
Scientific Programming 10 (2002) 19–33 19
IOS Press

NINJA: Java for high performance numerical
computing

José E. Moreiraa, Samuel P. Midkiffa, Manish Guptaa, Peng Wua, George Almasia and Pedro Artigasb

aIBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598-0218, USA
Tel.: +1 914 945 3018; Fax: +1 914 945 4270;
E-mail: {jmoreira,smidkiff,mgupta,pengwu,gheorghe}@us.ibm.com
bSchool of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-3891, USA
E-mail: artigas@cs.cmu.edu

Abstract: When Java was first introduced, there was a perception that its many benefits came at a significant performance cost. In
the particularly performance-sensitive field of numerical computing, initial measurements indicated a hundred-fold performance
disadvantage between Java and more established languages such as Fortran and C. Although much progress has been made, and
Java now can be competitive with C/C++ in many important situations, significant performance challenges remain. Existing
Java virtual machines are not yet capable of performing the advanced loop transformations and automatic parallelization that
are now common in state-of-the-art Fortran compilers. Java also has difficulties in implementing complex arithmetic efficiently.
These performance deficiencies can be attacked with a combination of class libraries (packages, in Java) that implement truly
multidimensional arrays and complex numbers, and new compiler techniques that exploit the properties of these class libraries to
enable other, more conventional, optimizations. Two compiler techniques, versioning and semantic expansion, can be leveraged
to allow fully automatic optimization and parallelization of Java code. Our measurements with the NINJA prototype Java
environment show that Java can be competitive in performance with highly optimized and tuned Fortran code.

1. Introduction

When Java(TM) was first introduced, there was a per-
ception (properly founded at the time) that its many
benefits, including portability, safety and ease of de-
velopment, came at a significant performance cost. In
few areas were the performance deficiencies of Java
so blatant as in numerical computing. Our own mea-
surements, with second-generation Java virtual ma-
chines, showed differences in performance of up to one
hundred-fold relative to C or Fortran. The initial expe-
riences with such poor performance caused many de-
velopers of high performance numerical applications
to reject Java out-of-hand as a platform for their ap-
plications. The JavaGrande forum [11] was organized
to facilitate cooperation and the dissemination of infor-
mation among those researchers and applications writ-
ers wanting to improve the usefulness of Java on these
environments.

Much has changed since those early days. More at-
tention to optimization techniques in the just-in-time
(JIT) compilers of modern virtual machines has re-
sulted in performance that can be competitive with pop-
ular C/C++ compilers [4]. Figure 1(a), with data from
a study described in [4], shows the performance of a
particular hardware platform (a 333 MHz Sun Sparc-
10) for different versions of the Java Virtual Machine
(JVM). The results reported are the aggregate perfor-
mance for the SciMark [16] benchmark. We note that
performance has improved from 2 Mflops (with JVM
version 1.1.6) to better than 30 Mflops (with JVM ver-
sion 1.3). However, as Fig. 1(b) with data from the
same study shows, the performance of Java is highly
dependent on the platform. Often, the better hardware
platform does not have a virtual machine implementing
the more advanced optimizations.

Despite the rapid progress that has been made in the
past few years, the performance of commercially avail-
able Java platforms is not yet on par with state-of-the-

ISSN 1058-9244/02/$8.00 2002 – IOS Press. All rights reserved

20 J.E. Moreira et al. / NINJA: Java for high performance numerical computing

1.1.6 1.1.8 1.2.1 1.3
0

5

10

15

20

25

30

35

JVM version

M
flo

ps

Java SciMark performance on 333 MHz Sun Sparc10

 Intel PIII AMD Athlon Celeron Sun Ultra 10 SGI MIPS Alpha EV6
0

20

40

60

80

100

120

Computing platform
M

flo
ps

Java SciMark performance across computing platforms

(a) (b)

Fig. 1. Although Java performance on numerical computing has improved significantly in the past few years (a), that performance is inconsistent
across platforms (b) and still not up to par with state-of-the-art C and Fortran compilers. (Data courtesy of Ron Boisvert and Roldan Pozo, of the
National Institute of Standards and Technology.)

art Fortran and C compilers. Programs using complex
arithmetic exhibit particularly bad performance [21].
Furthermore, current Java platforms are incapable of
automatically applying important optimizations for nu-
merical code, such as loop transformations and auto-
matic parallelization [20]. Nevertheless, our thesis is
that there are no technical barriers to high performance
computing in Java. To prove this thesis, we have de-
veloped a prototype Java environment, called Numeri-
cally INtensive JAva (NINJA), which has demonstrated
that Fortran-like performance can be obtained by Java
on a variety of problems. We have successfully ad-
dressed issues such as dense and irregular matrix com-
putations, calculations with complex numbers, auto-
matic loop transformations, and automatic paralleliza-
tion. Moreover, our techniques are straightforward to
implement, and allow reuse of existing optimization
components already deployed by software vendors for
other languages [17], lowering the economic barriers
to Java’s acceptance.

The primary goal of this paper is to convince vir-
tual machine and application developers alike that Java
can deliver both on the software engineering and per-
formance fronts. The technology is available to make
Java perform as well for numerical computing as highly
tuned Fortran or C code. Once it is accepted that Java
performance is only an artifact of particular implemen-
tations of Java, and that there are no technical barri-
ers to Java achieving excellent numerical performance,
our techniques will allow vendors and researchers to

quickly deliver high performanceJava platforms to pro-
gram developers.

The rest of this paper is organized as follows. Sec-
tion 2 describes the main sources of difficulties in op-
timizing Java performance for numerical computing.
Section 3 covers the solutions that we have developed
to overcome those difficulties. Section 4 discusses how
those solutions were implemented in our prototype Java
environment and provides various results that validate
our approach to deliver high performance in numeri-
cal computing with Java. Finally, Section 5 presents
our conclusions. Two appendices provide further detail
on technologies of importance to numerical comput-
ing in Java: Appendix A gives the flavor of a multidi-
mensional array package and Appendix B discusses a
library for numerical linear algebra.

A note about the examples in this paper. The Java
compilation model involves a Java source code to Java
bytecode translation step, with the resulting bytecode
typically compiled into native, or machine code using a
dynamic (i.e. just-in-time) compiler. The NINJA com-
piler performs its optimizations during this bytecode
to machine code compilation step, but we present our
examples using source code for readability.

2. Java performance difficulties

Among the many difficulties associated with opti-
mizing numerical code in Java, we identify three char-
acteristics of the language that are, in a way, unique: (i)

J.E. Moreira et al. / NINJA: Java for high performance numerical computing 21

exception checks for null-pointer and out-of-bounds
array accesses, combined with a precise exception
model, (ii) the lack of regular-shaped arrays, and (iii)
weak support of complex numbers and other arithmetic
systems. We discuss each of these in more detail.

2.1. The Java exception model

Java requires all array accesses to be checked for
dereferencing via null-pointer and out-of-bounds in-
dices. An exception must be thrown if either violation
happens. Furthermore, the precise exception model of
Java states that when the execution of a piece of code
throws an exception, all the effects of those instructions
prior to the exception must be visible, and no effect of
instructions after the exception should be visible [8].
This has a negative impact on performance in two ways:
(i) checking the validity of array references contributes
to runtime overhead,and (ii) code reordering in general,
and loop iteration reordering in particular, is prohibited,
thus preventing almost all optimizations for numerical
codes. The first of these problems can be alleviated by
aggressive hardware support that masks the direct cost
of the tests. The second problem is more serious and
requires compiler support.

2.2. Arrays in Java

Unlike Fortran and C, Java has no direct support for
truly rectangular multidimensional arrays. Java allows
some simulation of multidimensional arrays through
arrays of arrays, but that is not an ideal solution. Arrays
of arrays have two major problems.

First, arrays of arrays are not necessarily rectangu-
lar. Determining the shape of an array of arrays is, in
general, an expensive runtime operation. Even worse,
the shape of an array of arrays can change during com-
putation. Figure 2(a) shows an array of arrays being
used to simulate a rectangular two-dimensional array.
In this case, all rows have the same length. However,
arrays of arrays can be used to construct far more com-
plicated structures, as shown in Fig. 2(b). We note that
such structures, even if unusual for numerical codes,
may be natural for other kinds of applications. When a
compiler is processing a Java program, it must assume
the most general case for an array of arrays unless it can
prove that a simpler structure exists. Determining rect-
angularity of an array of arrays is a difficult compiler
analysis problem, bound to fail in many cases. One
could advocate the use of pragmas to help identify rect-
angular arrays. However, to maintain the overall safety

of Java, a virtual machine must not rely on pragmas
that it cannot independently verify, and we are back to
the compiler analysis problem. It would be much sim-
pler to have data structures that make this property ex-
plicit, such as the rectangular two-dimensional arrays
of Fig. 2(c). Knowing the shape of a multidimensional
array is necessary to enable some key optimizations
that we discuss below. As can be seen in Fig. 2(b), the
only way to determine the minimum length of a row is
to examine all rows. In contrast, determining the size
of a true rectangular array, as shown in Fig. 2(c), only
requires looking at a small number of parameters.

Second, arrays of arrays may have complicated alias-
ing patterns, with both intra- and inter-array aliasing.
Again, alias disambiguation – that is, determining when
storage locations are not aliased – is a key enabler of
various optimization techniques, such as loop transfor-
mations and loop parallelization, which are so impor-
tant for numerical codes. The aliasing problem is il-
lustrated in Fig. 2. For the arrays of arrays shown in
Fig. 2(b), two different arrays can share rows, leading
to inter-array aliasing. In particular, row 4 of array X
and row 3 of array Y refer to the same storage, but with
two different names. Furthermore, intra-array alias-
ing is possible, as demonstrated by rows 0 and 1 of
array X. For the true multidimensional arrays shown
in Fig. 2(c) (Z and T), alias analysis is easier. There
can be no intra-array aliasing for true multidimensional
arrays, and inter-array aliasing can be determined with
simpler tests [20].

2.3. Complex numbers in Java

From a numerical perspective, Java only has direct
support for real numbers. Fortran has direct support
for complex numbers also. For even more versatility,
both Fortran and C++ provide the means for efficiently
supporting other arithmetic systems. Efficient support
for complex numbers and other arithmetic systems in
Fortran and C++ comes from the ability to represent
low-cost data structures that can be efficiently allocated
on the stack or in registers. Java, in contrast, repre-
sents any non-primitive data type as a full fledged ob-
ject. Complex numbers are typically implemented as
objects of a class Complex, and every time an arith-
metic operation generates a new complex value, a new
Complex object has to be allocated. That is true even
if the value is just a temporary, intermediate result.

We note that an array of n complex numbers re-
quires the creation of n objects of type Complex, fur-
ther complicating alias analysis and putting more pres-

22 J.E. Moreira et al. / NINJA: Java for high performance numerical computing

X X Y

Z T

(a) (b) (c)

Fig. 2. Examples of (a) array of arrays simulating a two-dimensional array, (b) array of arrays in a more irregular structure, and (c) rectangular
two-dimensional array.

sure on the memory allocation and garbage collection
system. We have observed the largest differences in
performance between Java and Fortran when executing
code that manipulates arrays of complex numbers. Be-
cause Complex objects are created to hold the result
of each arithmetic operation, almost all of the execution
time of an application with complex numbers is spent
creating and garbage collectingComplex objects used
to hold intermediate values. In that case, even modern
virtual machines may perform a hundred times slower
than equivalent Fortran code.

The three difficulties described above are at the core
of the performance deficiencies of Java. They prevent
the application of mature compiler optimization tech-
nology to Java and, thus, prevent it from being truly
competitive with more established languages such as
Fortran and C. We next describe our approach to elimi-
nating these difficulties, and we will show that, with the
proper technology, the performance of Java numerical
code can be as good as with any other language.

3. Java performance solutions

Our research showed that the performance difficul-
ties of Java could be solved by a careful combination of
language and compiler techniques. We developed new
class libraries that “enrich” the language with some im-
portant constructs for numerical computing. Our com-
piler techniques take advantage of these new constructs
to perform automatic optimizations. Above all, we
were able to overcome the Java performance problems
mentioned earlier while maintaining full portability of
Java across all virtual machines. The performance re-
sults on a particular virtual machine, however, depends
on the extent to which that virtual machine (more pre-
cisely, its Java bytecode to machine code compiler)
implements the automatic optimizations we describe
below.

3.1. The Array package and semantic expansion

To attack the absence of truly multidimensional
arrays in Java, we have defined an Array package
with multidimensional arrays (denoted in this text
as Arrays, with a capital A) of various types and
ranks (e.g., doubleArray2D, ComplexArray3D,
ObjectArray1D). This Array package introduces
true multidimensional arrays in Java through a class
library. See Appendix A, The Array package for Java,
for further discussion.

Element accessor methods (get and set methods
for individual array elements), sectioning operations,
gather and scatter operations, and basic linear algebra
subroutines (BLAS) are some of the operations defined
for the Array data types. By construction, the Ar-
rays have an immutable rectangular and dense shape,
which simplifies testing for aliases and facilitates the
optimization of runtime checks. The Array classes are
written in fully compliant Java code, and can be run on
any JVM. This ensures that programs written using the
Array package are portable.

When Array elements are accessed via the get and
set element operations, each element access will be
encumbered by the overhead of a method invocation,
which is unacceptable for high performance comput-
ing. This problem is avoided by a compiler technique
known as semantic expansion. In semantic expansion,
the compiler looks for specific method calls, and sub-
stitutes efficient code for the call. This allows pro-
grams using the Array package to have high perfor-
mance when executed on JVM that recognize the Array
package methods.

As an example, consider the operation of computing
Cij = Aij + Bji for all elements of n × n Arrays
A, B, and C. The code for that operation would look
something like:

doubleArray2DA, B, C;
. . .
for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {
C.set(i, j, A.get(i, j) + B.get(j, i));

}
}

J.E. Moreira et al. / NINJA: Java for high performance numerical computing 23

which requires three method calls (two gets and one
set) in every loop iteration. If the compiler knows
that A, B, and C are multidimensional arrays, it can
generate code that directly accesses the elements of the
Arrays, much like a Fortran compiler generates code
for the source fragment

do i = 1, n
do j = 1, n

C(i, j) = A(i, j) + B(j, i)
end do

end do

Note that this is different from the important, but
more conventional, optimization of inlining. The com-
piler does not replace the invocation of get and set by
their library code. Instead, the compiler knows about
them: it knows the semantics of the classes and of
the methods. Semantic expansion is an escape mecha-
nism for efficiently extending a programming language
through standard class libraries.

3.2. The complex class and semantic expansion

A complex number class is also defined as part of
the Array package, along with methods implement-
ing arithmetic operations on complex numbers. (See
Fig. 3.) Again, semantic expansion is used to convert
calls to these methods into code that uses a value-object
version ofComplexobjects (containing only the prim-
itive values, not the full Java object representation).

Figure 3 illustrates the differences between value-
objects and regular objects. A value-object version of
Complex contains only fields for the real and imagi-
nary parts of the complex number represented,as shown
in Fig. 3(b). It is akin to a C struct, and can be
easily allocated on the stack and even on registers. For
Complex to behave as a true Java object, a differ-
ent representation is necessary, shown in Fig. 3(c). In
particular, every Java object requires an object header,
which can represent a significant fraction of the ob-
ject size. (For example, a Complex object of double-
precision real and imaginary parts occupies 32 bytes in
modern virtual machines, even though only 16 bytes
are dedicated to the numerical fields.) Even worse is
the overhead of creating and destroying objects, which
typically are allocated on the heap.

Any computation involving the arithmetic methods
can be semantically expanded to use complex values.
Conversion to Complex objects is done in a lazy man-
ner upon encountering a method or primitive operation
that truly requires object-oriented functionality. Thus,
the programmer continues to treat complex numbers as

objects (maintaining the clean semantics of the original
language), while our compiler transparently transforms
them into value-objects for efficiency.

We illustrate those concepts with an example. Con-
sider the computation of yi = axi for all n elements
of arrays x and y of complex numbers. This operation
would typically be coded as

ComplexArray1D x, y;
Complex a;
. . .
for (i = 0; i < n; i++) {

y.set(i, a.times(x.get(i)));
}

A straightforward execution of this code would re-
quire the creation of 2n temporary objects. For every
iteration, an object has to be created to represent x i.
A second object is created to hold the result of axi.
The cost of creating and destroying these objects com-
pletely dominates execution. If the compiler knows the
semantics of Complex and ComplexArrays, it can
replace the method calls by code that simply manipu-
lates values. Only the values of the real and imaginary
parts of xi are generated by x.get(i). Only the values
of the real and imaginary parts of axi are computed
by a.times(x.get(i)). Finally, those values are used to
update yi. As a result, the object code generated would
not be significantly different from that produced by a
Fortran compiler for the source fragment

complex*16 x(n), y(n)
complex*16 a
. . .
do i = 1, n

y(i) = a ∗ x(i)
end do

3.3. Versioning for safe and alias-free regions

For Java programs written with the Array package,
the compiler can perform simple transformations that
eliminate the performance problems caused by Java’s
precise exception model. The idea is to create regions
of code that are guaranteed to be free of exceptions.
Once these exception-free (also called safe) regions
have been created, the compiler can apply traditional
core-reordering optimizations,constrained only by data
and control dependences [20]. The safe regions are
created by versioning of loop nests. For each optimized
loop nest, the compiler creates two versions – safe and
unsafe – guarded by a runtime test. This runtime test
establishes whether all Arrays in the loop nest are valid
(not null), and whether all the indexing operations

24 J.E. Moreira et al. / NINJA: Java for high performance numerical computing

public final class Complex {

private double re, im;

public Complex(double r, double i) {
re = r; im = i;

}

public Complex plus(Complex z) {
return new Complex(re+z.re,im+z.im);

}

public Complex minus(Complex z) {
return new Complex(re-z.re,im-z.im);

}

public Complex times(Complex z) {
return new Complex(re*z.re-im*z.im,im*z.re+re*z.im);

}
}

(a) partial code for Complex class

re im

(b) Complex value-object representation

descriptor
re im

(c) Complex object representation

Fig. 3. A Java class for complex numbers.

inside the loop will generate in-bound accesses. If the
tests pass, the safe version of the loop is executed. If
not, the unsafe version is executed. Since the safe
version cannot throw an exception, explicit runtime
checks can be omitted from the code.

We take the versioning approach a step further. Ap-
plication of automatic loop transformation (and paral-
lelization) techniques by a compiler requires, in gen-
eral, alias disambiguation among the various arrays ref-
erenced in a loop nest. We rely on a key property of
Java that two object references (the only kind of point-
ers allowed in Java) must either point to identical or
completely non-overlapping objects. Use of the Array
package facilitates checking for aliasing by represent-
ing a multidimensional array as a single object. There-
fore, we can further specialize the safe version of a loop
nest into two variants: (i) one in which all multidimen-
sional arrays are guaranteed to be distinct (no aliasing),
and (ii) one in which there may be aliasing between
arrays. The safe and alias-free version is the perfect
target for compiler optimizations. The mature loop op-
timization techniques, including loop parallelization,
that have been developed for Fortran and C programs
can be easily applied to the safe and alias-free region.

We note that the “no aliasing” property between
two Arrays is invariant to garbage collection activity.
Garbage collection may remove aliasing, but it will
never introduce it. Therefore, it is enough to verify once
that two Arrays are not aliased to each other. We have
to make sure, however, that there are no assignments
to Array references (e.g., A = B) in a safe and alias-
free region, as that can introduce new aliasing. Assign-
ments to the elements of an Array (e.g., A[i] = B[j])
never introduce aliasing.

An example of the versioning transformation to cre-
ate safe and alias-free regions is shown in Fig. 4. Fig-
ure 4(a) illustrates the original code for computing
Ai = F(Bi+1) for n-element arrays A and B. Fig-
ure 4(b) explicitly shows all null pointer and array
bounds runtime checks that are performed when the
code is executed by a Java virtual machine. The check
chknull(A) verifies that Array reference A is not a
null-pointer, whereas check chkbounds(i) verifies
that the index i is valid for that corresponding Array.
Figure 4(c) illustrates the versioned code. A simple
test for the values of the A and B pointers and a com-
parison between loop bounds and array extents can de-
termine if the loop will be free of exceptions or not. If

J.E. Moreira et al. / NINJA: Java for high performance numerical computing 25

for ++

(a) original code

for ++
/* code for with explicit checks */
chknull chkbounds chknull chkbounds

(a) original code with explicit runtime checks

if null null length length
/* This region is free of exceptions */
if

/* This region is free of aliases */
for ++
else
/* This region may have aliases */
for ++

else
/* This region may have exceptions and aliases */
for ++

chknull chkbounds chknull chkbounds

(c) code after safe and alias-free region creation

Fig. 4. Creation of safe and alias-free regions.

the test passes, then the safe region is executed. Note
that the array references in the safe region do not need
any explicit checks. The array references in the un-
safe region, executed if the test fails, still need all the
runtime checks. One more comparison is used to dis-
ambiguate between the storage areas for arrays A and
B. A successful disambiguation will cause execution
of the alias-free version. Otherwise, the version with
potential aliases must be executed. At first, there seems
to be no difference between the alias-free version and
the version with potential aliases. However, the com-
piler internally annotates the symbols in the alias-free
region as not being aliased with each other. We denote
these new, alias-free symbols, by A′ and B′. This in-
formation is later used to enable the various loop trans-
formations. We note that the representation shown in
Fig. 4(c) only exists as a compiler internal intermedi-
ate representation, after the versioning is automatically
performed and before object code is generated. Neither
the Java language, nor the Java bytecode, can directly
represent that information.

The concepts illustrated by the example of Fig. 4 can
be extended to loop nests of arbitrary depth operating
on multidimensional arrays. The tests for safety and

aliasing are much simpler (and cheaper) if the arrays
are known to be truly multidimensional (rectangular),
as in Fig. 2(c). The Arrays from the Array package
have this property.

3.4. Libraries for numerical computing

Optimized libraries are an important vehicle for
achieving high-performance in numerical applications.
In particular, libraries provide the means for delivering
parallelism transparently to the application program-
mer.

There are two main trends in the development of
high-performance numerical libraries for Java. In one
approach, existing native libraries are made available
to Java programmers through the Java Native Interface
(JNI) [5]. In the other approach, new libraries are
developed entirely in Java [3]. Both approaches have
their merits, with the right choice depending on the
specific goals and constraints of an application.

Using existing native libraries through JNI is very
appealing. First, it provides access to a large body
of existing code. Second, that code has already been
debugged and its performance tuned by previous pro-

26 J.E. Moreira et al. / NINJA: Java for high performance numerical computing

grammers. Third, in many cases (e.g., BLAS, MPI,
LAPACK, . . .) the same native library is available for
a variety of platforms, properly tuned by the vendor of
each platform.

However, using libraries that are themselves written
in Java also has its advantages. First, those libraries are
truly portable, and one does not have to worry about
ideosyncrasies that typically occur in versions of a na-
tive library for different platforms, such as maintaining
Java floating point semantics. Second, Java libraries
typically fit better with Java applications. One does
not have to worry about parameter translation and data
representations that can cause performance problems
and/or unexpected behavior. Third, and perhaps most
importantly, by writing the libraries in Java the more ad-
vanced optimization and programming techniques that
are being developed, and will be developed, for Java
will be exploited in the future without the additional
work of performing another port. The discussion of
Appendix B describes one technique which is easier to
implement with Java, that can lead to improved perfor-
mance.

The Array package itself is a library for numerical
computing. In addition to focusing on properties that
enable compiler optimizations, we also designed the
Array package so that most operations could be per-
formed in parallel. We have implemented a version
of the Array package which uses multiple Java threads
to exploit multiprocessor parallelism inside some key
methods. This is a convenient approach for the applica-
tion developer. The application code itself can be kept
sequential, and parallelism is exploited transparently
inside the methods of the Array package. We report re-
sults with this approach in the next section. For further
information on additional library support for numerical
computing in Java, see Appendix B, Numerical linear
algebra in Java.

3.5. A comment on our optimization approaches

We want to close this section by emphasizing that
the class libraries and compiler optimizations that we
presented are strictly Java compliant. They do not re-
quire any changes to the base language or the virtual
machines, and they do not change existing semantics.
The Array and complex classes are just tools for devel-
oping numerical applications in a style that is familiar
to scientific and technical programmers. The compiler
optimizations (versioning and semantic expansion) are
exactly that: optimizations that can improve perfor-
mance of code significantly (by orders of magnitude as
we will see in the next section) without changing the
observed behavior.

4. Implementation and results

We have implemented our ideas in the NINJA pro-
totype Java environment, based on the IBM XL family
of compilers. Figure 5 shows the high-level organi-
zation of these compilers. The front-ends for differ-
ent languages transform programs to a common inter-
mediate representation called W-Code. The Toronto
Portable Optimizer (TPO) is a W-Code to W-Code
transformer which performs classical optimizations,
like constant propagation and dead code elimination,
and also high level loop transformations based on ag-
gressive dataflow analysis. TPO can also perform
both directive-assisted and automatic parallelization of
loops and other constructs. Finally, the transformed
W-Code is converted into optimized machine code by
an architecture-specific back-end.

The particular compilation path for Java programs is
illustrated in the top half of Fig. 5. Java source code is
compiled by a conventional Java compiler (e.g., javac)
into bytecode for the Java Virtual Machine. We then
use the IBM High Performance Compiler for Java [19]
(HPCJ) to statically translate bytecode into W-Code. In
other words, HPCJ plays the role of front-end for byte-
code. Once W-Code for Java is generated, it follows
the same path through TPO and back-ends as W-Code
generated from other source languages. Semantic ex-
pansion of the Array package methods [2] is imple-
mented within HPCJ, as it is Java specific. Safe region
creation and alias versioning have been implemented
in TPO and those techniques can be applied to W-Code
from any other language.

We note that the use of a static compiler – HPCJ –
represents a particular implementation choice. In prin-
ciple, nothing prevents the techniques described in this
article from being used in a dynamic compiler. More-
over, by using the quasi-static dynamic compilation
model [18], the more expensive optimization and anal-
ysis techniques employed by TPO can be done off-line,
sharply reducing the impact of compilation overhead.
We should also mention that our particular implemen-
tation is based on IBM products for the RS/6000 family
of machines and the AIX operating system. However,
the organization of our implementation is representa-
tive of typical high-performance compilers [15] and it
is adopted by other vendors. Obviously, a reimplemen-
tation effort is necessary for each different platform,
but the approach we followed serves as a template for
delivering high-performance solutions for Java.

We used a suite of eight real and five complex arith-
metic benchmarks to evaluate the performance impact

J.E. Moreira et al. / NINJA: Java for high performance numerical computing 27

HPCJ TOBEY

TPO

Other

Front End Portable Optimizations Back End

Language

W-Code W-Code

POWER/PowerPC

Code

Machine

Code

BytecodeJava Source

Source

javac

Backend

Other

Frontend

Fig. 5. Architecture of the IBM XL compilers.

of our techniques. We also applied our techniques to a
production data mining application. These benchmarks
and the data mining application are described further
in [2,13,14]. The effectiveness of our techniques was
assessed by comparing the performance produced by
the NINJA compiler with that of the IBM Development
Kit for Java version 1.1.6 and the IBM XLF Fortran
compiler on a variety of platforms.

4.1. Sequential execution results

The eight real arithmetic benchmarks are matmul
(matrix multiply), microdc (electrostatic potential com-
putation), lu (LU factorization), cholesky (Cholesky fac-
torization), shallow (shallow water simulation), bsom
(neural network training), tomcatv (mesh generation and
solver), and fft (FFT with explicit real arithmetic). Re-
sults for these benchmarks, when running in strictly
sequential (single-threaded) mode, are summarized in
Fig. 6(a). Measurements were made on an RS/6000
model 260 machine, with a 200 MHz POWER3 pro-
cessor. The height of each bar is proportional to the
best Fortran performance achieved in the correspond-
ing benchmark. The numbers at the top of the bars
indicate actual Mflops. For the Java 1.1.6 version, ar-
rays are implemented as double[][]. The NINJA
version uses doubleArray2DArrays from the Array
package and semantic expansion.

For six of the benchmarks (matmul, microdc, lu,
cholesky, bsom, and shallow) the performance of the Java
version (with the Array package and our compiler) is
80% or more of the performance of the Fortran version.
This high performance is due to well-known loop trans-

formations, enabled by our techniques, which enhance
data locality. The Java version of tomcatv performs
poorly because one of the outer loops in the program is
not covered by a safe region. Therefore, no further loop
transformations can be applied to this particular loop.
The performance of fft is significantly lower than its
Fortran counterpart because our Java implementation
does not use interprocedural analysis, which has a big
impact in the optimization of the Fortran code.

4.2. Results for complex arithmetic benchmarks

The five complex benchmarks are matmul (matrix
multiply), microac (electrodynamic potential computa-
tion), lu (LU factorization), fft (FFT with complex arith-
metic), and cfd (two-dimensional convolution). Re-
sults for these benchmarks are summarized in Fig. 6(b).
Measurements were made on an RS/6000 model 590
machine, with a 67 MHz POWER2 processor. Again,
the height of each bar is proportional to the best For-
tran performance achieved in the corresponding bench-
mark, and the numbers at the top of the bars indicate
actual Mflops. For the Java 1.1.6 version, complex
arrays are represented using a Complex[][] array
of Complex objects. No semantic expansion was ap-
plied. The NINJA version uses ComplexArray2D
Arrays from the Array package and semantic expan-
sion. In all cases we observe significant performance
improvements between the Java 1.1.6 and NINJA ver-
sions. Improvements range from a factor of 35 (1.7 to
60.5 Mflops for cfd) to a factor of 75 (1.2 to 89.5 Mflops
for matmul). We achieve Java performance that ranges
from 55% (microac) to 85% (fft and cfd) of fully opti-
mized Fortran code.

28 J.E. Moreira et al. / NINJA: Java for high performance numerical computing

 matmul microdc lu cholesky bsom shallow tomcatv fft
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 7

340

403

 53

210
205

 45

154

165

 5

167
172

 47

175

216

 45

156

188

 50

 74

188

101104

191

Benchmarks

Fr
ac

tio
n

of
 b

es
t F

or
tr

an
 p

er
fo

rm
an

ce

Performance of real arithmetic benchmarks on RS/6000 260 (Mflops)

Java 1.1.6 NINJA Fortran 90

matmul microac lu fft cfd
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 2

 90

112

 1

 76

140

 2

 63

102

 2

 60

 72

 2

 60

 72

Benchmarks
Fr

ac
tio

n
of

 b
es

t F
or

tr
an

 p
er

fo
rm

an
ce

Performance of complex arithmetic benchmarks on RS/6000 590 (Mflops)

Java 1.1.6 NINJA Fortran 90

(a) real arithmetic benchmarks (b) complex arithmetic benchmarks

 matmul microdc lu cholesky shallow bsom tomcatv fft
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Benchmarks

S
pe

ed
up

Speedup from automatic parallelization on 4 processor POWER3

1 processor

2 processors

3 processors

4 processors

 Java Array x 1 Fortran Array x 2 Array x 3 Array x 4
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

25.8

109.2
120.0

185.5

247.3

292.4

Code version

S
pe

ed
up

 o
ve

r
be

st
 s

eq
ue

nt
ia

l J
av

a

Performance of data mining code on RS/6000 F50 (Mflops)

(c) speedup from automatic parallelization (d) applying the Array package to data mining

Fig. 6. Performance results of applying our Java optimization techniques to various cases.

4.3. Parallel execution results

Loop parallelization is another important transfor-
mation enabled by safe region creation and alias ver-
sioning. We report speedup results from applying loop
parallelization to our eight real arithmetic Java bench-
marks. All experiments were conducted using the Ar-
ray package version of the benchmarks, compiled with
our prototype compiler with automatic parallelization
enabled. Speedup results, relative to the single pro-
cessor performance of the parallel code optimized with
NINJA, are shown in Fig. 6(c). Measurements were
made in a machine with four 200 MHz POWER3 pro-
cessors. The compiler was able to parallelize some
loops in each of the eight benchmarks. Significant

speedups were obtained (better than 50% efficiency
on 4 processors) in six of those benchmarks (matmul,
microdc, lu, shallow, bsom, and fft).

4.4. Results for parallel libraries

We further demonstrate the effectiveness of our so-
lutions by applying NINJA to a production data mining
code [14]. In this case, we use a parallel version of
the Array package which uses multithreading to exploit
parallelism within the Array operations. We note that
the user application is a strictly sequential code, and
that all parallelism is exploited transparently to the ap-
plication programmer. Results are shown in Fig. 6(d).
Measurements were made with a RS/6000 model F50

J.E. Moreira et al. / NINJA: Java for high performance numerical computing 29

machine, with four 332 MHz PowerPC 604e proces-
sors. The conventional (Java arrays) version of the ap-
plication achieves only 26 Mflops, compared to 120
Mflops for the Fortran version. The single-processor
Java version with the Array package (bar Array x 1)
achieves 109 Mflops. Furthermore, when run on a mul-
tiprocessor, the performance of the Array package ver-
sion scales with the number of processors (bars Array x
2, Array x 3, and Array x 4 for execution on 2, 3, and 4
processors, respectively), achieving almost 300 Mflops
on 4 processors.

5. Conclusions

Our results show that there are no serious technical
impediments to the adoption of Java as a major lan-
guage for numerically intensive computing. The tech-
niques we have presented are simple to implement and
allow existing compiler optimizers to be exploited. The
Java-specific optimizations are relatively simple and
most of the benefits accrue from leveraging well un-
derstood language-independent optimizations that are
already implemented in current compilers. Moreover,
Java has many features like simpler pointers and flex-
ibility in choosing object layouts, which facilitate ap-
plication of the optimization techniques we have devel-
oped.

The impediments to high-performance computing in
Java are instead economic and social – an unwilling-
ness on the part of vendors of Java compilers to com-
mit the resources to develop product-quality compilers
for technical computing; the reluctance of application
developers to make the transition to new languages for
developing new codes; and finally, the widespread be-
lief that Java is simply not suited for technical comput-
ing. The consequences of this situation are severe: a
large pool of programmers is being underutilized, and
millions of lines of code are being developed using pro-
gramming languages that are inherently more difficult
and less safe to use than Java. The maintenance of these
programs will be a burden on scientists and application
developers for decades.

We have already engaged with companies that are
interested in doing numerical computing in Java, which
represents a first step towards wider adoption of Java in
that field. Java already has a strong user base in com-
mercial computing. For example, IBM’s Websphere
suite is centered around Java and is widely used in
the industry. However, the characteristics of the com-
mercial computing market are significantly different,

in both size and requirements, from the technical com-
puting market. It is our hope that the concepts and
results presented in this paper will help overcome the
difficulties of establishing Java as a viable platform
for numerical computing and accelerate the acceptance
of Java, positively impacting the technical computing
community in the same way that Java has impacted the
commercial computing community.

Appendix A. The Array package for Java

The Array package for Java (provisionally named
com.ibm.math.array) provides the functionality
and performance associated with true multidimensional
arrays. The difference between arrays of arrays, di-
rectly supported by the Java Programming Language
and Java Virtual Machine, and true multidimensional
arrays is illustrated in Fig. 2. Multidimensional arrays
(Arrays) are rectangular collections of elements char-
acterized by three immutable properties: type, rank,
and shape. The type of an Array is the type of its el-
ements (e.g., int, double, or Complex). The rank
(or dimensionality) of an Array is its number of axes.
For example, the Arrays in Fig. 2 are two-dimensional.
The shape of an Array is determined by the extent of
its axes. The dense and rectangular shape of Arrays fa-
cilitate the application of automatic compiler optimiza-
tions.

Figure 7 illustrates the class hierarchy for the Array
package. The root of the hierarchy is an Array ab-
stract class (not to be confused with the Array package).
From the Array class we derive type-specific abstract
classes. The leaves of the hierarchy correspond to final
concrete classes, each implementing an Array of spe-
cific type and rank. For example,doubleArray2D is
a two-dimensional Array of double precision floating-
point numbers. The shape of an Array is defined at
object creation time. For example,

intArray3D A = new intArray3D(m,n,p);

creates an m × n × p three-dimensional Array of
integer numbers. Defining a specific concrete final
class for each Array type and rank effectively binds the
semantics to the syntax of a program, enabling the use
of mature compiler technology that has been developed
for languages like Fortran and C.

Arrays can be manipulated element-wise or as ag-
gregates. For instance, if one wants to compute a two-
dimensional Array C of shape m × n in which each
element is the sum of the corresponding elements of
Arrays A and B, also of shape m × n, then one can
write either

30 J.E. Moreira et al. / NINJA: Java for high performance numerical computing

Array

doubleArray

doubleArray3D

doubleArray2D

doubleArray1D

ComplexArray

ComplexArray3D

ComplexArray2D

ComplexArray1D

other Array types

Fig. 7. Simplified partial class hierarchy chart for the Array package.

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

Problem size

M
flo

ps

ESSL and Java BLAS performance for SGEMM on RS/6000 260

ESSL PWR3
Java BLAS PWR3

Fig. 8. Performance results for ESSL and Java BLAS for SGEMM operation.

for (int i=0; i<m; i++)
for (int j=0; j<n; j++)

C.set(i,j,A.get(i,j)+B.get(i,j));
or

C = A.plus(B);
There are subtle differences between the two forms.

The latter (aggregate) form has Array semantics: all
elements of A and B are first read, the addition is per-
formed, and only then are the resulting values written
to the elements of C. The first (element-wise) version
computes one element of C at a time. If C happens
to share storage with A and/or B, the resulting val-
ues of elements of C may differ from the aggregate
form. Both element-wise and aggregate forms have
their merits, and the Array package is designed so that

the two forms can be aggressively optimized as with
state-of-the-art Fortran compilers.

The code snippets above also show that syntactic
support for the multidimensional arrays in the Array
package would increase their usability. For example, it
would be clearer to write

C[i,j] = A[i,j] + B[i,j];

for the body of the loop and
C = A + B;

for the aggregate form. These issues are orthogonal to
the usefulness of the library for enabling compiler op-
timizations, but will increase programmer acceptance
of the package.

The Array package for Java is currently going
through a standardization process through the Java

J.E. Moreira et al. / NINJA: Java for high performance numerical computing 31

1 2

1

2

3

4

1 2

3 4

5 6

7 8

1

2

5

6

3

4

7

8

9

10

13

14

11

12

15

16

Fig. 9. Illustration of the block recursive layout.

0 200 400 600 800 1000 1200 1400 1600 1800
0

100

200

300

400

500

600

700

800

Problem size

M
flo

ps

Java BLAS performance for DGEMM on RS/6000 260

block recursive layout
row major layout

Fig. 10. Performance results for Java DGEMM with two array layouts.

Community Process [12]. The standardization is an
important step in making Java practical for numerical
computing. We note that the current naming conven-
tions for the Array package do not follow recommended
Java practice (e.g., some classes start with lower case
letters). We expect this will change with the standard-
ization process. It is also likely that the class hierarchy
of the standardized package will be somewhat differ-
ent. Nevertheless, the key properties of truly rectan-
gular multidimensional arrays, important for enabling
compiler optimizations, will be preserved.

Appendix B. Numerical linear algebra in Java

Numerical linear algebra operations are important
building blocks for scientific and engineering applica-
tions. Many problems in those domains can be ex-
pressed as a system of linear equations. Much work has
been done, by industry, academia, and government, to
develop libraries of routines that manipulate and solve

these diverse systems of equations using numerical lin-
ear algebra. The Basic Linear Algebra Subprograms
(BLAS) and the Linear Algebra Package (LAPACK)
are two popular examples of such libraries available to
Fortran and C programmers [7]. Part of our work in
optimizing Java performance for numerically intensive
computing involved the development of a linear alge-
bra library for Java. This library is part of the Array
package for Java. We call it Java BLAS.

We chose to develop this library entirely in Java,
with no native code components. We took advantage
of Java’s object oriented features to arrive at a design
that is easy to maintain, portable, and achieves high
performance [1]. The implementation of our linear
algebra library in Java also allowed us to pursue new
optimization techniques.

Linear algebra algorithms (e.g., solving for vector x
in the equation Ax = b) are expressed in terms of vector
and matrix operations. For that reason, we defined two
interfaces, BlasVector and BlasMatrix that de-
fine the behavior of vectors and matrices, respectively.

32 J.E. Moreira et al. / NINJA: Java for high performance numerical computing

For example, any implementation of theBlasMatrix
interface must provide methods gemm (for matrix mul-
tiplication), trsm (for solution of triangular systems),
and syrk (for update of symmetric matrices). Lin-
ear algebra algorithms are then expressed strictly in
terms of the methods defined by the BlasVector
and BlasMatrix interfaces. This approach is par-
ticularly appropriate for the implementation of linear
algebra algorithms in recursive form [9].

The one- and two-dimensional floating-point Ar-
rays in the Array package (namely floatArray1D,
floatArray2D, doubleArray1D, double-
Array2D, ComplexArray1D, ComplexArray-
2D) implement the BlasVector and BlasMatrix
interfaces, respectively. Therefore, a single instance of
a linear algebra algorithm works for single precision,
double precision, and complex floating-point numbers.
This results in our linear algebra library being much
smaller than equivalent implementations in C and For-
tran. We have been able to achieve very respectable
performance with our all-Java implementation. Fig-
ure 8 compares the performance of our Java BLAS li-
brary and the highly tuned ESSL product [10] when
performing the SGEMM BLAS operation (i.e., comput-
ing C = βC + αA × B for single precision floating-
point matrices A, B, and C). In those measurements,
all three matrices are of size n × n, where n is the
problem size. We observe that the Java BLAS version
achieves 80% of ESSL performance and 75% of the
machine peak performance (800 Mflops).

The area where Java allowed us to pursue new op-
timization techniques is in the exploitation of mem-
ory hierarchies, the multilevel cache structure of most
current machines. It has been known for a while that
neither the column major layout of Fortran nor the row
major layout of C for storing multidimensional arrays is
optimal for linear algebra algorithms. Java in general,
and the Array package in particular, hide the specific
memory layout of an array. Therefore, we are free to
organize arrays in any form that we find convenient,
totally transparent to the application programmer. In
particular, we have experimented with a block recur-
sive storage layout [6]. The idea behind block recursive
layouts is illustrated in Fig. 9. We start by dividing the
array into two blocks and laying each block contiguous
in memory. We repeat the partitioning for each block
until we arrive at some convenient block size (e.g., that
fits into level-1 data cache).

Our experiments with a block recursive storage lay-
out have shown significant performance improvements
above and beyond what is achieved by already highly

optimized code. The performance impact of the recur-
sive blocked layout can be observed in Fig. 10. The
bottom (lighter) plot in that figure shows the perfor-
mance of the BLAS DGEMM operation (i.e., the double-
precision version of SGEMM), as a function of prob-
lem size, for an optimized code operating on an array
with row major layout. The top (darker) plot shows the
performance for the same code operating on an array
with block recursive layout. For large problem sizes,
the Mflops rate for the block recursive layout can be
up to 30% higher. Furthermore, we observe that the
performance of the block recursive layout to be more
stable with the problem size.

References

[1] G. Almasi, F.G. Gustavson and J.E. Moreira, Design and Eval-
uation of a Linear Algebra Package for Java, in: Proceedings
of the ACM 2000 Conference on Java Grande, ACM, June
3–4, 2000, pp. 150–159.

[2] P.V. Artigas, M. Gupta, S.P. Midkiff and J.E. Moreira, High
performance numerical computing in Java: Language and
compiler issues, in: 12th International Workshop on Lan-
guages and Compilers for Parallel Computing, J. Ferrante et
al., eds, Vol. 1863 of Lecture Notes in Computer Science, IBM
Research Report RC21482 Springer Verlag, San Diego, CA,
August 1–17, 1999.

[3] R.F. Boisvert, J.J. Dongarra, R. Pozo, K.A. Remington
and G.W. Stewart, Developing numerical libraries in Java,
Concurrency, Pract. Exp. (UK) 10(11–13) (September–
November 1998), 1117–1129. ACM 1998 Workshop on Java
for High-Performance Network Computing, URL: http://
www.cs.ucsb.edu/conferences/java98.

[4] R.F. Boisvert, J.E. Moreira, M. Philippsen and R. Pozo , Java
and Numerical Computing, Computing in Science and Engi-
neering 3(2) (March/April 2001), 18–24.

[5] H. Casanova, J. Dongarra and D.M. Doolin, Java Access to
Numerical Libraries, Concurrency, Pract. Exp. (UK) 9(11)
(November 1997), 1279–1291. Java for Computational Sci-
ence and Engineering – Simulation and Modeling II Las Vegas,
NV, USA, 21 June 1997.

[6] S. Chatterjee, V.V. Jain, A.R. Lebeck, S. Mundhra and M.
Thottethodi, Nonlinear array layouts for hierarchical memory
systems, in: Proceedings of the 1999 International Conference
on Supercomputing, Rhodes, Greece, 1999, pp. 444–453.

[7] J.J. Dongarra, I.S. Duff, D.C. Sorensen and H.A. van der
Vorst, Solving Linear Systems on Vector and Shared Memory
Computers, Society for Industrial and Applied Mathematics,
1991.

[8] J. Gosling, B. Joy and G. Steele, The Java(TM) Language
Specification, Addison-Wesley, 1996.

[9] F.G. Gustavson, Recursion Leads to Automatic Variable
Blocking For Dense Linear Algebra Algorithms, IBM Jour-
nal of Research and Development 41(6) (November 1997),
737–755.

[10] International Business Machines Corporation, IBM Parallel
Engineering and Scientific Subroutine Library for AIX – Guide
and Reference, December 1997.

[11] Java Grande Charter, http://www.javagrande.org/public.htm.

J.E. Moreira et al. / NINJA: Java for high performance numerical computing 33

[12] J.E. Moreira et al., JSR-083, JavaTM Multiarray Pack-
age, URL: http://java.sun.com/aboutJava/communityprocess/
jsr/jsr 083 multiarray.html.

[13] J.E. Moreira, S.P. Midkiff, M. Gupta, P.V. Artigas, M. Snir
and R.D. Lawrence, Java Programming for High Performance
Numerical Computing, IBM Systems Journal 39(1) (2000)
21–56, IBM Research Report RC21481.

[14] J.E. Moreira, S.P. Midkiff, M. Gupta and R.D. Lawrence,
Parallel Data Mining in Java, in: Proceedings of SC ’99, Also
available as IBM Research Report 21326, Nov. 1999.

[15] S.S. Muchnick, Advanced Compiler Design and Implementa-
tion, Morgan Kaufmann, San Francisco, California, 1997.

[16] R. Pozo and B. Miller, SciMark: A Numerical Benchmark for
Java and C/C++, National Institute of Standards and Tech-
nology, Gaithersburg, MD, http://math.nist.gov/SciMark.

[17] V. Sarkar, Automatic selection of high-order transformations

in the IBM XL Fortran compilers, IBM Journal of Research
and Development 41(3) (May 1997), 233–264.

[18] M.J. Serrano, R. Bordawekar, S.P. Midkiff and M. Gupta,
Quicksilver: a quasi-static compiler for Java, in: Proceed-
ings of the Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA’00), Minneapo-
lis, MN, USA, Oct. 2000, pp. 66–82.

[19] V. Seshadri, IBM High Performance Compiler for Java,
AIXpert Magazine, September 1997, URL: http://www.
developer.ibm.com/library/aixpert.

[20] M.J. Wolfe, High Performance Compilers for Parallel Com-
puting, Addison-Wesley, 2000.

[21] P. Wu, S.P. Midkiff, J.E. Moreira and M. Gupta, Efficient
Support for Complex Numbers in Java, in: Proceedings of the
1999 ACM Java Grande Conference, IBM Research Report
RC21393, 1999, pp. 109–118.

