
egacy databases represent a valuable
repository of stored knowledge that
could prove useful if made available to
a broader audience via Internet applica-

tions. The audience might consist of cus-

tomers, suppliers, employees, researchers, or
governmental agencies, for example, access-
ing dynamic Web pages containing catalogs,
inventories, research studies, or reports pro-
duced as needed from current database

LINKING TO DATA

SHAE JANSONS has
worked with informa-
tion systems for 14
years, and earned her
M.S. in management
information systems
from Governors State
University in University
Park, Illinois. Her
research interests
include Internet and E-
commerce applications
and programming.
GARY J. COOK
earned his Ph.D. in
management informa-
tion systems at Arizona
State University,
Tempe, and his M.B.A.
at California State
University, Fresno. His
research interests
include E-commerce,
decision support sys-
tems, and human–com-
puter interactions.

L

WEB-ENABLED
DATABASE
CONNECTIVITY: A
COMPARISON OF
PROGRAMMING,
SCRIPTING, AND
APPLICATION-BASED
ACCESS

Shae Jansons and Gary J. Cook

Legacy databases represent a valuable repository of stored knowledge that could
prove useful if made available to a broader audience via Internet applications. This
article provides a framework that will assist managers in reviewing and selecting
appropriate techniques for integrating their legacy database systems with Web tech-
nology, based on their particular needs, resources, and constraints. In general, for
smaller organizations with lower levels of expertise, relatively few data requests, and
many resource constraints, scripting can provide a method of accessing a legacy
database and publishing it via a Web-enabled application in the most cost-efficient
method. For larger organizations with more resources, or for applications where a
number of data requests are expected, an implementation using a Web application
server such as Allaire ColdFusion is recommended. For organizations with detailed,
highly specialized requirements or mission-critical information, a programming
approach using Java/JDBC (perhaps in conjunction with XML) should be considered.

I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

W I N T E R 2 0 0 2
14

ISM Winter 2002 A20201 11/14/2001 12:20 PM Page 14

15

sources. The Internet and World Wide Web
allow organizations to provide access to this
legacy data while using new presentation
techniques.

The advantages of a Web-enabled database
are many. An accessible, searchable database
can provide opportunities for news, teaching,
learning, research; enable online booking and
catalog services; facilitate E-commerce; pro-
vide online support; improve productivity;
reduce training needs; reduce costs; increase
revenue; and enable information sharing
among a company’s employees or partners.
Web-enabled database applications can be run
on intranets (private internal networks),
extranets (private networks that allow links to
other trusted private networks, usually busi-
ness partners), or the Internet, all of which use
client/server architecture.

There are several factors that encourage
publishing legacy database files to Web-
enabled applications.

1. Web technology is widely distributed (and
becoming more so every day).

2. Web technology uses an open architec-
ture and is platform independent. Many
people — some with Macs, some with
Windows platforms, and others with
UNIX/Linux machines — can all access
the same information in a Hypertext
Markup Language (HTML) page via a
Web browser without difficulty.

3. Web-enabled applications are easy to use,
having familiar Windows look-and-feel
graphical user interfaces (GUIs).

4. From an organizational perspective, a
Web-enabled application using
client/server architecture can optimize
network protocols and memory require-
ments. In client/server architecture, func-
tionality (and therefore, workload) is
divided between the Web server comput-
er, which stores the data and Web pages,
and the client computer, which requests
and displays Web pages for the user.

This article provides a framework that will
assist managers in reviewing and selecting
appropriate techniques for integrating their
legacy database systems with Web technology,
based on their particular needs, resources, and
constraints.

LEGACY DATABASE SYSTEMS
Legacy database systems are not constructed
with new application tools and information for
the express purpose of publishing information

on the World Wide Web. Legacy database sys-
tems are preexisting and vary widely in form
and content, including structured database
files and text files (also known as “flat” files).
This data, representing an organization’s intel-
lectual property, might be stored on word
processors, spreadsheets, and databases in a
variety of software- and hardware-dependent
platforms. Some data is stored in formats that
are obsolete, or stored in a proprietary format
no longer available to the organization. For
example, a shift in hardware capabilities can
render data inaccessible; a database built on a
UNIX system may not be easily converted to a
Windows Web environment, or vice versa.

The dilemma of accessing legacy systems
in a Web-enabled environment is a wide-
spread phenomenon. Legacy database systems
are held by myriad organizations, varying from
small mom-and-pop retailers and not-for-prof-
it groups to large corporations. Each type of
organization has different information needs
and varying expenditure levels for information
management. Transforming legacy files into
data sources for Web-enabled applications has
quite often been difficult. Organizations must
consider several criteria when deciding if and
when they should integrate their legacy data-
base system with Web-enabled technology.

A major consideration is the type of sys-
tems (hardware and software) they already
possess. One recommended planning process
for implementing database–Web integration
follows six steps:

1. Document the current computing environ-
ment, including hardware and software,
Internet connectivity, and in-house expertise.

2. Develop a gap analysis (existing versus
desired future environment) and quantify
costs/benefits.

3. Refine and compare alternatives.
4. Consolidate security issues.
5. Evaluate Web application tools.
6. Design, implement, test, and evaluate a

pilot system.

This article focuses on the fifth step, that of
evaluating different methods of developing
the database–Web application, comparing
techniques based on several criteria:

❑ Relative costs
❑ Ease of implementation
❑ Portability
❑ Technology support and longevity
❑ Security
❑ Maintenance/administration issues

I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

W I N T E R 2 0 0 2

LINKING TO DATA

Web-
enabled
application
using
client/server
architecture
can optimize
network
protocols and
memory
requirements.

A

ISM Winter 2002 A20201 11/14/2001 12:20 PM Page 15

OPEN DATABASE CONNECTIVITY
(ODBC)
To successfully integrate a legacy database
and Web-enabled application, a method of
reliably accessing and communicating with the
database is necessary. The most common
technique used to access database systems is
Open Database Connectivity (ODBC), which
is the current industry standard. ODBC pro-
vides connectivity between two different com-
puter applications, for example, database and
Web server software. ODBC acts as a transla-
tor to process requests into vendor-specific
code and responses into user-friendly data.
Developed by Microsoft in 1992, ODBC is a
platform- and database-neutral standard and
offers developers multi-database application
programming interfaces (APIs). APIs make it
possible to access multiple databases using the
same code, minimizing time and effort and
ensuring compatibility.

Because of its many advantages, ODBC
has proven quite popular; the vast majority of
database vendors include ODBC drivers with
their products. ODBC’s database neutrality,
multiple platform support, and adoption as a
standard make it appealing. Prior to ODBC,
developers had to use “native” database meth-
ods, which are proprietary to a specific vendor
and always differ from methods used by com-
peting vendors; these native APIs are often
written in C/C++ and require programming
skills to extend. ODBC allows flexibility and
makes it possible for users to replace one
database product with another without exten-
sive coding. ODBC support has become an
important key to providing database–Web
integration in database software.

ODBC must be installed on a computer
prior to its use. PC users running any
Windows environment will already have
ODBC, which is standard in the Windows
operating system. ODBC includes two items:
an ODBC Administrator and a list of database
drivers, each specific to a different database
program. When a DBMS (database manage-
ment system) is installed, an included ODBC
driver will install automatically and will appear
in the driver list of the ODBC Administrator.
IBM, Oracle, Sybase, Informix, Microsoft,
Information Builders, Cross Access, Intersolv,
and Visigenic are among the major database
software vendors that ship ODBC drivers with
their products.

ODBC enables database-application con-
nectivity by building a data source (called a
Data Source Name, or DSN), which is an

abstraction of the database that includes the
database server, name, schema, network
library, and any other critical information. The
DSN also defines the interface the application
must use to send requests and receive infor-
mation through the connection; these defini-
tions are common to all vendors. Before a
database using ODBC can be accessed, the
DSN must be created using the ODBC
Administrator. Once a database connection is
established, requests can be passed to the
database via the ODBC connection using
Structured Query Language (SQL), which is an
accepted standard for querying databases.
After processing the request, the database will
return a record set of requested information,
which can then be processed for presentation
on an HTML page.

Despite its many advantages, ODBC has
some drawbacks. Using ODBC to access a
database can increase processing overhead up
to 15 to 50 percent from using the database’s
native methods; and ODBC is somewhat limit-
ed in its flexibility, possessing only a subset
of the functionality available in native data-
base applications. Because of the need to
meet many software requirements, ODBC
represents a lowest-common-denominator
approach to database connectivity. While
ODBC is easily configured for a few users, set-
ting up a large number of client computers
can be tedious for the network administrator.
Because of these drawbacks, built-in support
for programming languages such as Perl,
Python, and PHP, as well as C/C++ libraries, is
becoming increasingly common in the major
database products.

IMPLEMENTING A DATABASE
CONNECTION

Accessing data is a critical part of publish-
ing a legacy database, but implementing the
connection and providing a user interface and
method of data manipulation and presentation
are also essential. There are numerous tech-
niques to accomplish this, and these vary
widely in cost, level of expertise required, and
ease of implementation and maintenance. In
general, most methods fall into one of three
broad (and sometimes overlapping) cate-
gories:

❑ Programming language-based access
❑ Script language-based access
❑ Application-based access

Programming language-based methods of
database access are not new. Programming

I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

W I N T E R 2 0 0 2

LINKING TO DATA

DBC is
somewhat
limited in its
flexibility,
possessing
only a subset
of the
functionality
available in
native
database
applications.

O

16

ISM Winter 2002 A20201 11/14/2001 12:20 PM Page 16

17

languages such as C, C++, Pascal, COBOL, and
many other languages can perform database
operations via native or ODBC connections.
Most programming languages, however, do
not integrate well with a Web environment.
One newer programming language — Java —
is especially well suited to the Web because of
its cross-platform capabilities, open architec-
ture, and ability to make applets that display
in a Web browser.

Scripting languages provide a second
means to access database files, traditionally
through common gateway interface (CGI)
scripts. This method is well documented and
widely used. A variety of languages can be
used for creating scripts, including VBScript,
JavaScript (also known as JScript or
EMCAScript-262), Perl, PHP, and Python.

The third method of database access is
accomplished through software applications.
These programs, sometimes referred to as
“middleware,” are available from a number of
software vendors. Each application has advan-
tages and disadvantages, and range widely in
cost, ease of use, and portability. For this
study, Allaire ColdFusion was chosen.
ColdFusion has become popular for its rapid
application development (RAD) capabilities.
Its strength — and a major reason for its pop-
ularity — lies in its ability to access and
manipulate data in a database for quick and
easy presentation via the Web. It produces
dynamic HTML pages based on database
information using a combination of ODBC
connections and vendor-specific coding.

JAVA AND JAVA DATABASE
CONNECTIVITY
Java is a relatively new programming lan-
guage, developed by Sun Microsystems. Java
has become popular because it is an open
standard, and can, with installation of the Java
Virtual Machine (JVM) or Java Runtime
Environment (JRE), be run on practically any
computer operating system. JVM and JRE are
both available free from Sun Microsystems. In
addition, most operating system developers
are building support for Java into their sys-
tems.

Java can be used to develop servlets,
which function much like CGI scripts, and
applets, which are programs that run within
the confines of a client’s Web browser. Servlets
can be written in Java using the HTTPServlet
class, which supports the “PUT” and “GET”
functions and other hypertext transfer protocol
(HTTP) standards. Because the Internet cur-

rently operates using HTTP standards, Java is
well suited to be used via Internet connec-
tions. In combination with the eXtensible
Markup Language (XML), servlets can be a
powerful tool to deliver structured data to
clients. Applets usually reside on a server and
are downloaded to a client upon demand;
they are only able to connect to the server
from which they were downloaded, thus
increasing server security. Applets also have
an advantage in that no software needs to be
pre-installed on client machines. Additionally,
applets can execute on any hardware sup-
porting a Web browser and, therefore, are
platform independent. A disadvantage of
applets is their built-in security feature.
Applets cannot call ODBC or native APIs
directly; they must use a Java API to access
any database.

The original release of the Java language
did not support database connectivity, but
incorporated this feature by 1996 with the
inclusion of the Java Database Connectivity
(JDBC) API. The JDBC standard was formulat-
ed with the input of major database software
vendors, including Sybase, Oracle, Informix,
Symantec, and Intersolv. JDBC operation and
functionality are based on ODBC structure and
performance.

As of late 2000, there were nearly 150
available JDBC drivers, produced by numer-
ous vendors, including IBM, Sybase, Oracle,
Compaq, Netscape, Lotus Development,
Borland, Open Link, and Visigenic. JDBC driv-
ers are available from Sun Microsystems, data-
base vendors, third-party software developers,
and middleware developers.

JDBC, similar to ODBC, provides connec-
tivity between two different computer applica-
tions: a Java program (program or applet) and
a database. In essence, JDBC is to Java what
ODBC is to other programming and scripting
languages. Like ODBC, JDBC uses a DSN to
represent a connection to a database. JDBC is
also “Web aware,” using a URL to express the
type of connection, driver, host, port number,
and DSN.

There are actually four different types of
JDBC drivers. They differ in how much Java
code each contains, the type of protocol each
uses to communicate with the database, and
the type of computing environment in which
they can be implemented. JDBC drivers are
either two-tier or three-tier design. A two-tier
design is one in which the client and database
communicate directly; a three-tier design
includes an intermediate programming layer

I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

W I N T E R 2 0 0 2

LINKING TO DATA

ISM Winter 2002 A20201 11/14/2001 12:20 PM Page 17

that acts as liaison between client and data-
base. Two-tier drivers tend to be faster and
perform better in high-volume interactions.

Type 1 drivers are available for free down-
load with the Java Development Kit (JDK)
from Sun Microsystems, as well as from a few
other vendors. They take advantage of the
widespread use and availability of ODBC and
can easily access databases from several ven-
dors. Type 1 drivers provide a three-tier
approach by enabling a Java program to con-
nect to a database through an ODBC driver.
This approach, however, results in relatively
poor performance. In addition, drivers must
be pre-installed on clients, and just-in-time
download of applets is not supported.
Because of these limitations, Type 1 drivers
are not widely used.

Type 2 drivers employ a two-tier
approach. Many database vendors, among
them IBM and Oracle, ship Type 2 drivers
with their products. By connecting directly to
the database’s native API, the Type 2 driver is
able to take advantage of the richer, more flex-
ible native methods of querying and manipu-
lating data. Type 2 drivers provide better per-
formance than Type 1 drivers and are espe-
cially suited to intranets where there is high
administrative control over client computers. A
disadvantage is that the drivers/APIs must be
installed on each client.

Type 3 drivers are best in networks that
connect multiple Java-based clients to many
different databases (i.e., the Internet). Type 3
drivers reside on the server, allowing Java-
based clients to read/write to databases locat-
ed anywhere on the network. They use a
three-tier approach, in which the driver trans-
lates JDBC calls into a database-independent
network protocol that is then translated into a
database protocol by the server. Because Type
3 drivers allow for automatic downloading of
applets, they are ideal for Internet/intranet-
based, multi-user, data-intensive applications.

Type 4 drivers function much like Type 2
drivers, but allow automatic applet download-
ing. These drivers are especially practical for
Web-enabled applications because of this
capability. They exhibit high performance
standards, with quick connection times and
information retrieval; they also, however, tend
to be much larger files. Because they depend
on the database vendors’ proprietary database
access protocols, Type 4 drivers are usually
only available from the vendors and are typi-
cally more costly than other JDBC driver
types. Because proprietary database APIs must

be loaded on the client to use Type 4 drivers,
this driver type is best suited for an intranet
environment where there is administrative
control of client machines.

Because Java is platform independent, its
implementation does not rely on a specific
type of hardware. This can be beneficial to
organizations that already have a variety of in-
house computer hardware. However, lower
hardware costs may be offset by higher pro-
gramming costs. Java/JDBC requires the skill
of Java programmers. An organization desiring
to implement a Java-based Web-enabled appli-
cation must have the resources to acquire pro-
grammers and appropriate JDBC drivers.

SCRIPTING LANGUAGES AND DATA-
BASE ACCESS
CGI scripts are the traditional method used to
access and deliver data to Web sites. Scripts
can be written in a variety of languages, both
programming and scripting. CGI scripts reside
on the server and enable building Web pages
that contain forms, which include variables
(fields, radio buttons, check boxes, etc.)
whose values can be manipulated by the
client. When the user submits the form, the
CGI program on the server receives the values
of the variables, processes them, and returns a
new HTML page to the client with new data.

This type of delivery entails high overhead
because the server must process each new
request independently. The CGI script must
perform several functions (steps) to process
one database query, including:

1. Read the query parameters from the form
submitted by the client.

2. Connect to the database, construct a SQL
query, and send it to the database.

3. Receive the results of the query from the
database and format them into HTML.

4. Send the HTML page back to the client
for display on the browser.

Standard Web protocols are used for Steps
1 and 4; Steps 2 and 3 must be coded within
the CGI script, or must employ another pro-
gram for processing.

The most widely used scripting language to
accomplish Steps 2 and 3 is Perl, although
Python is gaining rapidly in popularity. Perl is
a powerful scripting language that reliably
works on a variety of platforms. It is a free,
public-use language. Although it is possible to
compile Perl programs (running them locally
with Java-like “virtual machines”), Perl is most
often used as interpreted language. This

I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

W I N T E R 2 0 0 2

LINKING TO DATA

18

ISM Winter 2002 A20201 11/14/2001 12:20 PM Page 18

19

requires that the Perl engine be installed on the
server in order for scripts to execute. The Perl
engine works on nearly every operating sys-
tem, including all common versions of UNIX,
16- and 32-bit Windows, MacOS, and IBM
AS400. There are no special configurations
needed to run Perl, and scripts can be created
in a simple text editor such as Notepad. Perl
technical support can be purchased, but there
are also numerous autonomous online Perl
documentation sites, independently written
books, and user groups.

Perl was designed as a multi-purpose lan-
guage and originally did not include database
access APIs. However, Perl developers have
written a Perl Database Interface (DBI) mod-
ule to access and query databases. The Perl
DBI does not communicate directly with a
database; instead, it locates and loads the
appropriate native database driver on the local
machine. The driver communicates with the
database, and the DBI communicates with the
driver on behalf of the Perl program.

Prior to DBI, Perl was predominantly used
to access data located in flat files; this remains
a common implementation. This technique
presents limitations; complex queries involv-
ing JOIN statements (which join information in
two separate files) or complex SELECT state-
ments are difficult to implement.

There are also specialized versions of Perl,
such as Sybperl and Oraperl, which are basi-
cally Perl implementations of the Sybase and
Oracle API libraries, respectively. Perl’s major
shortcoming is that the client has no easy way
of interacting with data; once the query is
made, data returned and displayed, there is no
way to further query or manipulate data. To
perform any other data handling, another CGI
script must be executed on the server.

CGI scripts using Perl are relatively easy to
implement and can provide cost-effective
solutions for database–Web connectivity pro-
jects. However, they also have clear disadvan-
tages. A critical issue is server performance,
which degrades quickly if many requests are
made on the system. Security is also a major
concern. CGI scripts operate on the server at
the request of a remote client; scripts may con-
tain bugs that can compromise server security
in one of four ways:

1. Allowing private or confidential informa-
tion stored on the server to be accessed

2. Allowing private or confidential informa-
tion being sent to the server to be inter-
cepted

3. Allowing information about the host serv-
er to be accessed, possibly allowing
unauthorized users into system files

4. Allowing unauthorized users to execute
commands on the server that modify or
damage system files

Due to degradation of performance and secu-
rity issues, CGI scripts should rarely be used
without other tools. Perl has many ardent sup-
porters, but detractors maintain that CGI and
scripting languages such as Perl are too slow,
inflexible, and insecure for today’s Internet
applications.

Newer approaches that attempt to address
these issues include FastCGI, mod_perl, and
PHP. FastCGI runs one or more instances of
Perl continuously, thus avoiding the biggest
drawback of CGI: creating a new process for
each script request. mod_perl addresses this
issue by embedding the Perl interpreter inside
the Web server. PHP takes a similar approach
by embedding the interpreter inside the Web
server. PHP goes a step further by using code
that is embedded in HTML files.

Microsoft released Active Server Pages
(ASP) in 1996 as another alternative to
CGI/Perl. ASP can improve server perfor-
mance while still allowing developers to use
scripting for database connectivity. ASP offers
the advantage of being tightly integrated with
the Web server software, increasing perfor-
mance over traditional Perl/CGI scripting. It
has worked well with Rapid Application
Development (RAD) tools, such as Visual
Basic, supports user-generated database
queries, and can execute business logic on the
server side.

ASP was available only on Windows NT
operating systems, however, until third-party
vendor ChiliSoft developed a cross-platform
ASP application in 1997. ChiliSoft ASP works
with many operating systems, including most
varieties of UNIX, and works with major Web
server software packages, including Netscape
Enterprise and FastTrack, Apache, and
O’Reilly Web Server.

ChiliSoft ASP can be used with a variety
of development applications, including
Microsoft’s InterDev and FrontPage 2000,
Macromedia’s Drumbeat and Dreamweaver,
NetObject’s Fusion and ScriptBuilder, and
Allaire’s HomeSite. It uses ODBC connections
and ships with a variety of drivers, including
Oracle, Sybase, Informix, DB2, and dBase.

ChiliSoft ASP allows a choice of scripting
languages (including VBScript, JScript, or Perl,

I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

W I N T E R 2 0 0 2

LINKING TO DATA

erl has
many ardent
supporters,
but detractors
maintain that
CGI and
scripting
languages
such as Perl
are too slow,
inflexible,
and insecure
for today’s
Internet
applications.

P

ISM Winter 2002 A20201 11/14/2001 12:20 PM Page 19

although VBScript is the most popular for this
application) or programming languages
(including Visual Basic, Pascal via Delphi, C,
C++, Java, and COBOL). However, the manu-
facturer suggests that for maximum portability,
developers must use C++ or Java. The need
for skilled programmers, as well as the price
tag, make ChiliSoft ASP a costly alternative to
Perl/CGI scripting for small to mid-sized busi-
nesses.

MIDDLEWARE APPLICATIONS:
COLDFUSION
A middleware program is one that allows two
other applications to transparently collabo-
rate across processes and networks. In Web-
enabled applications, a middleware program
operates between the server and client. This
specialized middleware is called Web appli-
cation server software. There are numerous
Web application server products currently on
the market; Allaire’s ColdFusion is one such
product.

There are some important performance
considerations that should be addressed when
choosing middleware. One critical considera-
tion is expansion; a database access middle-
ware must address scalability. Middleware
must also be assessed in terms of processing
overhead. Two measures for assessing mid-
dleware performance are message latency
(processing time delay in milliseconds) and
data throughput (number of bytes a user
application can transmit or receive in a unit of
time using a reliable protocol). These perfor-
mance criteria become more critical as the
requests on the system grow and should be
considered from the early planning stages.
One of the reasons ColdFusion has become so
popular is its above-average performance in
these critical areas. In addition, it permits very
high security and integrates Java and XML.

ColdFusion is powerful and stable software
that is both user- and developer-friendly.
ColdFusion performs multiple functions,
including security, user authentication, lan-
guage support (including Java, JavaScript,
VBScript, and C++), server fault tolerance, load
balancing, query caching, connection pooling,
file transfers, and mail and directory services, in
addition to database access. ColdFusion sup-
ports ODBC; and although it supports Java pro-
gramming, it does not implement JDBC.
ColdFusion uses a Web-based module, called
the ColdFusion Administrator, to configure,
manage, and maintain the ColdFusion Server
program that processes data requests.

ColdFusion must be installed on the same com-
puter as the Web server software and must be
configured to operate with the server software.

ColdFusion functionality is implemented
through the use of ColdFusion Markup
Language (CFML) tags that are embedded in an
HTML page. CFML is a proprietary language that
looks much like HTML. Like HTML, CFML can
be produced with a simple text editor, or one
can use ColdFusion Studio (an integrated devel-
opment environment (IDE)) to build
ColdFusion Web sites. ColdFusion Studio comes
bundled with the single-user ColdFusion
Professional program; because it is tightly inte-
grated with the ColdFusion Server, ColdFusion
Studio enables rapid development of sites, hav-
ing built-in support for all ColdFusion functions.

ColdFusion Server interprets CFML tags,
opens the database, sends an appropriate
request based on client input, receives and
processes information from the database, and
sends the processed HTML page to the Web
server for presentation to the client.
ColdFusion uses “templates” written in HTML
and CFML; data is added to the templates
dynamically, based on parameters input by
the client.

A major advantage of ColdFusion is that it
supports drill-down capabilities; that is, the
ability to click on data to reveal more detailed
information without sending information back
to the server for reprocessing. Most Web appli-
cations (such as Perl scripts) do not support
this functionality; each request for information
must be sent to the server and processed indi-
vidually. Drill-down capability is provided in
ColdFusion through the use of multiple tem-
plate pages and query caching. ColdFusion
also implements data storage techniques,
much as programming or scripting languages
do. Advanced data types supported by
ColdFusion include lists (similar items separat-
ed by a common delimiter), arrays (related
information stored in a one-, two-, or three-
dimensional grid), and structures (key-value
pairs in a grouped set). ColdFusion also offers
form validation, debugging and troubleshoot-
ing assistance, report writing capabilities,
client session management, and automatic e-
mail response.

The major disadvantage of implementing
ColdFusion is the relatively high cost of soft-
ware. A limited version of ColdFusion Server,
— ColdFusion Express — is available for free
download, but it has reduced functionality and
is only appropriate for small, personal appli-
cations.

I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

W I N T E R 2 0 0 2

LINKING TO DATA

20

ISM Winter 2002 A20201 11/14/2001 12:20 PM Page 20

21

The learning curve for ColdFusion is mod-
erately low for simple applications, but more
advanced uses require skilled technical staff to
implement and maintain it, resulting in higher
personnel and operating costs. In addition,
ColdFusion operates only with major Web
server software packages (e.g., Apache,
Netscape’s FastTrack and Enterprise servers,
Microsoft IIS and Personal Web Server,
O’Reilly Web Site Pro). Other Web servers can
be used, but these are supported through a
CGI script, not a native API, making perfor-
mance slower.

CONCLUSIONS AND RECOMMENDATIONS
Implementing Web–database connectivity with
legacy database systems can provide a rich
source of information for broad audiences. It
can also, however, be a complicated, expen-
sive proposition. There are many software
products and programming techniques that
can be employed to access legacy systems and
process the data for Web publication. The
exact implementation an organization chooses
will depend on many factors; existing hard-
ware/software, level of expertise, expected
use, and resource constraints are some prima-
ry considerations in any implementation.

For smaller organizations with low levels
of expertise, relatively few data requests, and
many resource constraints, scripting can pro-
vide a method of accessing a legacy database
and publishing it via a Web-enabled applica-
tion in the most cost-efficient method. While a
“pure” scripting environment is probably not
the best implementation for all but the small-
est, most secure intranet, it can provide con-
nectivity for an organization that does not
have resources to implement other, more
expensive techniques.

For larger organizations with more
resources, or for applications that expect a
number of data requests, an implementation
using a Web application server such as Allaire’s
ColdFusion is highly recommended.
ColdFusion can provide a highly scalable
application that can grow as the organization
grows. Although it entails an initial investment
in software, in the long-term, this solution will
provide the most cost-effective, reliable, and
secure method of data access and presentation.

For larger organizations, or those with
detailed, highly specialized requirements or
mission-critical information, Java/JDBC (per-
haps in conjunction with XML) should be con-
sidered. This is especially true for businesses
involved in extranets where data exchange is

a critical business function. For the greatest
flexibility, security, and scalability, some orga-
nizations should consider a combination of
Web server application software and Java.
ColdFusion, which supports Java and XML,
could be an ideal, cost-effective solution for
long-term database–Web connectivity imple-
mentation. �

Bibliography
1. The Allaire Corporation Web Site

(www.allaire.com).
2. Andreessen, M. Database Connectivity,

Netscape Communications Corporation, 1996.
Retrieved Nov. 6, 2000, from
home.netscape.com/columns/techvision/data-
bases.htm.

3. Bidgoli, H. “An Integrated Model for
Introducing Intranets.” Information Systems
Management, Summer 1999, 78-87.

4. Chen, J.Q. and Heath, R.D. “Building Web
Applications,” Information Systems
Management, Winter 2001, 68-79.

5. “ChiliSoft Adds AIX, Apache,” eWeek, April 26,
1999. Retrieved March 5, 2001, from
www.zdnet.com/eweek.

6. ChiliSoft ASP. AdRite Business Support.
Retrieved March 5, 2001, from
www.adrite.com/script7a.htm.

7. “Chilisoft ASP Development Tools.” ChiliSoft
White Articles. Retrieved March 5, 2001, from
www.chilisoft.com/whitepeppers/default.asp.

8. The ChiliSoft Web Site (www.chilisoft.com).
9. Cook, R. “Web Building to Transaction

Processing Crescendo,” NetScape World, Sept.
1, 1996. Retrieved Oct. 14, 2000, from
www.netscapeworld.com/netscapeworld/nw-
09-1996/nw-09-dbms.html.

10. Cooke, K. “An Introduction to ASP,”
WebMonkey. Retrieved March 5, 2001, from
www.hotwired.lycos.com/Webmonkey/98/39/
index2a.html?tw=programming.

11. Cox, T. “Using Perl with Databases,” Byte,
15(5), 57-58, 1998.

12. DeJesus, E.X. “The Middleware Riddle,” Byte,
65-70, 1996.

13. Dominus, M.J. Short Guide to DBI (The Perl
Database Module), O’Reilly & Associates, 1999.
Retrieved from
www.perl.com/pub/1999/10/DBI.html.

14. Forta, B. The Allaire ColdFusion Web
Application Construction Kit, 3rd ed.,
Indianapolis, IN: Que Books, 1998.

15. Friesen, N. Publishing Your Database on the
Web, University of Alberta, Canada, Academic
Technologies for Learning. Retrieved Nov. 4,
2000, from www.atl.ualberta.ca/articles/
Web/database.cfm.

16. Guan, Hi., Ip, H., and Zhang, Y. “Java-based
Approaches for Accessing Databases on the
Internet and a JDBC-ODBC Implementation,”
Computing & Control Engineering Journal,
9(2), 71-78, 1998.

17. Guelich, S., Gundavaram, S., and Birznieks,
CGI Programming with Perl, Cambridge, MA:
O’Reilly & Associates, 2000

I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

W I N T E R 2 0 0 2

LINKING TO DATA

or the
greatest
flexibility,
security, and
scalability,
some organi-
zations
should
consider a
combination
of Web server
application
software and
Java.

F

ISM Winter 2002 A20201 11/14/2001 12:20 PM Page 21

http://www.allaire.com
http://home.netscape.com/columns/techvision/
http://home.netscape.com/columns/techvision/
http://www.zdnet.com/eweek
http://www.adrite.com/script
http://www.chilisoft.com/
http://www.chilisoft.com/
http://www.netscapeworld.com/netscapeworld/
http://www.hotwired.lycos.com/Webmonkey
http://www.perl.com/pub/q/Article_Archive
http://www.atl.ualberta.ca/
http://www.atl.ualberta.ca/

18. Hauf, B. “An Evaluation of Three Approaches
to WWW Application Development,”
EarthWeb, 1999. Retrieved Sept. 24, 2000, from
www.earthWeb.com/earthWeb.

19. Hightower, L. “Publishing Dynamic Data on
the Internet,” Dr. Dobb’s Journal, 22, 70-72,
1997.

20. Hines, J.R. “Fresh from Your Database to the
Web,” IEEE Spectrum, 34, 20-21, 1997.

21. “Hosting Database Driven ASP Web Sites
Using ChiliSoft ASP,” ChiliSoft White Articles.
Retrieved March 5, 2001, from
www.chilisoft.com/whitepeppers/default.asp.

22. Houstis, E.N., Rice, J.R., Gallopoulos, E., and
Bramley, R. (Eds.). Enabling Technologies for
Computational Science: Frameworks,
Middleware and Environments, Norwell, MA:
Kluwer Academic Publishers, 2000.

23. Joch, A. “JDBC’s Growing Pains,” Byte, 15(5),
112M-112N, 1999.

24. Kroenke, D.M. Database Processing:
Fundamental, Design and Implementation, 7th
ed., Upper Saddle River, NJ: Prentice Hall,
1999.

25. Lazar, P.Z. and Holfelder, P. “Web Database
Connectivity with Scripting Languages,” Web
Journal, Vol. 2(2). Retrieved Nov. 14, 2000,
from www.ora.com/catalog/wj6/excerpt/
index.html.

26. Linthicum, D.S. “Hooking Your Site up to a
Database,” Computer Shopper Magazine.
Retrieved Oct. 31, 2000, from www.zdnet.com/.

27. MacNeil, B. “Revamp Your Web Site to Improve
Its Return on Investment,” WWWiz Corporation.
Retrieved Oct. 31, 2000, from wwwiz.com/
issueRabinovitch/html/article4.html.

28. Matthews, M.S. and Poulsen, E.B. FrontPage
2000: The Complete Reference, Berkeley, CA:
Osborne/McGraw-Hill, Publishers, 1999.

29. Microsoft Active Server Pages (ASP), Ace
Computer. Retrieved March 5, 2001, from
www.acecomputer.com/asppages/mainasp.asp.

30. Mitchell, I. “Opening the World’s Intellectual
Capital,” Chicago Tribune, August 6, 1999.
Retrieved Oct. 24, 2000, from
chicagotribune.com/tech/specialreport/
article/0,2669,2-32592,FF.html.

31. Nance, B. “Database Access via ODBC and
JDBC,” Network Computing, 2000. Retrieved
Sept. 21, 2000, from
www.networkcomputing.com/netdesign/odbc1
.html, odbc2.html, odbc3.html, odbc4.html,
odbc5.html, odbc6.html.

32. North, K. “Understanding Multidatabase APIs
and ODBC,” DMS Online, 1994. Retrieved Oct.
26, 2000, from www.dbmsmag.com/.

33. Ptak, R.L. “Designing a Business Justified
Intranet Project,” Information Systems
Management, Spring 1998, 13-19.

34. The Perl Website, O’Reilly & Associates
(www.perl.com).

35. Rabinovitch, E. “Presentation Methods: Web-to-
Host Integration,” IEEE Communications
Magazine, 35, 90,1997,.

36. Railsback, K. “Linux: It Isn’t Just for Web
Servers Anymore,” Linux Magazine, June
2001, 40-48.

37. Rob, P. and Coronel, C. Database Systems:
Design, Implementation and Management, 4th
ed., Cambridge, MA: Thompson Learning,
1999.

38. Rosenblatt, B. “Tools to Meld the Web &
Relational Databases, Parts 1 & 2.” Retrieved
Nov. 6, 2000, from www.sunworld.com/swol-
01-1996/swol-01-cs.html, swol-2-cs.html.

39. Ruh, W., Herron, T., and Klinker, P. IIOP
Complete: Understanding CORBA and
Middleware Interoperability, Reading, MA:
Addison-Wesley Longman, Inc., 2000.

40. Rymer, J. “The Muddle in the Middle,” Byte,
April 1996, 67-70.

41. Sood, M. “Examining JDBC Drivers,” Dr.
Dobb’s Journal, 15(2), 82,1998.

42. Sood, M. “JDBC Drivers and Web Security,”
Dr. Dobb’s Journal, 15(7), 90,1999.

43. Staunton-Lambert, K.J. “An Investigation into
the Interconnectivity of Internet and Database
Technologies,” 1998. Retrieved Nov. 6, 2000,
from www.hipstream.force9.co.uk/disserta-
tion/week5/ODBC.html.

44. Stien, L.D. “The World Wide Web Security
FAQ,” 1997. Retrieved Dec. 2, 2000, from
www.perl.com/pub/doc/FAQs/cig/wwwsf1.
html#Q1.

45. Thomas, W. “No Brainer Database Publishing,
Parts 1-6,” Web Developer, 1997. Retrieved Oct.
14, 2000, from www.Webdeveloper.com/data-
base/ db_no_brainer_db_pub_1.html,
db_no_brainer_db_pub_2.html, bdb_no_brain-
er_db_pub_6.html.

46. Tidwell, D. “Servlets and XML: Made for Each
Other,” DeveloperWorks, 2000. Retrieved Nov.
16, 2000 from www-4.ibm.com/software/
developer/library/servelets-and-xml/
index.html.

47. Vaughan-Nichols, S.J. “The DBMS/Web
Connection,” Sm@rtPartner. Retrieved Oct. 31,
2000, from www.zdnet.com/sp/stories/issue/
0,4537,2157028,00.html.

48. “Why Active Server Pages,” ChiliSoft White
Articles. Retrieved March 5, 2001, from www.
chilisoft.com/whitepeppers/default.asp.

I N F O R M A T I O N S Y S T E M S M A N A G E M E N T

W I N T E R 2 0 0 2

LINKING TO DATA

22

ISM Winter 2002 A20201 11/14/2001 12:20 PM Page 22

http://www.earthWeb.com/earthWeb
http://www.perl.com
http://www.chilisoft.com/whitepeppers/
http://www.sunworld.com/
http://www.sunworld.com/
http://www.ora.com/catalog/
http://www.ora.com/catalog/
http://www.zdnet.com/
http://www.wwwiz.com/
http://www.wwwiz.com/
http://www.hipstream.force9.co.uk/
http://www.hipstream.force9.co.uk/
http://www.perl.com/pub/q/FAQs
http://www.Webdeveloper.com/
http://www.Webdeveloper.com/
http://www.acecomputer.com/
http://www-4.ibm.com/software/developer
http://www-4.ibm.com/software/developer
http://www.networkcomputing.com/
http://techupdate.zdnet.com/techupdate/filters/sp/
http://techupdate.zdnet.com/techupdate/filters/sp/
http://www.chilisoft.com/whitepeppers/
http://www.chilisoft.com/whitepeppers/
http://www.dbmsmag.com/

