
Search strategies for Java bottleneck location by
dynamic instrumentation

D.J. Brear, T. Weise, T. Wiffen, K.C. Yeung, S.A.M. Bennett and P.H.J. Kelly

Abstract: The authors have developed a prototype tool that supports instrumentation of distributed
Java applications by on-the-fly deployment of interposition code at user-selectable program points.
The paper explores the idea, originated in the Paradyn Performance Consultant, of systematically
searching for performance bottlenecks by progressive refinement. They present the callgraph search
algorithm in detail, and discuss a number of shortcomings with the approach, some of which can be
addressed by improving the search strategy. They support their conclusions with two application
examples. This is a report of work in progress, aimed at stimulating further investigation of this
interesting approach.

1 Introduction

The idea of dynamically patching instrumentation code into
a program while it is running immediately leads to the idea
of deploying instrumentation in response to earlier
measurements. For diagnosing performance problems, the
objective in doing this is to direct the programmer towards
opportunities for improving performance. The idea was
pioneered in the Paradyn Performance Consultant [1],
which uses a callgraph-based bottleneck search strategy [2].
This paper presents our progress in exploring this

approach in the Java context. We address the following
issues:

. Implementing dynamic instrumentation within a Java
Virtual Machine: Several options are available; our
implementation uses our Veneer Virtual JVM, which offers
the prospect of automatically optimising the bottleneck code
once it has been identified.
. The callgraph search strategy: We give a detailed
exposition of the callgraph search strategy, which clarifies
some of the difficulties of the approach.
. Search strategy enhancements: To address some of these
difficulties, ‘deep start’ enhancements to the callgraph
strategy have been proposed [3]. Random call-stack
sampling has been shown to be effective but for Java it is
difficult to implement; we study a call count alternative.

We demonstrate the usefulness of our prototype tools, JUDI

(Java utility for dynamic instrumentation) and JBOLT (Java
bottleneck locator toolkit) using two nontrivial applications.

2 Background

The Performance Consultant (PC), in Paradyn [1], structures
the search for performance ‘bottle-necks’ in terms of
experiments; each experiment tests a hypothesis.

A hypothesis is an assertion that the application spends a
substantial amount of time behaving in some pathological
way which might be addressed by the performance
engineer. Each experiment is targeted on a ‘focus’. For
each experiment, the PC uses dynamic instrumentation to
collect data to evaluate whether the experiment’s hypothesis
holds true for this focus.

If an experiment results in support for the hypothesis at
the specified focus, a further experiment can be formulated
to identify the problem more precisely. The experiment can
be refined in two ways–by refining the hypothesis (for
example, by distinguishing different kinds of synchronisa-
tion problem), or by refining the focus. A natural focus
refinement is to test whether the problem is within a
function or within one of its callees. Other focus refinements
might be to distinguish particular threads or transaction
types.

An alternative to using dynamic instrumentation might be
to instrument the binary to generate data on all possible
hypotheses at all foci. The PC aims to get essentially the
same result, with much lower overhead. The approach relies
on sampling, and works on long-running applications
provided that behaviour is statistically fairly stable (we
return to this issue shortly). The PC monitors the
interference caused by the instrumentation it inserts, and
throttles the number of ongoing experiments to keep the
interference within specified limits. Refining the focus by
tracing the application’s callgraph confines the search to
code which is actually executed (explored in [2]).

For finding CPU bottlenecks, this approach is not clearly
better than conventional approaches, such as sampling the
program counter at random intervals. The real potential for
the idea lies in bottlenecks which are harder to character-
ise–where instrumenting for all hypotheses would lead to
excessive interference.

DynInst [4] is an example of a portable library for
dynamic instrumentation, derived from the dynamic instru-
mentation technology [5] developed as part of Paradyn.
In DynInst, a ‘point’ is a location in a program where
instrumentation can be inserted. A ‘snippet’ is an abstract
syntax tree representing some executable code which is to
be inserted into a program at a point. Snippets can include
conditionals, functions calls and loops. Snippets are
translated to binary instructions then copied into an array

q IEE, 2003

IEE Proceedings online no. 20030807

doi: 10.1049/ip-sen:20030807

The authors are with the Department of Computing, Imperial College,
London SW7 2AZ, UK

Paper received 25th April 2003

IEE Proc.-Softw., Vol. 150, No. 4, August 2003 235



in the application’s address space. The application then has
to be modified to branch into the snippet code, using code
they term a ‘trampoline’.

Dynamic instrumentation for Java cannot be
implemented this way, without exposing low-level
implementation details of the JVM (for example, profile-
directed re-optimisation). There are several alternative
approaches:

. Re-define the class using the Java Debug Interface (JDI)
call VirtualMachine.redefine Classes (), intro-
duced in Sun’s JDK 1.4. This approach is used in
ProbeMeister [6]. The overhead to do this is reported to
be around 20ms for a small example, but increases with
large classes since methods cannot be redefined individu-
ally, and JIT optimisation must be re-done. To reduce the
overheads, Dmitriev [7] advocates refining the JDI with a
call to redefine methods individually.
. Run the JVM in debugging mode, and set breakpoints to
insert instrumentation. This is the approach taken by
Popovici et al. [8]. Historically, JVMs have run substan-
tially slower than normal in debugging mode, whether
breakpoints are present or not; modern JVMs appear to
make this approach more competitive.
. Run the Java application in a virtual JVM. This is the
approach used in our JUDI tool [9]. We use the native JVM
to execute application bytecode as much as possible, but
have to intercept execution to retain control. The scheme
suffers some overhead (see Section 5) on execution of all the
application’s code (apart from system libraries), but runs
with JIT optimisation.

2.1 The Veneer Virtual Java Virtual Machine
(vJVM)

When extending the Java platform, it is often desirable to
implement new features directly into the Java Virtual
Machine. However, such modifications are tied to a specific
JVM, and the complexity and size of many JVM
implementations can make this a difficult and time-
consuming task. One way to overcome the portability
problem might be to write a JVM in Java, which runs on top
of an underlying JVM. This has been done before in projects
such as JavaInJava [10]. However, such implementations
have a tendency to be extremely slow, since they attempt to
emulate all aspects of a JVM.

Our approach, similar to the Dynamo/Rio projects [11,
12], is to build a Java Virtual Machine using Java that uses
the underlying JVM to directly execute as much of the
program code as possible, only seizing control of the
system when we wish the behaviour to deviate from that of
the underlying JVM [13]. It allows us to run most of the
application code directly (i.e. jumps to the corresponding
bytecode), but the vJVM maintains control over execution
by intercepting control flow. Veneer is much more
powerful than is needed for dynamic instrumentation
alone–our long-term goal is to use it to diagnose
performance improvement opportunities automatically,
then optimise dynamically.

The control flow is intercepted by ‘fragmenting’ each
method. There are a number of different fragmentation
policies: by basic block, at method level (used by the JBolt
extension to JUDI, see Section 3) and at RMI invocations
(used for our work on RMI optimization [13]). The method
body is split into blocks, and the method entry is replaced by
an ‘executor loop’ that walks the control flow graph,
invoking each block in turn. A method’s control flow graph
can be updated ‘on-the-fly’ (i.e. as the application is

running), allowing us to use this as a framework for
dynamic instrumentation.

The fragmentation process (which is based on the SOOT
framework [14]) includes use/def and liveness analyses.
Each fragment carries this as dependence metadata, which
can be used in a run-time optimiser.

2.2 Java utility for dynamic instrumentation
(JUDI)

JUDI is a prototype dynamic instrumentation tool for Java
[9]. It has a client graphical user interface (GUI) which
connects to a set of remote vJVMs running fragmented
code. The GUI allows the user to browse the remote
systems’ methods, and to upload ‘instruments’ to the
remote systems, where they are patched into the running
code. The instruments are simple Java objects that can be
compiled and loaded on-the-fly. The tool consists of two
components, which can run on separate hosts to avoid
interference:

. JUDI-StartApp is responsible for starting the application
and registering it with the RMI registry.
. JUDI-GUI allows the user to insert instruments dynami-
cally into the application.

The instrumentation strategy used for the CPU Time
bottleneck search (see Section 3) is designed to produce
an inclusive timing of instrumented methods. Instruments
are placed at the method entry point and at every return
statement in the method. The instruments at the return
statements are twinned with the single instrument at the
entry, and when executed obtain the elapsed time on the HP
Timer [Note 1] of the entry point instrument.

JUDI’s unit of instrumentation deployment is an ‘instru-
mentation strategy component’ (ISC). This consists of:

. a set of instruments–subclasses of a generic instrument
plan block. Instruments typically start, stop and log timers,
or generate a log entry recording control flow, or data
values.
. an instrumentation strategy: This is usually just whether
the instrument is to be executed ‘before’, ‘after’ or ‘around’
its target block, and whether it applies to the whole method,
or every basic block in the method.
. instrumentation targets: This is the set of program objects
(methods, classes) to which the instrumentation strategy
should be applied. If not the entire program, this is selected
explicitly through the GUI.
. instrumentation data class: Instruments generate data,
usually either a log or some kind of histogram.
. instrumentation analyser: This is a GUI component for
viewing the results from the experiment.

3 The basic bottleneck search algorithm

Automatic bottleneck search is implemented as a JUDI ISC
called JBolt, the Java bottleneck locator toolkit. Fig. 1
shows, in outline form, the automatic bottleneck search
algorithm (described informally in [2]). The algorithm starts
with an application ready to run:

. It installs instrumentation at the root of the call graph
(line 10), then allows execution to proceed.

Note 1: The timer class used to obtain inclusive time measurements,
HPTimer, was developed by Kwok Yeung [13]. It offers nanosecond
resolution.

IEE Proc.-Softw., Vol. 150, No. 4, August 2003236



. When an application thread executes a timer instrument,
the application thread blocks and the active instrument
object is passed to the search algorithm (line 19).
. The algorithm maintains a profile database which records
instrumentation data accumulated so far. At line 24 the
algorithm determines whether the new measurement allows
us to classify this candidate program point as a bottleneck.
. When a bottleneck method is identified (line 25), we add
it to the output set (line 30), then the instrumentation is
refined to determine which, if any, of the method’s callees is
responsible (line 33).
. We may instead conclude that we have enough data to
decide that this method is not a bottleneck (line 36). The
instrument is therefore removed.
. Finally, we may decide to leave the instrument in place to
accumulate further profile data.

The output consists of a list of bottleneck methods,
prioritised by severity and specificity. This is conveniently
presented to the user by colouring the nodes of the call
graph, as shown in Fig. 3.
The algorithm in Fig. 1 is incomplete in two important

ways:

. It fails to find some bottlenecks - where a bottleneck
method is called from many different points, but none of
its callers is itself a bottleneck (for example, see Fig. 2).
We return to this issue in Section 4.

. The algorithm assumes that we know each method’s
callees.

3.1 Finding the callee set

The algorithm maintains two key data structures:

. Focus: This is the set of method which have been
identified as bottlenecks, and whose callees are being
instrumented to determine whether a refined bottleneck
hypothesis holds – i.e. whether the problem lies in one of
the callees. Focus methods are not instrumented.
. Frontier: This is the set of methods currently being
instrumented. A method is in the frontier if its caller is in the
focus (we ignore recursion for simplicity of presentation).

Fig. 1 Pseudocode outline of callgraph-based bottleneck search algorithm

Fig. 2 Bottleneck hidden from the callgraph search

IEE Proc.-Softw., Vol. 150, No. 4, August 2003 237



The problem is that this definition is retrospective: by the
time we find out that a method is a bottleneck, it is too late to
instrument its callees. This is a fundamental problem, but
there are several measures which help:

1. We could analyse each method to find call sites where
the target method is statically known. This technique is used
in Paradyn, but does not handle Java’s prevalent virtual
methods well. Callee methods identified this way can, in
principle, be added to the frontier as soon as the caller
reaches the bottleneck threshold. A method can be included
in the callee set but not actually called, at the cost of some
redundant instrumentation.
2. We could instrument each bottleneck method, with code
to record its callees and add them to the frontier. This is how
Paradyn deals with virtual and indirect method calls. This
does lead to some interference: the callee logging overheads
are included in the caller method measurement.
3. We add a simple instrument to all methods, which
checks whether the caller is in the focus. If so, the callee is
added to the frontier. Our current prototype uses this
technique, but we plan to investigate alternatives.
4. Some bottleneck methods are executed only once in a run
of the application. To instrument their callees, we have to
re-run the application. The need for this is alleviated to some

extent by augmenting the callgraph search as described in
Section 4.
5. We could instrument the application to construct its call
graph, then re-run the application and use this call graph to
guide bottleneck search. The first run would be slowed
down due to heavy instrumentation, but the second run
would suffer minimum interference. This scheme relies on
the call graph being very similar on both runs. This is an
attractive alternative strategy for our prototype.

3.2 Bottleneck identification criterion

The objective is to find and prioritise bottlenecks. The
criterion for including a candidate bottleneck would ideally
be the proportion of the application’s total run-time
attributable to that candidate. However, to direct the
bottleneck search, we need to classify candidates before
the program has finished. For the experiments reported here
we used a simple threshold of 10% of the execution time so
far. We found that this strategy led to some problems:

. Object constructors often evaluate as bottlenecks when the
application is starting up. When a constructor is called from
the ‘main’ method of the application, it is instrumented since
the ‘main’ method is initially in the search focus. Later on,

Fig. 3 RouteFinder–bottlenecks identified by JBolt

The path down the right-hand side (displayed in red on the JUDI GUI) identifies the method Edge:isMe as the main bottleneck in this application

IEE Proc.-Softw., Vol. 150, No. 4, August 2003238



when seen in the context of the entire program run, it will
probably represent only a small fraction of the totalCPU time.
. Small methods that are called very frequently often do not
initially appear to be bottlenecks. When instrumented and a
time obtained, the method’s relatively short execution time
does not make it appear to be a bottleneck. However, later
on in the program, once that method has been called many
times, the combination of high frequency calls and short but
non-negligible execution time may mean it is a bottleneck.

In either case, the root cause of the initial misinterpretation
of the metric can be attributed to a lack of context; the
method can really only be properly evaluated as a bottleneck
in the context of the whole program. For this reason, JBolt
periodically re-evaluates (currently at the end of each run
through the application) all instrument data, in order to get a
balanced view for each method.

4 Searching upwards through the call graph

Figure 2 shows how the callgraph-based bottleneck search
algorithm fails to find some bottlenecks. The callees of a
method are included in the search only if the caller’s
execution time indicates that a bottleneck is present. If a
method is called by several non-bottleneck methods, it
could still account for a large proportion of the run time.
The idea proposed by Roth and Miller [3] is to augment

the search using additional information, and use this to
target the search on ‘deep starters’. Roth and Miller choose
deep starters, using call stack sampling, from information
which their implementation already collects. In our vJVM
implementation, it is possible to capture stack samples but
rather expensive. Instead we use a simple instrument to
count method executions (the same instrument builds the
call graph in order to provide callee information). In our
implementation, deep starters are methods whose execution
frequency exceeds our chosen threshold (10%).
We use a deep-starter to target the callgraph search, by

finding all the paths through the call graph that connect a
focus node to the deep starter. All methods on these paths
can be added to the frontier, and thus be instrumented.
When executed, these instruments generate method timings
(collected at line 19 in Fig. 1). If a method exceeds the
bottleneck threshold, it is added to the frontier.
The timing instrument is an ‘around advice’ [15]: the

timer is started on entry, and logged on exit. However, the
deep-starter scheme above adds methods from the call paths
to the instrumentation frontier before those methods have
returned. If we use only ‘around’ instruments, we will not
get any measurements until these methods are re-entered.
Methods which are called just once will have to wait until
the application is restarted. To improve this situation we
experimented with ‘late instruments’ - if a method is already
on the call stack, we add an ‘after’ instrument. This is used
to measure the time between adding the instrument and

method exit. The actual method execution time is sure to be
more, but if this lower bound exceeds the threshold we can
add the method to the focus immediately. We found that late
instruments speed up the search substantially, at the expense
of less reliable quantitative results (see Section 5.3).

5 Experimental evaluation

This Section presents two examples of using JBolt to detect
performance bottlenecks, and validates the results against
Sun’s hprof profiler. RouteFinder is a railway route planning
tool based on Dijkstra’s shortest path algorithm. It is
single-threaded and consists 3823 lines of code (55 classes,
74 methods). SpecJVM98 _208_db (data management) is
taken from the SpecJVM98 benchmark suite [16]. The
program performs a variety of database operations on a
memory-resident database of name, address and phone
number records. It is also single-threaded, and consists of
8541 lines of code (24 classes, 40 methods).

We used the Sun Java 2 platform, standard edition version
l.4_02, running on SuSE Linux 7.2. Most of the experiments
were carried out on a system with a single 1400MHz AMD
Athlon processor, with separate 64KB L1 data and
instruction caches, unified 256KB L2 cache and 512MB
memory.Hprof [17] samples at a constant rate, so the results
are more accurate on a slower system. To compare
measured method timings we used a slower machine, with
a 450MHz Pentium III processor, with separate L1 data and
instruction caches of l6kbytes, L2 unified cache 512kbytes
and 256Mbytes memory.

Table 1 shows the impact of JBolt and hprof on the two
applications’ execution time. For _209_db, the slowdown is
fairly small, and JBolt does better than hprof. However, for
RouteFinder, the slowdown is very severe with both
profilers, with JBolt somewhat worse. We believe the
reason is that RouteFinder’s bottleneck method is executed
many times (7 million), while _209_db spends most of its
time in a method which is called a small number of times. In
both profilers, method entry is the main source of overhead,
but hprof incurs performance overheads on primitive Java
classes, which Veneer runs at full speed.

5.1 Routefinder results

Figure 3 shows the view displayed at the end of JBolt’s
search for bottlenecks in RouteFinder. There is only one
search strand in the application, branching at Algorithm.-
findNextNode, and joining again at Edge.isMe. Both hprof
and JBolt agree on the bottleneck. As a result, the method
Edge.isMe was modified. Running the new version of the
program (with a larger rail network) gave a time of 12.07 s,
as opposed to 25.13 s before optimisation (each averaged
over five runs), i.e. a speedup of just over two.

Figure 4 illustrates the efficiency of the hybrid search
ðtop-down + deep-start strategiesÞ in comparison with the

Table 1: Benchmark overheads - the JBOLT runs were done with hybrid search (callgraph plus deep start), with no limit
on the number of deep start instruments

Route Finder SpecJVM98_209_db

Time, s Slowdown factor Time, s Slowdown factor

Unfragmented application 3.73 1.00 22.02 1.00

Fragmented application 28.13 7.54 24.30 1.10

Profiled with JBolt 105.14 28.19 26.96 1.22

Profiled with hprof 71.74 19.23 51.30 2.33

IEE Proc.-Softw., Vol. 150, No. 4, August 2003 239



callgraph (just top-down) search. The hybrid search locates
all the bottlenecks (including a hidden bottleneck) in �55%
of the time taken by the callgraph search on its own.

5.2 SpecJVM98 _209_db results

Again, hprof and JBolt agree on the main bottleneck for this
application; the method DataBase.shell_sort. JBolt over-
heads are low because DataBase.shell_sort is called a small
number of times.

For the DataBase.read_db method, JBolt only attributes
4.43% of total CPU time on average to this method,
compared to hprofs 9.8%. Although JBolt and hprof
agree on where the bottlenecks are in both applications,
their attribution of time to methods varies substantially.
In general, compared to hprof, JBolt underestimates time
spent in short-running methods and overestimates time
spent in longer-running methods.

5.3 Discussion

Our experiments show that JBolt is able to identify the same
CPU bottlenecks as a conventional profiler. However,
applications can run very slowly under JBolt. This is largely

the overhead of fragmentation. We are implementing a
number of improvements to Veneer’s basic mechanisms.
Another strategy which could help would be to switch
between unfragmented and fragmented method variants as
instrumentation is added and removed.

JBolt profiles the fragmented version of the application,
not the real application. Comparing the method timings
given by JBolt and hprof suggests that there are differences,
so it is unclear how much of the variation in method timings
and bottleneck ranking are due to differences in the
performance characteristics of fragmented code, and how
much is due to inaccuracies in the data sampling and
analysis. Fragmentation appears to distort results for short
lived methods.

Short-running applications like the benchmarks chosen
here have to be re-executed several times (up to four) for
JBolt to finish its search for bottlenecks. The main reason
for this is to account for methods which are called only once
per run.

The callgraph strategy has the desirable property that
instrumentation overheads are never included in measure-
ments. However, the upward search schemes introduce ‘late
instruments’ which are added while measurements higher in
the callgraph are in place. We heuristically alleviated this
problemby allowing only one late instrument to be in place at
a time; we maintain a late instrument queue, and always
select the deepest late instrument in the call graph. Relaxing
this constraint leads to serious measurement errors, but
enormously faster convergence:most applications saw all the
bottlenecks identified within the first run. A more sophisti-
cated instrument placement strategy should help here.

6 Conclusions and further work

We have reported on our exploration of search strategies for
using dynamic instrumentation to locate and characterise
performance bottlenecks. This work forms part of our
longer-term objective to explore automatic profile-driven
optimisation, and it is constructed on top of the Veneer
framework which we built for this purpose.

Our results are not entirely positive. The main purpose of
dynamic instrumentation is to avoid the performance impact
of static approaches. We expect to reduce the performance

Fig. 4 RouteFinder–the hybrid search finds more bottlenecks in
approximately 55% of the time taken by the callgraph-only search

These hybrid runs were done with a limit of one deep starter instrumented at
a time

Fig. 5 An example ‘Why’ bottleneck hierarchy

Poor spatial locality implies cache misses, which imply CPU time. Conversely, if synchronised methods are not a bottleneck, then neither is lock contention.
Contention for structured resources also leads to a hierarchy of bottlenecks. A similar process of refinement applies to source code (file, module, class, method),
location (server, process, CPU, thread, transaction) and time of day

IEE Proc.-Softw., Vol. 150, No. 4, August 2003240



impact of Veneer dramatically with further development.
There are also serious concerns about the statistical
significance of JBolt’s results. This seems inherent in the
approach: sampling is driven by earlier measurements, so is
not very random. For very long-running applications, or
applications with a known repetitive structure, this can,
perhaps, be overcome.
We are currently testing a new version of JUDI

(DYJIT), which runs with either the Veneer vJVM or the
JDI (Java Debug Interface), and uses Aspect-J syntax
[15] to specify instruments. We plan to do comparative
benchmarking of the bottleneck instrument on the two
underlying platforms. In addition, we are investigating
amending Veneer to only use fragmented methods when
they are instrumented (i.e. to run the original byte code
where possible).
Perhaps the most promising prospect lies in searching for

more subtle performance bottlenecks. Miller et al. [1]
observe that the search for a bottleneck can involve
refinement in three dimensions; they call this the W3 model:

. When: Is the performance problem confined to a
particular phase of the computation? A particular time of
day?
. Where: At what class, method, module, server, com-
ponent or line of code does the problem occur? The
callgraph (for example, as shown in Fig. 2) shows a natural
example. Others are possible: Which threads? Which users?
Which transaction types?
. Why: What is the reason for the performance problem?
Bottlenecks naturally form a hierarchical structure, as
shown in Fig. 5.

In each dimension (when, where, why), the hierarchy
provides a way to structure the search, leading to a
successively more refined characterisation of the problem.
This should allow us to target expensive instrumentation on
just the parts of the code and the phases of the computation
where subtle performance problems are likely to occur.

7 Acknowledgments

This work was funded in part by the UK Engineering and
Physical Sciences Research Council through a PhD student-
ship and the DESORMI project (GR/R15566).

8 References

1 Miller, B.P., Callaghan, M.D., Cargille, J.M., et al. ‘The Paradyn
parallel performance measurement tool’, Computer, 1995, 28, (11),
pp. 37–46

2 Cain, H., Wylie, B., andMiller, B.P.: ‘A callgraph based search strategy
for automated performance diagnosis’, in Arndt Bode et al., (Ed.):
‘Euro-Par 2000 - Munich’, Lect. Notes Comput. Sci., 2000, 1900,
pp. 108–122

3 Roth, P.C., and Miller, B.P.: ‘Deep start: a hybrid strategy for
automated performance problem searches’, in Burkhard Monien and
Rainer Feldmann, (Eds): ‘Euro-Par 2002 - Paderborn, Germany’, Lect.
Notes Comput. Sci., 2002, 2400, pp. 86–96

4 Buck, B., and Hollingsworth, J.K.: ‘An API for runtime code patching’,
Int. J. High Perform. Comput. Appl., 2000, 14, (4), pp. 317–329

5 Hollingsworth, J.K., Miller, B.P., and Cargille, J.: ‘Dynamic program
instrumentation for scalable performance tools’. Presented at Scalable
high-performance computing Conf., Knoxville, Tennessee, May 1994.
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/dyninst.ps.Z

6 Pazandak, P., and Wells, D.: ‘ProbeMeister: distributed runtime
software instrumentation’. Presented at 1st Int. Workshop on
Unanticipated software evolution (USE), Malaga, Spain, June 2002.
http: //www.joint.org/use2002/sub/pazandak-ProbeMeister.pdf

7 Dmitriev, M.: ‘Application of the HotSwap technology to advanced
profiling’. Presented at 1st Int. Workshop on Unanticipated software
evolution (USE), Malaga, Spain, June 2002. http://www.joint.org/
use2002/sub/dmitriev-hotswapprof.pdf

8 Popovici, A., Gross, T., and Alonso, G.: ‘Dynamic weaving for aspect
oriented programming’. Presented at 1st Int. Conf. on Aspect-oriented
software development (AOSD), Enschede, The Netherlands, 22–26
April 2002. http://ikplab11.inf.ethz.ch:9000/prose/webthings/aosd02.ps

9 Yeung, K., Kelly, P.H.J., and Bennett, S. ‘Dynamic instrumentation for
Java using a virtual JVM’ in Getov, V., et al. (Eds): Performance
analysis and grid computing (Kluwer, The Netherlands, 2003)

10 Taivalsaari, A.: ‘Implementing a Java virtual machine in the Java
programming language’. Technical Report TR-98-64, Sun Microsys-
tems, 1998. http://research.sun.com/techrep/1998/abstract-64.html

11 Bala, V., Duesterwald, E., and Banerjia, S.: ‘Dynamo: a transparent
dynamic optimization system’, ACM SIGPLAN Not., 2000, 35, (5),
pp. 1–12

12 Bruening, D., Duesterwald, E., and Amarasinghe, S.: ‘Design and
implementation at of a dynamic optimization framework for windows’.
Presented at 4th ACM Workshop on Feedback-directed and dynamic
optimization (FDDO-4), December 2001

13 Yeung, K.C., and Kelly, P.H.J.: ‘Optimising Java RMI programs by
communication restructuring’, in D. Schmidt and M. Endler, (Eds):
‘Middleware 2003 - Rio de Janeiro, Brazil’, Lect. Notes Comput. Sci.,
2672, pp. 324–343, 2003

14 Vallée-Rai, R., Gagnon, E., Hendren, L.J., et al. ‘Optimizing Java
bytecode using the Soot framework: Is it feasible?’, in David A. Watt
(Ed.): ‘Compiler Construction (CC2000), Berlin, Germany’, Lect.
Notes Comput. Sci., 2000, 1781 18–34

15 Kiczales, G., Hilsdale, E., Hugunin, J., et al.: ‘An overview of Aspect
J.’, Lect. Notes Comput. Sci., 2001, 2072, pp. 327–355

16 Standard Performance Evaluation Corporation (SPEC) JVM98 Suite,
1998. Available from http://www.spec.org

17 Liang, S., and Viswanathan, D.: ‘Comprehensive profiling support in
the Java Virtual Machine’. Proc. 5th USENIX Conference on Object-
oriented technologies and systems (COOTS), San Diego, CA,
May 1999, pp. 229–240

IEE Proc.-Softw., Vol. 150, No. 4, August 2003 241

ftp://ftp.cs.wisc.edu/paradyn/technical_papers/dyninst.ps.z
http: //www.joint.org/use2002/sub/pazandak-probemeister.pdf
http://www.joint.org/use2002/sub/dmitriev-hotswapprof.pdf
http://www.joint.org/use2002/sub/dmitriev-hotswapprof.pdf
http://ikplab11.inf.ethz.ch:9000/prose/webthings/aosd02.ps
http://research.sun.com/techrep/1998/abstract-64.html
http://www.spec.org




Copyright of IEE Proceedings -- Software is the property of Institution of Engineering & Technology and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.


