
pletely. Larman in [21] suggests refining all associa-
tions into uni-directional associations and thus avoids
the issue of implementing the more complex association
types. In [7] the authors give a ‘Composite’ design pat-
tern that is suitable for implementing composite associ-
ations. Fowler mentions the issue in [6] and gives correct
code for implementing a one-to-many association; how-
ever, the implementation is limited to being ‘read-only’
and makes use of special “friend” operations that are
used only for implementing the semantics.

From the research literature, [4] mentions the issue
but gives no solution, [35] talks about implementing
associations and suggests using a ‘junction class’ but does
not really show how. Reference [25] suggests the use
of explicit ‘relationship objects’ and gives a pattern for
the implementation of bidirectional associations, recom-
mending a master/slave approach; however, there is no
reference to UML, n-ary associations or qualified asso-
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ciations. Reference [18] addresses the issue of mapping
associations to the Ada programming language, but do
not address the more complex aspects such as n-ary and
qualified associations.

The most extensive work has been carried out by
Génova initially in his PhD thesis [9] with some of
the work published with colleagues elsewhere [8,10,
11]. Their work gives solutions for implementing binary
associations and looks at the semantics of all variations
of pre-UML version 2.0 associations. In [14] the authors
do not explicitly mention the bi-directional issue; how-
ever, they do discuss association classes and subtyping
associations although not much detail is given on the
actual code pattern employed to implement these con-
cepts. Reference [22] specifically highlights the bi-direc-
tional issue and suggests an implementation approach
that uses Java reflection and provides a variation to the
Fujaba approach in an attempt to provide “less clut-
tered” code. Reference [1] addresses the new UML 2.0
concepts of subset, redefinition and union by a tech-
nique involving explicit Association classes and inter-
faces from the JMI [17] standard.

Additionally, some authors have addressed the re-
verse issue of reverse engineering Java code into UML
models [13,20]; the work of [20] is quite extensive cov-
ering patterns of Java code that reverse engineer into a
variety of association concepts including n-ary, bi-direc-
tional, qualified and association classes.

3 The basic problem

One of the most obvious differences between a UML
model and code is formed using the concept of an asso-
ciation. Programming languages, such as Java, do not
include the concept of an association and so a ‘program-
ming pattern’ must be employed in order to map one
onto the programming language. The simplest of the
solutions offered by many code generation tools is to
implement each association end as an attribute in a class,
with slightly more complex solutions providing getter
(accessor) and setter (mutator) methods. This solution,
although capturing the static structure of the model,
does not correctly implement the semantics of an asso-
ciation, hence allowing invalid instances of the model to
be created at runtime.

Much of the usefulness of the association concept
comes from its bi-directional semantics and the wide
variety of characteristics that can be specified for each
association end. However, it is these two aspects that
cause the complexity in mapping the concept onto a
programming language such as Java.

The modelling concept of an association is composed
of two or more association ends. Prior to UML/MOF
version 2.0 the concept of association end was repre-
sented by an ‘AssociationEnd’, however, as of version
2.0 the concept has been merged with the concept of
‘Attribute’ to give the notion of a ‘Property’. Classifiers
(classes) contain a number of ‘Properties’ (previously
‘Attributes’) and ‘Properties’ (previously as ‘Associa-
tionEnds’) can be linked using ‘Associations’. This merge
does make things simpler in that from a navigation point
of view we need only be concerned with classes and
properties, but from an implementation perspective we
must remember that properties linked to form an Asso-
ciation have additional semantics.

A simple example to illustrate the concept involves a
1-to-1 association between two properties as shown in
Fig. 1a. This figure defines two classes A and B and an
Association; A has a property b of type B and B has a
property a of type A; the two properties are linked by
the Association. Figure 1b shows a similar situation with
two classes A and B each having similar properties but
without the properties being linked by an Association.

The difference between these two situations becomes
clear when we look at potential instances of the classes
and how they are linked. Figure 2 shows two sets of
instances of four objects each, the dashed arrows indi-
cate property values (consider them as Java object ref-
erences). Figure 2a is a valid set of instances for either
of the class specifications of Fig. 1, Fig. 2b, however, is
only a valid set of instances for the class specifications
of Fig. 1b. The semantics of the association in Fig. 1a
states that the two properties A::b and B::a are linked,
i.e. navigating from object a1 via the property b to a B
object and the from that B object back to an A object
via property a must result in the same object a1 that you
started from. More formally this can expressed as a pair
of OCL invariants:

context A context B
inv :self.b.a=self inv :self.a.b=self

One solution to the implementation issue is to imple-
ment this invariant (perhaps as a Java assertion, or a
separate method) and allow it to be checked. How-
ever, this does facilitate invalid model instances to be

A B

A B

b : B[0..1] a : A[0..1]

(b)

(a)

0..1
0..1

Fig. 1 Simple example
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Fig. 2 Simple example
instances

a2 : A b2 : B 

a1 : A b1: B

a2 : A  b2 : B 

a1 : A b1: B

(b)(a)

Table 3 Ensuring bi-directionality

constructed and relies on the invariant actually being
checked. Another, perhaps safer option, is to implement
the model so that the semantics can not be broken; in
fact, to implement these semantics it is fairly straightfor-
ward. The properties a and b can be implemented with
accessors and mutators. To ensure that the bi-directional
semantics of the association is kept true, we implement
the mutator behaviour in such a way as to force the
bi-directionality to be ensured (see Table 3).

However, this is only illustrating how to implement
one variation of an association between classes A and
B, there are many other variations; in order to correctly
implement the semantics of all these variation, we first
look at what the possible variations are (as of UML 2.0),
then look at how to implement each of those variations
separately, and finally consider how the mix of multiple
variation options affect the combined implementation.

3.1 A property’s properties

The implementation (discussed above) is for the sim-
ple case of the most basic 1-to-1 association. There are
many adornments that can be added to the ends of an
association (a property) which add complexity to their
semantics and consequently to the implementation of
the association. Each of the additional adornments that
can be added to a property adds some complexity; addi-
tionally the combination of multiple adornments causes
a certain amount of semantic “ feature interaction”, caus-
ing even greater complexity in the required implemen-
tation code.

Figure 3 below shows an extract of the UML 2.0 defi-
nition of a property with most of the direct and inherited

properties of a property2 shown. In order to correctly
provide an implementation for a property we must take
into consideration each of the characteristics of a prop-
erty, and define how the various values of those char-
acteristics affect the basic implementation of a simple
property.

The basic properties of a property are its name, type
and default value. A property can be owned by either
a class or an association; if it is owned by a class then
it is ‘navigable’, ‘non-navigable’ properties (association
ends) are owned by an association. It is necessary to rep-
resent a non-navigable property, as characteristics such
as a multiplicity may be expressed on it.

If a property has an opposite property, then it is part
of a binary association and should have a bi-directional
semantics with the opposite property. The lower and
upper bounds indicate if the property represents a col-
lection of objects of its designated type. The combina-
tion of isUnique and isOrdered indicate the type of the
collection (Set, Sequence, Bag, or OrderedSet).

The isReadOnly property is self explanatory (the
property can only be read from and not set to a new
value) and a derived property is one whose value is
calculated from an expression (defined as an attached
constraint). If a property is marked as isDerivedUnion
then it is considered to be read only and its value is de-
rived from a strict union of all properties that subset it.
A composite property indicates that the object owning
the property acts as a container for the property value.
An object can only be contained by a single container

2 In future we refer to the properties of a property as property
characteristics in order to avoid the confusion of discussing a
property’s properties
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Fig. 3 UML 2.0 definition
of class ‘Property’

Property

Class

name : String

Association

name : String
type : Classifier
default : String
opposite : Property
lower : Integer
upper : UnlimitedNatural
isOrdered : Boolean
isUnique : Boolean
isReadOnly : Boolean
isDerived : Boolean
isDerivedUnion : Boolean
isComposite : Boolean
isID : Boolean
redefinedProperty : Set(Property)
subsetedProperty : Set(Property)
qualifier : Set(Property)

owningAssociation
0..1

ownedEnd 0..*

2..*
memberEnd

0..1

ownedAttribute
0..*

and if the container is deleted then so are its contents
(contents can be removed from the container to avoid
deletion); a composition defines a transitive asymmetric
relationship – i.e. a directed acyclic graph. For example,
the model shown in Fig. 3 shows that both a class and an
association may act as the container for a property, how-
ever, only one may be the container for a single property
at any one time.

If a property is marked isID then it forms an identi-
fying property for the owning object, i.e. this property
value should be unique for all objects of the owning class.
The set of redefined properties of a Property indicate
those properties that this property redefines; likewise,
the set of subsetted properties indicates those property
values for which this property value forms a subset. The
set of qualifying properties are values used as qualifiers
for the property value.

The following sections give further explanation on
the semantics of these properties of a Property and we
discus how to implement the semantics effectively in the
Java OO programming language.

4 Unlinked properties

A basic unlinked property is semantically equivalent
to a uni-directional association with source end mul-
tiplicity fixed as ‘0..*’. Implementing such properties is
much simpler than implementing ones that are part of an
association or are bi-directional. Many tools that offer
code generation from UML models provide an accurate

implementation with respect to some of the character-
istics (see Sect. 2). However, there are still many char-
acteristics that complicate the implementation task, and
which are not addressed by current tools. In this subsec-
tion we look at the variations to a baseline implementa-
tion that the property characteristics dictate.

4.1 Baseline

A basic implementation of a simple property Fig. 4 can
be provided using a private attribute with accessor and
mutator methods as shown in Table 4 for property b:B
in a class A.

4.2 Target end: multiplicity, isUnique, isOrdered

The simplest change to the target end multiplicity is to
make the value compulsory as opposed to optional, i.e.
multiplicity ‘1’ rather than ‘0..1’ Fig. 5. Java references
are always optional as they can take the value ‘null’; if
we specify that a property or association end is compul-
sory then we must ensure that its value is always set.
The only way to do this is to ensure that a value for the
property is a parameter to the constructor of the imple-
mentation class, and make sure that the mutator for the

A B0..*
0..1

A

b : B [0..1]

Fig. 4 Baseline



10 D. H. Akehurst et al.

Table 4 Baseline

A B0..*
1

A

b : B [1]

Fig. 5 Compulsory

property cannot accept the value ‘null’. Similarly, if the
upper bound is greater than 1 and the lower bound is
greater than 0 we must ensure that a collection of values
is passed to the constructor, and that mutators on the
property do not allow the size of the collection to fall
outside of these bounds.

In this respect, there is a virtual derived characteristic
of a property, given by the expression “lower bound > 0”,
indicating whether or not the property value is optional.
If a property value is not optional then there must be
values for it passed to the constructor of the owning
implementation class and the mutators must check that
there are always value(s) for the property. The issue of
implementing properties in accordance with the upper
and lower bounds can be divided based on whether or
not the property value is optional and whether or not
the upper bound is greater than 1. The implementation
can be altered to check that the property is never set to a
null value by adding an assertion to the property muta-
tor as shown in Table 5; an initial value for the property
should be supplied via a constructor. The use of asser-
tions does require that assertions are switched on by the
Java compiler and runtime environment. An alternative
is to provide an explicit conditional statement (if) with
a corresponding exception to be thrown.

4.2.1 Collection type properties

To implement a property with an upper bound that is
infinite (or greater than 1), we need to handle the issue
of collections, and so we must also consider the isUnique
and isOrdered properties. The effect of this on the basic
pattern is to change:

• The type of the stored attribute
• The return type of the accessor
• The parameter type of the mutator

We can extend the previous code pattern to support this
by making a decision on how to map the UML/OCL
collection types onto Java classes. The Set, Sequence
and Bag types map in a straightforward manner on
to the Java Set, List and Collection classes; there is,
however, no standard Java class that is equivalent to
the UML/OCL concept of an OrderedSet. The closest
option is a java.util.SortedSet, which does provide an
ordering for its elements. We could use this interface,
and provide the implementation of a java.util.Compar-
ator based on insertion order. Given that Set and Se-
quence are mapped to java.util.Set and java.util.List,
we would rather have OrderedSet mapped to a Java
class/interface that extends both of these interfaces;
unfortunately this cannot be implemented using an
anonymous class, so we must provide an explicit imple-
mentation to provide such a type. Another option is to
use java.util.Set as the interface, but provide an imple-
mentation based on java.util.List; this would provide a
Set with a fixed ordering, though not give access via the
java.util.List methods.

None of these options is totally satisfactory, we do
not really want to provide explicit classes, but neither
is the java.util.SortedSet an ideal solution. Ideally a
java.util.OrderedSet would be provided by the standard
Java libraries, however, until this occurs, we must go with
one of the mentioned options.

The code pattern can be adapted to use the collection
classes as illustrated in Table 6. With respect to the muta-
tor body, it is important to clear and add all elements
within the mutator, rather than setting the implementa-
tion field to a new value as this ensures that the selected
implementation object for the collection doesn’t change.
This is particularly important if we implement the col-
lection and override the collection mutators to either
check that the bounds are not violated, or to make the
collection read-only (see later sections in the paper).

4.2.2 Initial values

For basic collection-based property specifications, the
initial value for the implementation should be an empty
collection of the appropriate implementation class. The
initial value provides the code for instantiation of an
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Table 5 Compulsory

this.

Fig. 6 Collection Collection Type Properties

A B0..*
0..*

{unique}

A

b : Set(B) [1]

A

b : B[0..*] {unique} 

Table 6 Collection

appropriate Java collection class such as “new java.util.
Vector<B>()”. Later sections of this paper give more
complex definitions of initial values that handle bi-direc-
tional associations and read-only properties, by creat-
ing anonymous classes and overriding the collection
mutator operations.

4.2.3 Checking the bounds

Lower and upper bounds that have fixed values greater
than one can be supported by adding java assertion
statements that check the bounds have not been vio-
lated. This does require that assertions are switched on
by the Java compiler and runtime environment. The
bounds check must be added to the mutators for the
collection.

Many of the property characteristics require code
changes to collection mutators. To implement these we
propose a pattern involving two collections, one to store
the collection values, which provides the backing col-
lection for a collection object that is returned by the
property accessor but which includes the appropriate
mutator code. This is illustrated, including the bounds
checks, in Table 7. Note that when using this code pat-
tern, the lower bound checks must be switched off in
the ‘remove’ mutator (via a flag) if we are replacing the
entire collection.

Note: the error messages in the assertions should be
more descriptive of which object and property bounds
have caused the violation; the messages are shown here
in a short form for brevity.

4.2.4 Undefined values

What is the value of a collection property if it has not
been set? There are two potential answers: undefined or
an empty collection.

The value of an unset non-collection property is, in
Java, the value null, which we can equate with the OCL
notion of undefined. However, in the context of collec-
tion-based properties, if we consider the OCL semantics
of asking an undefined value if it is empty, which gives a
value of true, there is an implication that for a collection
object, the empty collection is equivalent to undefined.
Thus we answer the above question such that the unset
collection properties should be implemented as empty
collections. It can be argued that equating the empty set
with the notion of undefined is surprising; however, that
is the semantic as defined by the standard.

4.3 Immutable properties: isReadOnly

If a property is read-only, we must ensure that the prop-
erty cannot be assigned more than one value during the
life time of its owning object Fig 7. One mechanism to do
this would be to not provide a mutator, and necessarily
require that a value is provided when the owning object
is created. An alternative would be to allow a single set-
ting of the value by the mutator (at an arbitrary time);
implemented by including an assertion or test to check
if the private implementation field has already been set,
as illustrated in Table 8. This is, however, an unusual
interpretation of the semantics and the first option is
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Table 7 Collection with bounds check

A B0..*
0..1

{readOnly}

A

b : B [0..1] {readOnly}

Fig. 7 Read-only

preferable. However, as you will read in a later section
of the paper (Sect. 6), the second option could be useful
with respect to implementing bi-directional associations.

The accessor for a readOnly collection type property
must return a readOnly collection object. This can easily
by supplied by wrapping the returned object using the
java.util.Collections.unmodifiable(..) methods, e.g:

public B getB() { return java.util.
Collections.unmodifiableSet( this.b ); }

4.4 Derived properties: isDerived, isDerivedUnion

Implementing a derived property requires use of a pair
of derivation expressions, one defining the accessor and

one defining the mutator. For simple derivation expres-
sions, only the accessor would be required, and one
could automatically deduce the corresponding mutator
expression, however, in the general case both expres-
sions would need to be given.

The UML 2.0 set of standards do not prescriptively
define how these expressions should be specified, but
indicate that the derivation expression can be given in
a constraint. For our purposes, we assume additional
characteristics ‘accessorExpression : String’ and ‘muta-
torExpression : String’ that give the necessary expres-
sions. These expression properties could themselves be
derived by searching the appropriate sets of constraints
for its definition in accordance with the suggestion in the
standard, or perhaps both expressions could be given
in associated tagged values. Irrespective of where the
expression body specifications come from, the body
expressions can be translated into Java (or specified di-
rectly in Java) and substituted for the accessor and muta-
tor bodies in the template when the derived property is
implemented.
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Table 8 Read-only

A derivedUnion property is additionally readOnly,
and hence we do not require the mutator. The accessor
should return a value that is the union of the elements
in all properties that subset the one being implemented.
The subsetting properties are generally defined in sub-
classes and hence the implementation of the derived-
Union property can not be defined unless a property
that subsets it is created. Thus, derived union properties
that do not have a defined subset should return an empty
collection (or undefined/null value). Generation of code
for a derived union is addressed in a subsequent section
regarding subsetted properties. Note that although the
union operation is defined for all kinds of collection, the
notion of subset is not clearly defined for kinds other
than a Set (see Sect. 4.7).

4.5 Identifying properties: isID

The MOF 2.0 standard defines, as part of EMOF, a
characteristic of Property called ‘isID’. This Boolean
characteristic indicates that the Property can be used to
uniquely identify an object. The MOF standard specifies
that only one property may be an identifying property.
We believe this constraint to be too restrictive. Within
the Relational Database community it has long been rec-
ognized that entities may require more than one charac-
teristic to identify them, hence the specification of keys
as collections of fields.

The UML standards do not impose any other con-
straints or semantics on the concept of an identifying
property, and hence there is no effect on the code gen-
erated for a property marked as an identifying property.

It can be argued that an identifying property should
be both compulsory and read only, irrespective of
whether there are one or many identifying properties.
The property should be compulsory because otherwise
the owning object does not have an identity, and should
be read only because otherwise an object can have its
identity changed. If these constraints were to be imposed
the impact on the implementation is to require that the
identifying property be part of the object’s constructor
and that we do not provide a mutator.

In addition to these restrictions on the property itself,
there is also the notion of uniqueness; the set of identi-
fying values for an object should be unique (i.e. identify
a single object). This essentially forms a constraint on
the complete set of objects instantiated for a particu-
lar class. From the perspective of Java, this can not be
directly implemented without utilising an object reposi-
tory of some form. However, we can implement the Java
notion of object equality to define equality between two
objects if the values of their identifying properties are
equal. This is achieved by basing the implementation
of the ‘public boolean equals(Object obj)’ and ‘public
int hashCode()’ methods on the values of an object’s
identifying properties.

4.6 Redefining properties: redefinedProperty

A property can only be redefined if its context is prop-
erly related to the context of the redefining property.
This is formally and precisely defined in the Standard
documents, amounting roughly to ‘the class of the rede-
fined property must be an ancestor of the class of the
redefining property.’

Additionally, there is a constraint on the redefining
property that it must be consistent with the redefined
property; this too is formally and precisely defined in
the standards, informally the definition is as follows, [28]
Sect. 11.3.5:

A redefining property is consistent with a
redefined property if the type of the redefining
property conforms to the type of the redefined
property, the multiplicity of the redefining prop-
erty (if specified) is contained in the multiplicity of
the redefined property, and the redefining property
is derived if the redefined property is derived.

To implement a redefining property we must actually
implement two properties, one of which is the redefin-
ing property, implemented as specified, the other is an
implementation of the redefined property as a derived
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Table 9 Redefinition

A

b : B [0..*] C

d : D [0..*]{redefines b} 

B

D

Fig. 8 Redefinition of collections

property whose accessor and mutator expressions refer-
ence the redefining property.

There are four different situations that affect the
redefinition of a property, depending on the combina-
tion of whether the redefining and redefined properties
are a collection type or not. The simple case where both
are not collection types requires the derived property
accessor and mutator to reference the redefining prop-
erty’s accessor and mutator, as is illustrated in Table 9.
However, when one or both properties are collection
types, the situation is slightly more complex.

4.6.1 Collection type redefining a collection type

If both are collection types, instinctively we would as-
sume that we can do the same as for the situation where
both are non-collection types; however, if we consider
the redefinition specified in Fig. 8, the Java type java.util.
Set<D> does not conform to the Java type java.util.
Set<B> and hence the accessor “Set<B> getB()” cannot
return a type Set<D> nor can we cast a type Set<D> to
a type Set<B>.

The use of the Java generics wildcard based types [3]
(e.g. “? extends B”) would solve the type conversion
problems, but we cannot use the ‘add’ method on col-
lections defined using the wildcard. Instead to solve the
problem we define the collection object that forms the
initial value for the ‘b’ field to use the redefined property
as the backing collection, as illustrated in Table 10.

If there are fixed upper or lower bounds, the constraint
on the use of property redefinitions regarding the mul-
tiplicities ensures that if the redefining property bounds
are met, then the redefined property bounds will also be
met. There is of course the issue regarding properties

of different collection types that are in a redefinition
relationship; however, it is not too complex an issue, the
redefining property must be of a collection type that con-
forms to the redefined property collection type. The only
difficulty is with respect to a Sequence (java.util.List)
based collection type being redefined by an OrderedSet
based collection type, depending on which of the previ-
ously discussed options has been chosen to implement
OrderedSet based types.

4.6.2 Non-collection redefining a collection type

The constraint on the use of property redefinitions dis-
allows the situation where a collection type property
redefines a non-collection type; however, the reverse is
allowed. To provide an implementation for this situa-
tion, we again use the initial value definition for the
field and use the redefining value to construct a collec-
tion that is used as the source for the java.util.Abstract
collection type; an example is shown in Table 11.

Note that once a property has been redefined, assign-
ing it a value that is of the original type will cause a type
consistency error, as the redefined property cannot be
assigned the value of the original type.

4.7 Subsetting properties: subsettedProperty

If we look at the UML standards, there are two segments
of text (along with a few more formal constraints) that
help to explain the semantics of subsetting properties,
one which is given in the context of Associations, [28]
Sect. 11.3.1:

An end of one association may be marked as
a subset of an end of another in circumstances
where (a) both have the same number of ends,
and (b) each of the set of types connected by the
subsetting association conforms to a correspond-
ing type connected by the subsetted association.
In this case, given a set of specific instances for
the other ends of both associations, the collection
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Table 10 Collection redefining a collection

Table 11 Non-collection redefining a collection

denoted by the subsetting end is fully included in
the collection denoted by the subsetted end.

And the other given in the context of Properties, [28]
Sect. 11.3.5:

A property may be marked as a subset of ano-
ther, as long as every element in the context of
the subsetting property conforms to the corre-
sponding element in the context of the subsetted
property. In this case, the collection associated with
an instance of the subsetting property must

be included in (or the same as) the collection asso-
ciated with the corresponding instance of the
subsetted property.

The conditions for subsetting are very similar to the
conditions for redefinition, however, the meaning is of
course different. The subsetting property must always
contain the same elements as, or a subset of, the subsett-
ed property. Although the UML standard allows us to
define subsets between pairs of collections of any type,
the notion of ‘subset’ for any other than a Set type is not
obvious. We illustrate in this paper how to implement
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subset with respect to collections of type Set, leaving the
other collection types for future work.

There are two situations to handle with respect to
subsetted properties:

• When the subsetted property is a derivedUnion
• When it is not

If the subsetted property is a derivedUnion, we can
implement the derivedUnion Property by overriding
the accessor, to return a Union of all the properties
that subset the derivedUnion, and we need not alter the
implementation of the subsetting properties.

For subsetted properties that are not derivedUnions,
it is slightly more complex. The subsetted property is
mutable and thus should allow objects to be added to
and removed from it. Objects that are removed from
the subsetted property must be also removed from any
subsetting property. Objects that are added to the sub-
setting properties should be also added to the subsetted
property. The question is what to do about objects that
are added to the subsetted property or removed from
subsetting properties; as neither of these actions would
invalidate the subsetting semantics, doing nothing would
not be an incorrect implementation.

4.7.1 Non-set types

The subsetting semantics when both the subsetted and
subsetting properties are not set types is pretty straight-
forward. If the multiplicities of properties ‘b’ and ‘d’ in
Fig. 9 were [0..1], for d to be a subset of b it must either
have the same value as b or the value null (where null
or undefined is equivalent to the empty set). We would
generate code to implement the mutators for property
‘d’ as shown in Table 12.

A value of null (or undefined) is considered to have a
size of 0 and can thus be considered to be an empty sub-
set of a single object value. In this example, if property
‘d’ is undefined but ‘b’ has a value then the value of ‘d’
is considered to be a subset of the value of ‘b’.

A

b : B [0..*] C

d: D [0..*]{subsets b}

B

D

Fig. 9 Subsetting set types

4.7.2 Set types

If both subsetting and subsetted properties are sets, then
we provide a specific implementation of the set type
for both subsetted and subsetting properties. The ‘add’
method of the subsetting property must include code
to add objects to the subsetted property and the ‘re-
move’ method of the subsetting property should include
code to remove objects from the subsetting property. We
can use a similar mechanism to that used to implement
redefined properties, for example the code in Table 13
gives the implementation field for each property from
the specification in Fig. 9 (the accessors and mutators
are implemented as usual).

4.7.3 Non-set subsets set type

As with the concept of redefining properties, a non-set
type property may subset a set type property. In this case
we implement a mix of the two implementation situa-
tions given above; the remove method of the subsetted
property must ‘set’ the value of the subsetting property
rather than ‘remove’ items from it; and the mutator for
the subsetting property must ‘add’ objects to the subs-
etted property.

4.8 Composite properties: isComposite

Composition is a notion of containment implying that
objects can be ‘part of’ one (and only one) other object
and also implies a relationship between the lifetimes of
an object and its parts Fig. 10. The work of [2] gives a
good explanation of the composition semantics, and the
UML standards [28] state, Sect. 11.3.1:

An association may represent a composite
aggregation (i.e., a whole/part relationship). Only
binary associations can be aggregations. Compos-
ite aggregation is a strong form of aggregation that
requires a part instance be included in at most one
composite at a time. If a composite is deleted, all of
its parts are normally deleted with it. Note that a
part can (where allowed) be removed from a com-
posite before the composite is deleted, and thus
not be deleted as part of the composite. Composi-
tions define transitive asymmetric relationships –
their links form a directed, acyclic graph.

To implement the notion of composition with the
correct semantics, we require that:
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Table 12 Subsetting non-set types

Table 13 Subsetting set types

A B1
0..1

A

b : B [0..1] {composite}

Fig. 10 Composition

(a) An object is ‘contained’ by only one other object
(b) That if the container is destroyed, then all con-

tained objects are also destroyed
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4.8.1 One and only one container

If a property is marked as composite, then this im-
plies that the source end of the association must be de-
fined as having a multiplicity of ‘1’ or ‘0..1’. In fact the
UML infrastructure defines a constraint (11.3.5 [3]) on
Property that enforces this situation. Thus, when imple-
menting composite properties we must also address the
reverse multiplicity as discussed in Sect. 5 for uni-direc-
tional associations. For the composition semantics, it is
necessary to check that no other object refers to (in this
case) a B object (see Fig. 10) via a composite property.
It is feasible to check that no other A object refers to a
B object (see source end multiplicity on uni-directional
associations in Sect. 5). However, to check that no other
object of any type refers to a B object is not feasible (we
would have to search all instances of all other types that
refer to type B, how do we determine which other types
refer to B? and it would potentially take too long to do
this anyway).

To implement the composition semantics correctly,
it is necessary to add information to an object’s state
that indicates its container and by which property it is
contained. This kind of approach is provided by code
generated using EMF [16]. One way to do this is to
associate the composition semantics with an association
defined on a class that forms the root type for all classi-
fiers in a model; e.g. if the class Any shown in Fig. 11 is
used as the root class, then properties that are marked
as being composite properties are defined to subset the
composite and part properties defined on the root class
Any (in EMF there is a root class named ‘EObject’).
This almost, but not quite gives the correct semantics.

The composite property ‘b’ from class A in the specifi-
cation of Fig. 10 is implemented as subsetting the prop-
erty ‘part’ inherited from the root class Any; as each
‘part’ can only have a single ‘composite’ container object
(see sections on bi-directional associations and subset-
ting properties), any B object that is set to the prop-
erty ‘b’ of an A object will have a single ‘composite’
container.

Any 0..1
composite

0..*  part

A

b : B [0..1]{subsets part} 

A

B

0..1
B

Fig. 11 Implementing composition

Note, this approach to the implementation does mean
that we can set the composite or parts of an object di-
rectly, this could mean that, for instance, in the above
example we could give an A object parts that are not
accessable via the ‘b’ property. This is correct seman-
tics for the notion of property subsetting, but could
be considered incorrect for the semantics of composi-
tion. If we define ‘part’ and composite to be read only
then we eliminate this issue, however, it then means that
the semantics for bi-directional associations cannot be
implemented (as this requires write access to each end
of the association). Ideally we would be to treat the
mutators for ‘part’ and ‘composite’ association as a spe-
cial case, only giving write access to the bi-directional
mechanism; however, this is not possible in Java.

An additional issue arises with respect to changing
or resetting the values of a property that subsets ‘part’.
Such actions do not remove the old values from the
set, thus leaving them as parts of the composite. Again,
this is the correct semantic interpretation for ‘subsets’
but not for composition. Fortunately, this issue is solv-
able by using an alternative (almost identical) imple-
mentation of ‘subsets’ that does remove elements from
the subsetting property if they are removed from the
subsetted property.

4.8.2 Destruction of compositions

Modern OO programming languages such as Java make
use of a Garbage collector, thus the notion of ‘destroy-
ing’ an object does not quite match; in order for a Java
object to be destroyed, it is necessary to remove all ref-
erences to it.

We can implement a ‘destroy’ method for an ob-
ject that ‘destroys’ all object that are ‘contained’ by
it, however, it is necessary to determine which other
objects potentially reference the one being destroyed
and set the references to ‘undefined’ (null) or remove
them from the appropriate collections. This is not pos-
sible with respect to uni-directional associations, unless
we actually implement a uni-directional association as
a bi-directional association in order to keep track of
all references, which would of course break the de-
coupling achieved with uni-directional associations (see
discussion on uni-directional associations in Sect. 5).

One possibility would be to implement uni-direc-
tional associations using ‘weak’ Java references3. (which
allow the garbage collector to collect them even if refer-
enced). But this could still allow access to a ‘destroyed’
object in the gap between destroy being called and the
garbage collector running. It would also require that at

3 See standard java library package java.lang.ref



Implementing associations: UML 2.0 to Java 5 19

least one object holds a non-‘weak’ and thus non-uni-
directional reference to every object.

The problem is that to correctly implement the com-
position semantics for uni-directional associations, it is
necessary to determine what other objects hold a
reference to the one being destroyed; we cannot do this
directly in Java.

The solution we employ is to mark a destroyed object
as destroyed, and then when it is accessed (via an acces-
sor of a referencing object, or a collection iterator) we
can check the referenced object, and remove it if it is
marked as destroyed. The destroy method itself should
mark its object as destroyed, call destroy on all objects
that are referenced by composite properties and for any
bi-directional associations we can directly remove this
object from a referencing object’s properties.

4.9 Qualified properties: qualifier

From the standards, [30] Sect. 7.11.4:

A qualifier declares a partition of the set of asso-
ciated instances with respect to an instance at the
qualified end (the qualified instance is at the end
to which the qualifier is attached). A qualifier in-
stance comprises one value for each
qualifier attribute. Given a qualified object and
a qualifier instance, the number of objects at the
other end of the association is constrained by the
declared multiplicity. In the common case in which
the multiplicity is 0..1, the qualifier value is unique
with respect to the qualified object, and designates
at most one associated object. In the general case
of multiplicity 0..*, the set of associated instances
is partitioned into subsets, each selected by a given
qualifier instance. In the case of multiplicity 1 or
0..1, the qualifier has both semantic and implemen-
tation consequences. In the case of multiplicity 0..*,
it has no real semantic consequences but suggests
an implementation that facilitates easy access of
sets of associated instances linked by a given qual-
ifier value.
Note – The multiplicity of a qualifier is given assum-
ing that the qualifier value is supplied.
The “raw” multiplicity without the qualifier is as-
sumed to be 0..*. This is not fully general but it
is almost always adequate, as a situation in which
the raw multiplicity is 1 would best be modelled
without a qualifier.
Note – A qualified multiplicity whose lower
bound is zero indicates that a given qualifier value
may be absent, while a lower bound of 1 indicates
that any possible qualifier value must be present.

The latter is reasonable only for qualifiers with a
finite number of values (such as enumerated values
or integer ranges) that represent full tables indexed
by some finite range of values.

4.9.1 Semantics and navigation

Figure 12 shows a qualified property; the interpreta-
tion of this is that each A object is connected to a
set of tuples with type TupleType(x:X, b:B); there is
optionally a single B object for each possible X object.

We can break down this specification into more prim-
itive associations as shown in Fig. 13. Here we can see
that the class A is associated with a set of tuples and for
each tuple there is a compulsory X value and an optional
B value. It is also necessary to ensure that there is only
one tuple for each X value involved, this is enforced by
the given constraint (there may also be X values that are
not involved in the association).

Using this break down of the qualified property/asso-
ciation, we can see how to define the various possible
navigation options, and thus see what accessors and
mutators to define in an implementation for such a
property.

There are two required navigation options correspond-
ing to an association of this nature as shown below:

context A self.b : Bag (B)
context A self.b[x] : B

which map to the Java accessors: public Collection <B>
getB() and public B getB(X x).

The second of these accessors returns a B object given
an X object as the qualifying value and the first acces-
sor returns a bag containing all associated B objects,
irrespective of the qualifier.

A B0..*
0..1

A

b[x:X] : B [0..1]

x:X

Fig. 12 Qualifier

A B
b

0..1
Tuple

bElement

0..*

X

x   1

0..*

0..*

0..*

context A
inv: self.bElement->isUnique(t|t.x)

/ b : Bag(B) [1]
/ b[x:X] : B [0..1]

Fig. 13 Implementing qualifiers
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Table 14 Simple approach for qualifiers

One easy mechanism to implement the option for
qualified associations is to use the java.util.Map class.
We could define the implementation as illustrated in
Table 14.

This implementation is only possible for properties
with single qualifying values. It does provide the appro-
priate facility to relate a qualification value with each
element in a collection. However, it does not enable
us to use more than one qualifying value, such as the
association given by the specification in Fig. 14. For
this specification, we would want to create a Java type
‘Map<TupleType(x:X, y:Y), B>’. Unfortunately there is
no direct equivalent of TupleTypes in Java – an issue
which we will come up against in a number of places
with respect to implementing qualified associations, and
is addressed later.

A potential solution to this would be to define a
nested class that has properties for each qualifier value
and use instances of that class as the Key to the Map
based implementation.

4.9.2 Mutators

In addition to accessors for navigating a qualified prop-
erty, for an implementation we also require mutators
for setting the values of a qualified property. Obviously
we want a mutator that enables us to set a value for a
qualifier, i.e. public void setB(X x, B b). We could also
provide a mutator that facilitates setting the whole col-
lection of qualified values, i.e. public void setB(Set<Tu-
pleType(x:X, b:B)> b). However, we again here run into
the issue of how to map TupleTypes into Java. If we are
to provide this mutator it is essential that the elements
of the collection are combined with associated qualifier
values and hence we require a type for the elements of
the set.

As before, a solution to providing a Java equivalent
of a TupleType is to define an additional (nested) class

A B0..*

0..1
x:X, y:Y A

b[x:X, y:Y] : B [0..1]

Fig. 14 Multiple qualifiers

to hold the parts of the tuple; this time we require a class
with a property for each qualifier value (‘x:X’), and one
for the primary property value (‘b:B’).

4.9.3 Tuples in Java

The previous two subsections have both illustrated a
requirement for a representation of TupleTypes in Java.
In both cases there is a solution by providing a new class.
Separate classes are not an ideal solution, as it would
mean that firstly many of these classes may have to be
created (essentially “littering” the code with nested clas-
ses) and secondly they are not a true representation of
a TupleType and assignment issues could arise between
tuple objects that have the same type for each part but
are implemented as different classes.

What is really needed is a good mechanism for map-
ping OCL Tuples into Java. This can then implement the
qualified association as a Set of these tuples, facilitating
multiple qualification values, and correct naming of the
parts of the tuple.

Ideally we require the concept of an unnamed value
type; which could be provided as something along the
lines of a cross between a value type like the C/C++/C#
struct and a Java anonymous class that could be used as
shown in Table 15. We want to create tuple objects and
define their fields and values at the same time (fields are
always public). A comparison of tuple objects should
compare the names and values of the fields; and access
to the field values should be possible.

However, no such concept exists.
A potential equivalent would be to define a class

‘Tuple’ and use anonymous classes to create tuple ob-
jects; the Java reflection mechanism could be used to
retrieve and compare each field defined in an object. If
we wrap the reflection code into the common super class
Tuple, we could then define tuples along the lines of :

Tuple t1 = new Tuple(){public final String
x=”hello”; public final Integer y=1;};

Unfortunately, this does not work due to anonymous
classes being package visible rather than public, i.e. the
declared fields are not accessible from outside the pack-
age in which it is declared, even though the fields
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Table 15 Tuples in Java

themselves are declared public, and we cannot change
the visibility of anonymous classes.

A working solution is to use the java.util.Map class
as the basis for tuples. This unfortunately, means that
we lose all compiler based type checking and we have
to cast objects out of a tuple, but that is unavoidable as
Java provides no direct mechanism for the implementa-
tion of Tuples. A tuple could be defined directly using
the Map class and implementations of it, or we can wrap
up the behaviour in a bepoke class named Tuple. The
following shows examples of each of these approaches,
using class initialisers to set values for the fields in the
tuple:

Map<String, Object> t1 = new
HashMap<String,Object>(){{put("x","hello");put("y",1)}};
Tuple t1 = new Tuple(){{set("x","hello"); set("y",1);}};

By using the wrapper class Tuple, we can ensure that
the tuple is immutable by making the mutator protected,
and thus only useable within the class initialiser; how-
ever, using the Map class means that we need not intro-
duce a bespoke library component.

4.9.4 Implementation

Returning to the issue of providing a generic mechanism
for implementing qualified properties, we can imple-
ment a collection of Tuple (or Map) objects and provide
behaviour in the accessors for extracting the required
object. In fact, if we look back at Fig. 13 we can use this
as a basis for implementing the qualified property spec-
ified in Fig. 12. We implement a field that is a collection
of Tuples and implement derived properties as the ac-
cessors. For example, Table 16 shows an implementation
for the specification of Fig. 12.

We do not, at this time, investigate variations to a
simple qualified (unlinked) property. To fully support
qualified properties, it is necessary to investigate the
combination of qualifiers with the other property char-
acteristics. This remains as future work.

5 Uni-directional associations

The previous section has shown how to implement
unlinked properties, i.e. those that are defined directly
as part of a class specification rather than those defined
as part of an association. As illustrated these unlinked
properties can be seen as having the same semantics as a
particular style of uni-directional association, thus many
of the issues regarding the implementation of uni-direc-
tional associations have been covered in the previous
section.

When specifying uni-directional associations directly,
there is however, the facility to specify some of its char-
acteristics to give a different semantics to the unlinked
properties discussed above. This section introduces those
differences and addresses the related implementation
issues.

If a Property is defined via an Association, the prop-
erty ‘opposite’ of a Property gives a second property
definition that refers to the object at the opposite end
of the Association. The Property is owned by a Classi-
fier if it is navigable, or owned by an Association if it is
non-navigable.

In most situations, a uni-directional Association can
be implemented identically to an unlinked Property (as
illustrated in the previous section). The situation where
this is different occurs when the specification of the
source end of the association has characteristics defined
on it that affect the semantics of the association. Many
of the characteristics that are possible to define on a
Property do not affect the semantics if the Property rep-
resents a non-navigable end. However, some do. The
specification of source end multiplicity and source end
qualifiers are addressed in the following sub-sections
along with redefining and subsetting source ends.

The characteristics isOrdered and isUnique do not
have any effect when applied to the opposite end of a
uni-directional association. The isOrdered characteris-
tic affects navigation, and the order in which a collection
of objects is addressed, for a non-navigable property this
is thus irrelevant. The isUnique characteristic applied to
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Table 16 Improved approach for qualifiers

the non-navigable end would specify whether or not a
single A object could reference the same B object more
than once; it is not possible for this to be anything other
than true as an object can only reference another object
once by the same property anyway.

Defining the source end of a uni-directional associa-
tion to be a composite part does not make sense, and
neither would defining the source end to be an identi-
fying characteristic. The read only and derived charac-
teristics have no affect as we cannot ‘read’ or navigate
in the reverse direction. Other characteristics do have a
semantic affect and are addressed below.

5.1 Source end: multiplicity

The multiplicity of the source end of the baseline asso-
ciation is 0..*. However, it is acceptable UML practice
to specify uni-directional associations with alternative
multiplicities at the source end of uni-directional asso-
ciations. In fact the OMG standards have a number of
examples of one-to-one uni-directional associations. A
‘0..1’ at the source end of such an association (Fig. 15)
implies that only one A object may reference any single

A B0..1

0..1

Fig. 15 Source end multiplicity—optional

B object. There is no primitive Java mechanism to en-
force such a situation, and it is necessary to map a one-
to-one association onto a primitive many-to-one plus an
additional constraint. Figure 16 shows the more general
case, mapping an association with fixed lower and upper
bounds of the source multiplicity onto a primitive Java
reference plus a constraint that checks the number of A
objects referencing B object via the association.

Unfortunately there is no natural mechanism in Java
that equates to the ‘allInstances’ operation. The only
way in which we could implement the semantics cor-
rectly, without recording a collection of every object
created for a particular class, would be to actually imple-
ment a bi-directional association (see later sections),
but hide the reverse B->A link and use it only for
implementation purposes.
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Fig. 16 Source end
multiplicity—general

A B0..*

0..1

let
  bs = A.allInstances->collect (a | a.b)
in
B.allInstances->forAll( b |

    bs->count(b) <= n and
    bs->count(b) >= m ) 

A Bm..n

0..1

Although this gives a perfectly good mechanism for
implementing uni-directional associations with a defined
source end multiplicity, it does hamper one of the most
useful modelling uses of a uni-directional association.
Uni-directional associations are a great way to reuse
classes from one package in another package that de-
pends on the first. What is particularly nice about this
is that the reused class need not know anything about
how many or which other classes in dependent packages
reference it. Uni-directional associations in this context
provide a great decoupling point, potentially allowing
one model or package to reference classes from another
model or package that knows nothing about the refer-
ring elements, and potentially allows the referred and
referring packages to be separately implemented, pos-
sibly by different implementers.

This issue raises a question regarding the purpose of
making an association uni-directional within a particular
model; is it in order to place a restriction on navigation;
or is it in order to decouple parts of the model. Restrict-
ing navigation does not in general provide much advan-
tage, other than placing limitations on what navigations
may be performed by a user of the model; however, de-
coupling classes and increasing the separation between
different parts of the model aides modularisation of the
model and is a good practice.

Given this issue, it is arguable that, for the purposes of
implementation in Java, all uni-directional associations
should have the source multiplicity set to 0..*, or alter-
natively should be defined as bi-directional. However, if
we were to assert this constraint, there would be a num-
ber of knock-on effects such as disallowing the concept
of composition for uni-directional associations, which
requires the source end to have an upper multiplicity
bound of ‘1’.

As a consequence, in order to enforce the multiplici-
ties we have three options:

1. Disallow uni-directional associations. This is unde-
sirable as they provide a very useful decoupling
mechanism in the context of modularising model
specifications.

2. Implement uni-directional associations as bi-direc-
tional. This is not an entirely satisfactory option as
it requires that the implementation of the model

cannot be decoupled in the manner of the specifi-
cation. It could be argued that the specification of
the source end multiplicity is already breaking the
decoupling.

3. Provide an implementation of the ‘allInstances’ oper-
ation for all classifiers. This would enable an imple-
mentation of the correct semantics for these associ-
ations, or to indicate when the semantics were inval-
idated; although for large models it would be quite
an overhead as the set of all instances would need
to be iterated over.

None of these options is a perfect solution, and it
depends on the context in which the implementation is
to be used as to which option is the best compromise.
Option 1 is perhaps the easiest solution, but is arguably
not very different to option 2. Option 2 is preferable if
both ends of the association are to be implemented at
the same time and it is not essential for the implementa-
tion to restrict the reverse navigation. If the decoupling
is essential, and the performance hit of iterating over all
instances is acceptable, then perhaps option 3 is the best
choice.

Assuming there is a field ‘allInstances’ on the imple-
mentation of class A, the code in Table 17 shows a
possible implementation pattern for the specification of
Fig. 15 using option 3.

If we desire the decoupling offered by option 3, it is
not possible to construct a B object with anything other
than zero A objects referencing it. It is only after cre-
ating the B object that we can set A objects to refer to
it and thus we cannot restrict the lower bound. If the
upper bound is greater than 1, but less than infinite, we
could count the number of A objects that already ref-
erence the B object and use an assertion to check the
upper bound value. In the case represented by the code
in Table 17, the mutator code for the b property looks for
an A object that already references the b object passed
to the mutator, and if one is found its b property is unset,
thus at runtime only one A object should ever reference
any single B object.

5.2 Source end qualification

To qualify the source end of a uni-directional associa-
tion is perhaps an odd thing to do. However, it is a valid
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Table 17 Source multiplicity

specification. The specification of Fig. 17 shows such a
specification; the implementation would be equivalent
to the implementation of a property whose type is a Set
of Tuples containing parts x:X, y:Y and b:B.

5.3 Source end redefinition and subsetting

Redefining the source end of a uni-directional associa-
tion seems at first glance to be meaningless, however,
if the redefined property is navigable and part of a bi-
directional association, then the redefinition has mean-
ing. The example specification in Fig. 18 illustrates the
situation.

The UML standard contains a constraint stating that
“A navigable property (one that is owned by a class)
can only be redefined or subsetted by a navigable prop-
erty”. ([28] 11.3.5[5]). However, there are several places
within the specifications of the standard where this con-
straint is violated, in fact Fig. 73 of Sect. 11.3 contains
an example.

If only the non-navigable end is redefined (or subs-
etted) then the semantics do not make sense. However,
if the navigable end is redefined as well, then there is

A B
0..*0..*

x:X, y:Y

Fig. 17 Source end qualifier

A B0..*
0..1

C D0..*

{redefines a}

0..1

{redefines b}

Fig. 18 A source end redefinition

no problem. The implementation of the property C::d
should implement as though it were a bi-directional
property with its opposite set to the property B::a. In
fact this is the same semantics as the situation where
only the navigable end is redefined, thus we can assume
that the redefinition of the source end is merely infor-
mative.

6 Bi-directional associations

If one end of an association is non-navigable, then the
navigable property should be implemented as described
above for unlinked Properties and uni-directional asso-
ciations. However, if both ends are navigable, then we
must implement code that conforms to the bi-directional
semantics of an association. Let us first look at what the
bi-directional semantics are.

6.1 A simple bi-directional association

A one-to-one bi-directional association can be consid-
ered as two opposing many-to-one associations with two
additional constraints that ensure that the bi-directional
semantics are enforced. The bi-directional semantics re-
quires that for any instance of the association, navigat-
ing from an object along that association and back again
will leave you with the object you started from (or with
a collection that includes the object you started from
Fig. 19).

To implement this semantics, we could map the invar-
iants into a Java assertion, which can be checked. How-
ever, it then falls to the user of the implemented code
to call the checking code and to ensure that the proper-
ties are correctly set. A better solution is to implement
the mutator code so that the constraint cannot be inval-
idated.
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Fig. 19 Bi-directional
A B0..*

0..1

A B
0..1

0..1

0..*0..1

context A 
inv : self.b.a = self 

context B 
inv : self.a.b = self

Table 18 Simple bi-directional

Earlier in this paper we saw an example implementa-
tion for a bi-directional one-to-one association (such as
that in Fig. 19), which is repeated in Table 18.

The difference between this code and that for a uni-
directional association is the mutator body. There are
three important parts to the implementation of this
mutator:

1. Setting the field – this.b = b
2. Resetting the old opposite end’s reference to this

object – old.setA(null)
3. Setting the new opposite end’s reference to this ob-

ject – b.setA(this)

The other bits of code are simply there to support
these three main statements. These main statements will
vary depending on the characteristics of the opposite
end. For instance, if the opposite end is a collection, then
we need to add or remove elements from the collection
rather than setting the property value.

The resetting and setting of the opposite end is not
carried out in the property mutator in the case of a
collection (i.e. a property with upper multiplicity > 1).
Rather, the required code is included as part of the speci-
fication of the collection class that implements the prop-
erty, which is defined as the initial value for the field
implementing the property. The generated code is sub-
tly different depending on whether or not the opposite
end is a collection property or not. Code for setting the
other end is similar, setting or adding to the other end
the object ‘this’, but it must also include a check to see if
the other end is already set to ‘this’ or an infinite loop is
created at runtime – each end setting the other repeat-
edly.

6.1.1 Reuse

It should be noted that using this code pattern it is essen-
tial that the Java classes at both ends of the association
are implemented in this manner. We cannot add bi-
directional associations from a class after it has been
implemented, i.e. we cannot reuse classes as part of
bi-directional associations. Hence, if new bi-directional
associations are added to a model, then classes at both
ends must be re-implemented. This is contrary to one
of the options for implementing uni-directional associa-
tions (see an earlier section).

6.1.2 ReadOnly

There are issues when we come to read-only properties
that form part of a bi-directional association. It is neces-
sary to have the mutator in order for the implementation
of the bi-direction semantics to operate; however, if one
end of the association is marked as read only, ideally we
do not provide a mutator. Clearly, these two require-
ments are in conflict.

As has been described, with respect to unlinked prop-
erties, the value for a read-only property should be pro-
vided when an object is created. Thus, this immediately
rules out the notion of a bi-directional property with
both ends being read-only; we can not create two objects
at once.

Providing a private mutator, would allow the read-
Only property to be set by an object constructor, and
thus we can employ the same mechanism of adding code
to the mutator to enforce bi-directional semantics. How-
ever, consider what happens if the opposite (writable)
end is set. In this case, the bi-directional semantics must
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Table 19 Bi-directional collection

be ensured, and thus the read-only end must also be set.
However, it is read-only and hence cannot be set.

Given the conflict described above, we feel that the
only semantically sensible option is to deny use of the
read-only characteristic with respect to bi-directional
associations. Two options were proposed earlier in the
paper regarding the implementation of read only prop-
erties, either to not provide a mutator, or to add an asser-
tion to the mutator that only allows a single mutation.
The second of these options does provide a mechanism
for implementing bi-directional read-only associations
if they are required.

6.2 Collection type associations

For a bi-directional Association for which one or other
end is a collection, we do not add the code for setting and
resetting the other end to the property mutator. Rather,
we add the code to the collection mutators defined in
the initial value for the collection based property.

The initial values for collection properties are in-
tended to provide a collection object that supports the
implementation of the association. As such, we imple-
ment an anonymous class that is based on one of the
java.util.AbstractCollection classes and override the
mutator operations so that the correct association

semantics are adhered to. Below we show an exam-
ple for the case of a Set based property (i.e. one that
is unordered and unique), the other three variations of
collection type can be implemented in a similar manner.

To instantiate a java.util.AbstractSet, one must pro-
vide implementations for the Set.iterator() and Set.size()
methods. In this implementation, they are provided by a
backing java.util.HashSet (i.e. the ‘_b’ field from
Table 19). Additionally, to facilitate mutation of the
collection, we must provide implementations for the
Set.add() method and its Iterator.remove() method. It
is in these methods that we insert the appropriate code
to set or reset the opposite ends of a collection based
property.

If read only collection type properties are imple-
mented using an unmodifiable wrapper in the accessor,
we need not alter the implementation of the property,
other than to add the appropriate assertion to the set
method.

6.2.1 Compulsory bi-directional associations

A general issue is the specification of bi-directional asso-
ciations with both ends defined as compulsory (i.e. hav-
ing a lower multiplicity value > 1). For such a specifi-
cation, a question arises as to how should the objects
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at each end be constructed? We cannot construct two
objects at once; therefore there must be a point in time
where one end of the association is undefined. It can be
argued that a constraint should be added to the speci-
fication of bi-associations that forbids both ends to be
compulsory. In addition, when mutating the association
ends, it is easy to cause a situation whereby an object
with a compulsory property (at one end) is left with
an undefined value. Implementation of the multiplicity
constraints will indicate this situation to a user of the
model. To avoid the problem, one must first destroy
the old object at the non-compulsory end, and then set
the new value. If the old object is not destroyed, it will
end up with its compulsory property having no value.
This requires a couple of changes to the implementation
pattern. Firstly, we guard the multiplicity check with a
test to see if the object has been destroyed; a destroyed
object may well have properties with no value even if
those properties are compulsory. Secondly, we alter the
mechanism for stopping infinite looping. The former
mechanism proves deficient when used in conjunction
with compulsory properties. Instead we add a flag which
checks if one end of the association is already in the
process of being mutated and restricts further mutation
accordingly.

6.3 Redefined and subsetting bi-directional
associations

The concepts of redefinition and subsetting are heav-
ily used throughout the specifications of the UML 2.0
superstructure and infrastructure documents. For spe-
cific examples see the ‘Kernel Diagrams’ in the UML
2.0 superstructure.

To implement a redefined or subsetting bi-directional
association the same technique can be used as for uni-
directional associations and unlinked properties. We
must simply be careful to implement the setting and
resetting other end code with respect to the correct other
end of the redefined association. For example, if only
one end of an association is redefined, the re-implemen-
tation of the redefined end must reference the oppo-
site end of the redefining association not the redefined
association. The same careful consideration is important
with respect to subsetting.

6.4 Qualified bi-directional associations

Bi-directional qualified associations are perhaps one of
the most complicated variations to implement. Before
looking at the implementation options, let us first look
at the semantics of a bi-directional qualified association.

A Bx : X 
0..1

A1 B1

x : X[1] 

b1

1

b1

0..*

x : X[1] 

a1
0..1

a1  1 

(a)

(b)

0..1

Fig. 20 Bi-directional qualifier

Figure 20a shows a qualified association between clas-
ses A and B. Specifically the property b:B, navigable to
from objects of type A is qualified with a value of type X.
Typically a qualifier is added to a property with a ‘many’
multiplicity in order to partition the set of elements, i.e.
it is a little like providing an index for all the elements
in the collection. In Fig. 20a there are a set of B objects
associated to an A object, we can select any particular
B object using a value of type X.

Without the qualifier, the same kind of structure could
be modelled along the lines of that shown in Fig. 20b. The
qualification affects the navigation along the association
such that a value of type X is required. We can illustrate
this using some OCL expressions that show the different
navigation options and the type of the value returned by
the navigation. We can also show the equivalent navi-
gation that would be required for the model of Fig. 20b
(without the qualifier).

context A self.b : Bag(B)

equivalent to

context A1 self.b1.b : Bag(B1)

context A self.b[x] : B

equivalent to

context A1 self.b1−>any(p|p.x = x).b1 : B1

context B self.a : Tuple(a : A, x : X)

equivalent to

context B1 self.a1 : Tuple(a : A1, x : X)

As you can see from the OCL expressions above, the
navigation types along a bi-directional qualified associ-
ation are slightly different to non-qualified associations.
In one of the directions, we have two options for naviga-
tion: to a set of B or to a single value, as is the case for a
uni-directional qualified property discussed previously.
In addition to the uni-directional case, we must provide
support for navigation in the reverse direction, from the
B object back towards an A object. These navigation
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options must be reflected in the implementation of the
accessors and mutators for each end of the association.

The forward direction code can be implemented in
the same manner as for uni-directional associations, but
including appropriate code for the resetting or setting
the opposite ends. The code for these parts is slightly
different in accordance with the type of object repre-
senting the other end of the association.

The UML 2.0 standards do not specifically state the
intended navigation semantics for the reverse naviga-
tion along a qualified association, thus we discus the
various options below:

1. To navigate in either direction along a qualified asso-
ciation the qualifier values must be given. If this nav-
igation option is adopted, then we lose some of the
directionality of the association.

2. Another option is that reverse navigation simply
gives the object at the unqualified end, with no need
to supply the qualifier values. This option is sug-
gested in [9]. However, it may useful to be able to
deduce the qualifier value for an object that is qual-
ified.

3. A third option is that navigation from the qualified
end of an association to the unqualified end returns a
tuple object containing the unqualified object at the
other end of the association plus the values which
qualify the qualified end.

The two viable options are option 2 and option 3.
Option 2 is the most useful if we consider the acces-
sors, although it may be useful to determine the qualifier
value from the qualified object,.It can be deduced by the
expression self.a.b->any(t|t.b=self).x; the most frequent
use of the back navigation is likely to be to access the
object at that end rather than the qualifier values.

For the mutator, its parameter (i.e. the value being
assigned) is normally of the same type as that returned
by the accessor; if then for the example above, the muta-
tor takes a object of type A as its parameter, we cannot
keep the bidirectional semantics correct as we have no
value for the qualifier when adding the B object to the
qualified set of Bs. The solution is to insist that to mutate
the reverse direction, we must provide an appropriate
qualifier value in addition to the A object, i.e. option 3.
We have two options for providing a mutator signature:

void setA (X x, A a) or void setA(Tuple a)

The first treats the qualifier values and A object sep-
arately. The second wraps them all up as a tuple. In
our opinion, the second option is preferable as it distin-
guishes the mutator from a forward direction mutator
for qualified properties. This choice does mean that the

mutator parameter and accessor return types are differ-
ent, unlike the implementation of other properties. We
must adjust the implementation of the code to set and
reset the opposite end of the association to correctly
take into account the qualifications. Table 20 illustrates
the implementation for the specification of Fig. 20a.

As is the case with unlinked properties, we do not, at
this time, investigate variations to a simple qualified bi-
directional association. To fully support qualified asso-
ciations it is necessary to investigate the combination of
qualifiers with the other property characteristics. This,
again, remains as future work.

6.5 Dual qualifications

What about the situation where there is a qualifier at
both ends of an association? The UML standards do
not give much information on this situation, rather they
simply state that the situation rarely occurs.

If we are consistent with the policy adopted for navi-
gating the reverse of a qualified association (as discussed
previously) each set of qualified objects is a tuple con-
sisting of the qualified values and a second tuple. This
can be seen in Fig. 21. The set of qualified ‘b’ elements
are tuples of type (Y,B) and in the reverse direction, the
set of qualified ‘a’ elements are tuples of type (X,B).
This gives us the following navigation options:

context A self.b : Bag(TupleType(y:Y,b:B))

= self.bElement.b

context A self.b[x] : TupleType(y:Y,b:B)

= self.bElement−>any(b|b.x=x).b

context B self.a : Bag(TupleType(x:X,a:A))

= self.aElement.a

context B self.a[y] : TupleType(x:X,a:A)

= self.aElement−>any(a|a.y=y).a

The implementation of such a specification requires the
same approach as for single ended qualifications, except
for the resetting and setting the other end code which
must take into account the TupleTypes.

7 Tool support and testing of the proposed patterns

The coding patterns proposed in this paper have been
thoroughly tested by providing a mapping from the
UML based concepts onto the Java programming lan-
guage using an Object Constraint Language (OCL) [29]
based template language.
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Table 20 Bi-directional qualifier

A Bx : X
0..1

A B

   x : X 

b
1

bElement

*

y : Y  

aElement
*

a

1

(b)

(a)
y : Y 

0..1

   x : X 

y : Y  

b
1

a   1 

Fig. 21 Duel qualification

The templates are used in conjunction with KMF
[19] based tooling to provide a code generator that
implements UML 2.0 based models. A number of small
models that test the generation of each individual
property characteristics and some combinations of char-
acteristics have been produced. In addition we have gen-
erated code for a number of larger scale models (or
meta-models) related to the ModEasy project, and of
course we have used the generation tool to attempt an
implementation of the UML 2.0 Infrastructure, Super-
structure and MOF 2.0 meta-models.

7.1 The initial goals

At the start of this paper we defined two goals for our
code generation approach:

1. To generate readable code
2. Not to require bespoke or third party libraries

Are the code patterns proposed readable? Readability is
a subjective issue and not easy to quantifiably measure.
Working on the premise that less code is more read-
able than more code, we have attempted to minimise
the amount of code required for each implementation
pattern. However, this requirement is at odds with the
second of our requirements; if we were permitted to
define some bespoke library classes, we could improve
the readability of the generated code and further mini-
mise the size of the code patterns.

The patterns we have described in the core part of
this paper do not use any library components other than
those found in the standard Java libraries; excepting the
use of an ‘Any’ class for supporting the composition
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semantics, (which could be specifically generated for
each model); and the preference for an ‘OrderedSet’
class.

There are however, a few issues which we have de-
cided merit the definition and use of a bespoke library
classes. Although we would prefer to use only the stan-
dard libraries, we have determined a number of reasons
why we could forgo the second requirement in favour
(primarily) of the first:

1. There is no ‘OrderedSet’ class defined in the stan-
dard Java libraries; therefore we must define our
own. The paper has included some discussion on
how to make do with the standard libraries; how-
ever, a bespoke class is considered by the authors to
be the better option.

2. Use of a bespoke root inheritance class (e.g. ‘Any’).
This provides a useful facility for implementing the
composition semantics, and further provides generic
support for marking an object as destroyed.

3. Provision of a ‘Tuple’ class. The paper has shown
how to manage without a bespoke class for tuples.
However, provision of one, subjectively, greatly im-
proves readability and aids in the support for ‘destroy-
ing’ objects. When a tuple object is used as part of the
implementation for qualified associations, destruc-
tion of a ‘part’ of a tuple implies that the tuple should
also be marked as destroyed.

4. Provision of alternative collection classes for ‘Set’,
‘Sequence’ and ‘Bag’ in addition to ‘OrderedSet’.
There are a number of reasons why we opted to do
this:

(a) The names of these classes better match the
UML/OCL names than the versions in java.util,
which improves comparison of the code with a
UML model.

(b) To support the removal of destroyed objects
from collections, the use of a bespoke class
means that the implementation can be removed
from the generated code.

(c) We can provide implementations of the oper-
ations defined on the OCL versions of the col-
lection classes rather than being limited to the
methods on the java.util classes.

(d) The code patterns frequently involve redefin-
ing the iteration or mutation methods of a
collection class; by defining our own classes
we can provide more succinct and common
(across all the collection types) mechanisms
to do this.

7.2 Testing property characteristics and their
interactions

There are sixteen characteristics defined on the class
Property (as discussed in Sect. 3). It is unnecessary
to test all combinations, as varying some of the char-
acteristics has no significant semantic effect on oth-
ers (e.g. changing the name of a property); and some
combinations are not allowed by the definitions in the
standard (e.g. redefining a compulsory property with a
non-compulsory property). The following tables present
the combinations of property characteristics that have
been explicitly tested. We have duplicated many of the
tests using both bespoke library classes and only the
java standard libraries; in order to facilitate compari-
son of the two approaches, in particular with regard to
evaluating readability Tables 21 and 22.

A number of characteristics are either denied or
semantically nonsensical when used in conjunction with
bi-directional association: read-only, derived, identity
(which implies read-only). Currently, we have tested
the combinations illustrated in Table 23. We realise that
there are other characteristic combinations possible that
we have not listed in this table.

7.3 Issues

This section discusses some of the issues regarding the
generation of an implementation from model specifica-
tions, some of which are general issues and some are
directly related to the UML Infrastructure model. After
this discussion, we also highlight some areas for future
work in this area.

7.3.1 Keyword name clashes

It is easy to cause name clashes between names in the
model and keywords in the java language. This issue is
easily solvable (in a code generation tool) by checking
for keywords and using an adapted name where nec-
essary. This typically occurs with respect to property
names, the name clashes thus occur within the imple-
mentation of the property, the ‘get’ and ‘set’ methods
don’t clash with keywords as no Java keyword begins
with ‘get’ or ‘set’. Our tool adds an underscore char-
acter (‘_’) where necessary in order to avoid keyword
name clashes.

7.3.2 Object method clashes

Java Method name clashes with methods on java.lang.
Object. All Java classes extend java.lang.Object, if any
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Table 21 Testing unlinked
properties Baseline b : B [0..1]

Compulsory b : B [1]
Collection b : B [0..*]
Fixed upper bound b : B [0..5]
Fixed lower bound b : B [2..*]
Fixed upper and lower bound b : B [2..5]
Read only b : B [0..1] {read}
Read only compulsory b : B [1] {read}
Read only collection b : B [0..*] {read}
Derived c : Integer, b : Integer {derived} get{return c; }set{c = c+b; }
Derived union b : B [0..*] {union}, d : D [0..*] {subsets b}, e : E [0..*] {subsets b}
Identity b : B [0..1] {id}
Redefines b : B [0..1], d : D [0..1]{redefines b}
Redefines both compulsory b : B [1], d : D [1] {redefines b}
Redefines redefining compulsory b : B [0..1], d : D [1] {redefines b}
Redefines both read only b : B [0..1] {read}, d : D [0..1] {read, redefines b}
Redefines collection b : B [0..*], d : D [0..*] {redefines b}
Redefines collection with single b : B [0..*], d : D [0..1] {redefines b}
Subsets b : B [0..1], d : D [0..1] {subsets b}
Subsets set with set b : B [0..*] {unique}, d : D [0..*] {subsets b}, e : E [0..*] {subsets b}
Subsets set with single b : B [0..*] {unique}, d : D [0..1] {subsets b}
Composite b : B [0..1] {composite}
Composite collection b : B [0..*] {composite}
Qualified b [x:X,y:Y] : B [0..1]

Table 22 Testing
uni-directional associations Fixed upper bound on source a : A [0..5] → [0..1] b : B

Fixed lower bound on source a : A [1] → [0..1] b : B
Fixed both on source a : A [2..5] → [0..1] b : B
Qualified source a[x:X,y:Y] : A [0..5] → [0..1] b : B

of the methods generated for the model have the same
name as a method on java.lang.Object we get a method
consistency issue; the model method is unlikely to be
type consistent with the (erroneously) overridden
method in java.lang.Object. The only solution to this
is to forbid the names of operations or properties that
would cause such a name clash.

Unfortunately just such a clash is present in the UML
Infrastructure model; the property ’class’ from model
classes Property and Operation (in both Constructs and
Basic) is mapped to a Java method ’getClass’ which
clashes with the method of the same name defined on
java.lang.Object. Our solution was to alter the name
of the property in the UML Infrastructure model, e.g.
replacing ’class’ with ’clazz’; an alternative would be to
add more checks to the code generator in order to look
for this and similar problems, and cause it to change the
names in the generated code appropriately.

7.3.3 Redefinition, overriding and duplicate property
names

Properties or operations with collection based return
types, with the same name and which redefine, subset or
override each other cause problems.

The model collections are mapped to Java collections
using the Java generics feature to retain the collection
element types. The difficulty here is a different semantic
model regarding the super/sub type relationship be-
tween collections. The UML/OCL semantic model ap-
pears to assume a subtype relationship between Set(B)
and Set(A) if B is a substype of A; whereas the Java type
Set<B> does not subtype Set<A>.

The reason for this in Java has to do with the fact that
new items can be added to sets, and if this was allowed,
then items not of type B (but of a different subtype of
A) could be added to a Set<B> using an alias of type
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Table 23 Testing
bi-directional associations

Set<A> (this is explained in detail in [3]). The OCL
collections are assumed to be immutable and thus the
same issue is not a problem, until we come to the need
to implement collection based properties.

A solution to this problem is to use the more advanced
features of the Java generics. We can define the element
type of a collection to be something that extends a partic-
ular type, e.g. <? extends Type>. The Java collection type
Set<? extends B> does subtype Set<? extends A>, thus
methods with these types as return types are compati-
ble. It does give us another issue regarding mutators; the
type Set<? extends A> is read-only, thus we must explic-
itly provide mutators ‘addB(B b)’ and ‘addA(A a)’ (and
similar ‘remove’ methods) on the class containing the
collection based property.

Of course if the two property names are the same,
then the signatures of the mutators void setA(Set<A>
a) and void setA(Set<B> b) have the same signatures
under the type erasure semantics of Java generics, but
do not override each other. Unfortunately, defining the
mutators as follows does not compile, as one method
does not override the other:

void setA(Set<? extends A> a)

and void setA(Set<? extends B> b)

The only solution we have found to work in this case is to
loose the type information and fall back on non-generic
collections.

7.3.4 Default values

Default (literal) values (such as true, false, 1, 4, “hello”)
are given in the UML Infrastructure specification and
it is assumed that these literal values can be converted
to the appropriate type such as PrimitiveTypes::Unlim-
itedNatural or PrimitiveTypes::Boolean.

To implement this, either we must ignore the specifi-
cation of the primitive types package and use java.lang
types instead, or implement a mechanism to map the
strings given as default values for such primitives into
objects of the correct type.

7.3.5 Redefinition and upper multiplicity value

Redefining a property with the same name but with
upper redefined as 1 rather than > 1 is legal because
the multiplicity of the redefining end is contained in the
multiplicity of the redefining end. However, in Java the
method A getA() is not compatible with the method
Set<A> getA().
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We can’t implement both methods, as the return types
are incompatible. The only option is to force the return
type of the redefining method to be a collection type,
like the return type of the redefined method. This is not
very satisfactory as a solution, as it means that a non-
collection property is implemented as a collection type.
The issue occurs with respect to the classes Extension
and ExtensionEnd in the UML Infrastructure package
‘Profiles’.

7.3.6 UML infrastructure Constructs::Property

Constructs::Property inherits three versions of the prop-
erty ’type’ (via multiple inheritance paths):

(a) type : Basic::Type from Basic::
TypedElement

(b) type : Constructs::Type from Constructs::
TypedElement

(c) type : TypeElements::Type from Abstractions::
TypesElements::
TypedElement

However, Basic::Type is not compatible with the other
two, it would need to extend TypedElements::Type to
be so, though this would have knock on effects to other
parts of Basic, and require it to redefine and subset some
inherited properties. This would mean that to keep to its
objective of being able to define itself, Basic would need
to define the redefinition and subsetting concepts, which
is not an ideal solution. Although the property ‘type’ is
redefined along some of the inheritance paths, it is not
redefined along all of them. This is possibly a problem
with the specification of the infrastructure model.

7.3.7 UML infrastructure Constructs::Package

There is a problem implementing the properties in-
volved in the association between classes Package and
PackageableElement. Property ‘ownedMember:Packa-
geableElement’ is specified to redefine property ‘owned-
Member:NamedElement’ (from Namespace) and is also
specified as uni-directional. Thus, to implement the bi-
direction semantics of the redefined property, the oppo-
site end should be assumed to be the opposite end of the
redefined property. However, in this case the opposite
end of the redefined property is a derivedUnion, subs-
etted by the non-navigable property that is the opposite
of the property ‘ownedMember:PackageableElement’.
As it is a non-navigable property, no implementation
is provided, meaning that the derivedUnion property
should take part in the bi-direction semantics imple-

mentation. However, derivedUnion properties are read-
Only.

It is unclear as to what the correct semantics should
be in this situation, either this is a problem with the spec-
ification, or an incorrect interpretation of the semantics
regarding this combination of non-navigable, derivedU-
inon, redefinition and bi-directional characteristics of a
property.

7.4 Future work

There is still scope for future work regarding the seman-
tics of qualified properties in conjunction with other
property characteristics. In addition we have not ad-
dressed n-ary association, and the semantics implica-
tions of the various characteristics with respect to n-ary
associations and the implementation of them. Another
important issue is with respect to making the generated
code “thread safe” and there are also a number of areas
in which the efficiency of the generated code could be
improved.

Regarding the semantics of UML associations and
properties, a number of problems surround the muta-
tion of collection based properties; i.e. destruction of
objects contained in the collection and adding or remov-
ing objects to/from the collection. Basing the collection
semantics on OCL collections is not sufficient as OCL
assumes immutable collections, whereas an implemen-
tation requires facility to mutate the collections. We feel
there is scope for additional work in this area, in par-
ticular to investigate what semantics should be imple-
mented.

8 Conclusion

UML Class diagrams are extensively used within analysis
and design of software systems and with the recent emer-
gence of Model Driven Development, Domain Specific
Languages and other related subjects, Class Diagrams
are taking on an additional level of use with respect
to the modelling of languages, or meta-modelling. With
this in mind it becomes more and more useful to be able
to automatically generate implementations of models
as part of a fast model-implement-test-model cycle of
evolution for the specified models and meta-models.

Existing UML modelling tools provide mixed levels
of support for code generation and implementation of
Class Diagrams. One area that is particularly lacking
in some tools is correct implementation of the seman-
tics of an association. The recent development of the
new UML 2.0 set of standards introduces a number of
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variations to the concept of an association. The aim
of this paper has been to illustrate appropriate code
patterns that can be used to correctly implement the
semantics of an association, in particular with respect to
the new UML concepts of redefinition and subsetting.
Additionally, we have provided important code patterns
for the implementation of qualified associations, which
although implemented adequately in a few tools, are
largely ignored with regards to code generation.

Of particular interest has been the feature interac-
tion points regarding the multiple different characteris-
tics that can be defined for an association end. We have
shown that with careful thought, appropriate implemen-
tations can be provided for each meaningful combina-
tion although there are still some outstanding issues
regarding the complexity of combining qualified prop-
erties with other property characteristics. Although, the
implementation of the new UML 2.0 redefinition and
subsetting concepts does not appear difficult, there are
some tricky issues; such as redefining non-navigable
ends or subsets involving non-set based collections. We
have highlighted these trouble spots and in some cases
indicated an appropriate implementation solution.

Regarding the implementation of qualified associa-
tions, it proves to be desirable to have a programming
concept equivalent to a tuple, which does not exist in
Java (or other main stream programming languages);
however, an alternative solution is easy to provide al-
though some compile time type information is lost. It
has also been necessary to decide upon a reverse navi-
gation policy for qualified associations that differs from
that suggested in other literature.

The two initial goals of the work (‘readable code’
and ‘no use of bespoke libraries’) have proved to be
in conflict with each other regarding the implementa-
tion of collection-based properties. We have adequately
shown that it is possible to provide implementation pat-
terns that do not require the use of bespoke library com-
ponents. However, in general bespoke collection types
provide a neater code generation option, in part due to
differences between the Java and OCL notions of a col-
lection. Also provision of a Java equivalent to the notion
of a tuple would clean up some of the generated code.

Overall we have been successful in deriving a map-
ping from the UML 2.0 concepts of property and associ-
ation on to the Java 5 programming language. The use of
the Java 5 generics feature is especially useful in retain-
ing much of the type information given in the model.
The development of code templates for the generation
of code in accordance with the patterns described in this
paper has enabled us to generate implementations for a
number of meta-models that provide support for tools
built as part of the ModEasy research project.
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