Vlgualjziqg-ﬂu}ricane Charley.
Using-VisAD!s data and display

3 -models, the Integrated Data Viewer
~ merges disparate numerical model

output ‘and satellite and radar da
into a depiction of the hurricane's

. approach toward Florida, Augus

2004. Don Murray, Unidata Program

_ Center, Boulﬁr, 0.

By WiLLIAM HIBBARD,

CuRrTIS RUEDEN, STEVE EMMERSON,
Tom RiNk, DAVID GLOWACKI,

Tom WHITTAKER, DON MURRAY,
DAvVID FULKER, AND

JOHN ANDERSON

JAVA DISTRIBUTED
COMPONENTS FOR
NUMERICAL
VISUALIZATION IN
VISAD

Combini g (lf lexcible The Web is the Internet’s killer appli-

data model and cation because it enables the wide-

S YIPIE, - . spread sharing of information. Within
distributed o é/ ecls, 19 years, the numerical computing

t/gey dupport [he environment will enhance sharing
among scientists by adding a new

shar g Of % ala, grucrure to the Web. It will consist of

vtsualization J, an o apersistent, active network of numer-
ical data and computational, display,

uger “1[6’.7[aced and user-interface components dis-
among mu[hp[e tributed across the Internet. As With
o the Web, users and even application
data sources, programs will be largely unaware of

computerd, a 20 Physical computers bu't will instead
have access to a worldwide shared net-

dcwn[gﬁc &MCL,DZL”&’- work of logical components. Users
will explore the network through
browsers and add new components to it. For example, atmospheric
chemists might use a browser to locate a weather simulation data set or
even a running weather model, connect it as input to their chemistry
models, then connect a display component to visualize each model’s
computations. Weather-modeling colleagues might then clone that dis-
play in their own browsers and connect user-interface components to
collaborate on experiments with the coupled models.

COMMUNICATIONS OF THE ACM March 2005/Vol. 48, No. 3 99

Such an environment will challenge several long-
held assumptions about the way programmers write
numerical software, including:

* Single machines or fixed partitions across machines.
Numerical software runs (and data resides) on a
single machine or is partitioned across multiple
machines in a fixed configuration; the challenge
comes from grid computing [1, 2] and distrib-
uted object technology [7];

o Structure and properties of data. The structure and
properties of data are known ahead of time by
programmers who write software for accessing the
data; the challenge comes from abstract numeri-
cal data models [3, 4, 6]; and

e Uses of software. These uses are known ahead of
time by the programmers writing the software;
the challenge comes from reusable components

[5].

We are developing the Visualization for Algorithm
Development, or VisAD, library of Java components
to overcome the limitations these assumptions impose
on numerical visualization, defining four types of Java
components:

Data. Implements an __,

disk and memory, movement of data across the net-
work, and partitions of large data components across
processor clusters.

Display. Implements an abstract display model that
enables applications to define data depictions descrip-
tively—via mappings from primitive data values to
primitive display values—rather than procedurally.
The display-component API (such as Java3D and
Java2D) hides the graphics library used to render
depictions, as well as whether depictions are rendered
in windows on workstation screens, in browsers, or in
immersive virtual reality displays.

Computation. Uses code supplied by applications
to compute values for data components or manipu-
late display components based on the values of other
data components. The computational-component
API hides the programming language used for appli-
cation-supplied code.

User interface. Includes the familiar screen icons
(such as buttons and sliders) linking user actions
(such as mouse clicks) to values of data components
and to library calls.

Networks of such components span multiple com-
puters via Java Remote Method Invocation (RMI)

abstract data model that 1= Set up data mappings S|
defines a schema gram- el
mar for Organiling (Time -* ((ImageElement, ImagelLine) -> Bandl)}
numerical and text val-
ues. It also defines asso-
ciated metadata (such as CoordinateSystem references:
units, coordinate sys- (TmageElement, Imageline) ==» {Latitude, Longitude)
tems, sampling geome-
tries and topologies,
missing data indicators,
and error estimates). Map from: Map to: Current maps:
The schema grammar :?na::;Element i) TY /7\ i Df?s(et Dﬁz;t Dﬁget E:t?:n‘ue}j‘({iixis
and metadata can ImageLine @ Cyl | cyl | Cyl | [Lengitude -> X Axis
express images, 3D | |Latitude Lat |Lorn™ |Rad” |Rad| &z | Z |[Time-> Animation
grids, time series, map | [Longitude Flow[Flow1|Flow! [Flow2[Flow2[Flow2
boundaries, simple real Time X|Y|Z[X]|Y][|Z
numbers) and practi- Flowe | Flowe |Flowed |Flow | Flow2 |Flow
. Elev| Az |Rad|Elev| Az |Rad
cally any other numeri-
cal data. The R | G | B |RcE |robalalpha
data-component API
hides intirfaces to a C| M| Y |Em)anim Closrﬁ%u
variety of file and server \/ [[| 3o
data formats, move- Value|Range
ment of data between
| Clear all || Clear selected |
Figure 1. Display mappings 1 | Done || Cancel || Detect |

dialogue panel.

100

March 2005/Vol. 48, No. 3 COMMUNICATIONS OF THE ACM

distributed object tech-
nology. They can express
various forms of distrib-
uted computing (such as [**
client-server, cluster pro- [
cessing, and remote col-
laboration, as well as
whatever programmers =
and users care to define).
Display and computa-
tional components may
be linked to data compo-
nents, with their actions |- .,
(updating data depictions
or executing application-
supplied code) triggered
whenever linked data val-
ues change. A data com-
ponent may be linked to
multiple display compo-
nents with a different
depiction in each; multi-
ple data components may

insbawing ot ws

TR BT

|auaiismt drlllley Wooey mibasy prtnmurere using

———

i 00

T i 0300
s

[= %= * A = 050

| Compue

| ool vy Beabe

be linked to a common
display component for
visual comparison. Dis-
play components may be
linked to yet other dis-
play components, creating collaborative networks of
displays that synchronize their appearance; any
change by users or applications is reflected in all
linked display components. User-interface compo-
nents may be linked to data components, enabling
users to manipulate data values. Display components
can also be used as user-interface components,
enabling users to manipulate data values by redrawing
their depictions. All these connections may be either
local or remote.

Figure 2. The collaborative
Galaxy application, simulating
the Milky Way galaxy as it
would appear from Earth.

Abstract Data and Display Models
Abstraction is the key to reusability. VisAD achieves
abstraction for its data components through a

schema grammar for expressing data organizations,
and for its display components through expression
of data depictions as mappings from primitive data
values to primitive display values. Figure 1 is a
VisAD user-interface component that enables users
to define display mappings. The top Math Type win-
dow includes an expression in the schema grammar
for a time sequence of 2D Earth images—a data
component to be displayed. This expression includes
names for primitive numerical and text values,
groupings of values into vectors, and functional
dependencies among values. Below that, the Coordi-
nate System references window shows that the data
component includes an invertible transform
between image coordinates and Earth coordinates.
All the numerical values occurring in data compo-
nents may include associated units and error esti-
mates. There are also usually samplings for the

DISPLAY COMPONENTS CAN BE USED AS
USER-INTERFACE COMPONENTS, ENABLING
USERS TO MANIPULATE DATA VALUES BY

—— REDRAWING THEIR DEPICTIONS.

101

COMMUNICATIONS OF THE ACM March 2005/Vol. 48, No. 3

F&viskio C:\java\data\BillM\dub (1/85)

Figure 3. VisBio volume fle Edit Window Help

rendering of a live C. elegans
embryo (imaging performed by
William Mohler, University of
Connecticut Health Center,
Farmington, CT).

domains of any functional
dependencies. Unit conver-
sions, coordinate transforms,
resampling, and propagation
of missing data and error esti-
mates are all done implicitly
as necessary in mathematical
and display operations on
data components.

In order to define data

=101 x| [T -0l x|
Bri d - NE 1 128
Memory: total 1341 MB; used 1062 MB (78%) Contrast: r {ek = 128
Color model: ' RGD (@ 115V
Hue: Value:
[intonsity = | Fun - Fun -
_| Composite image coloring

[- 7.

1 258

Cuolur labile: | intensity b

|| Hixed color range:

depictions, primitive data

Reselll Grey Scale || :

values—in the Map from
window—are mapped to
primitive display values—in the Map to window. The
Current maps window shows the system’s first guess at
appropriate mappings for the schema in the
MathType window. The user can clear these mappings
and create new ones by alternately clicking on primi-
tive data value names and display value names. The
user interface component in Figure 1 defines map-
pings via library calls available to any application.

The data schema grammar enables data compo-
nents to be reused for virtually any numerical and text
data. Moreover, the associated metadata enables
meaningful comparisons of data from diverse sources,
including the spatial and temporal alignment in dis-
plays, and is important for increased data sharing on
the Internet. The system includes a set of classes for
interpreting data file and server formats as data com-
ponents, implicitly transferring data to a memory
cache as needed to execute data-component API calls.
VisAD developers have applied these classes to more
than 20 common numerical data formats.

The display mappings enable the reuse of display
components for virtually any form of data depiction.
The fact the display mappings are a descriptive rather
than a procedural definition of data depictions
enables display components to also be used as user-
interface components, with users modifying data val-
ues by redrawing data depictions. That is, procedures
are difficult to invert, whereas descriptions apply just
as well in both the data-to-depiction and the depic-
tion-to-data directions.

Developers can extend the Java classes implement-
ing data components in order to define their own
coordinate systems, sampling topologies, and interpo-

102

March 2005/Vol. 48, No. 3 COMMUNICATIONS OF THE ACM

lation algorithms. With Java platform independence,
these mathematical algorithms can be transferred
with data components among various machines; in
this way, algorithms can function as data content.
Developers can extend classes implementing display
components in order to define their own rendering
algorithms or even to use a different graphics library.

Visualization and Analysis

For new users, the VisAD library is a challenge due
to its high level of abstraction. Their first step is usu-
ally to visualize their data in the VisAD SpreadSheet,
which provides access to much of the library via a
GUIL The user-interface component in Figure 1 is
part of that GUI, helping users learn about the data
schema grammar and the display mappings. They
can experiment with data files and sets of display
mappings, then see the resulting visualizations. The
SpreadSheet GUI consists mainly of a rectangular
array of cells (display-component windows), each
possibly containing depictions of multiple data
components. These components are generated by
reading from files or servers or by simple formulas
applied to data components in other cells.

When users are ready to program the library, the
easiest way to start is by writing Python scripts. A
script can be simple, as in the single line
plot (load (“filename”)), which loads and dis-
plays a data file. VisAD supports Python via the
Jython implementation, providing access to Java
objects from Python, and means the entire VisAD
library is accessible from Python. Support is also avail-
able for mathematical operations on data components

THE VISAD LIBRARY IS BEING USED TO WRITE
TRADITIONAL VISUALIZATION APPLICATIONS THAT
ASSUME SPECIFIC DATA STRUCTURES AND
DEPICTIONS. | HESE APPLICATIONS TYPICALLY
REQUIRE A FEW HUNDRED TO A FEW

THOUSAND LINES OF JAVA.

via Python infix expressions and for specialized dis-
plays (such as histograms, scatter plots, contour plots,
and image animations) without requiring users to
understand the system’s display mappings. Python
scripts can invoke the plot function to depict data
components using a SpreadSheet cell, allowing users
to control display mappings via the user-interface
component, as in Figure 1.

Collaborative Simulation

The VisAD library is being used to write traditional
visualization applications that assume specific data
structures and depictions. These applications typi-
cally require a few hundred to a few thousand lines
of Java. The library distribution includes approxi-
mately 12 such applications as examples for new
users.

The Galaxy application (its GUI is in Figure 2) is
fairly typical, enabling teams of astronomers to col-
laborate on experiments with physicist Robert Ben-
jamin’s simulation of the Milky Way galaxy and see
how its H-alpha emission sky map and spectra would
look from Earth. Simulation parameters are defined
by a set of simple real-number data components users
adjust via the slider components shown on the left
side of Figure 2. The simulation code—written in
Fortran encapsulated in a computational compo-
nent—produces data components linked to display
components generating other windows in Figure 2.
The upper-center window in the figure shows an iso-
surface of simulated warm gas density; the lower-cen-
ter window shows the H-alpha sky map as seen from
Earth. The red point and green line in the upper-cen-
ter window depict a vector from Earth to some point
outside the Milky Way galaxy. Users drag the red
point to manipulate the vector; changes to the vector
trigger a second computational component to pro-
duce density and spectra along the vector, as in the
upper- and lower-right windows.

A user who begins running the first copy of the
Galaxy application has all data, computational, dis-
play, and user-interface components. However, other
users who begin running collaborative copies of the
Galaxy application generate only new display and
user-interface components linked via RMI to the data
and computational components in the first copy of
the application.

Exploiting Reusable Components

The VisAD library is being used to support applica-
tions (more sophisticated than the Galaxy applica-
tion) that do not assume specific data structures and
depictions. They are continuing projects requiring
years of development. The SpreadSheet—the first
such application—deals with any data structure,
accesses data from remote servers, and is fully col-
laborative; the user-interface component in Figure 1
enables users to generate any depiction. Multiple
users might link their SpreadSheets together, and
actions initiated by any individual user are seen iden-
tically in the GUIs of all.

The Unidata Program Center, part of the Univer-
sity Corporation for Atmospheric Research in Boulder,
CO, is using VisAD to develop the Integrated Data
Viewer (IDV) as part of a National Science Founda-
tion-supported mission to supply Earth science data
and access software to U.S. universities. The IDV
enables users to browse remote servers and combine
their data in a common spatial-temporal frame of ref-
erence. Due to the diversity of environmental-observ-
ing instruments and simulations, Earth science data
involves a variety of structures and properties sup-
ported by the IDV. In addition to being able to access
standard Earth data servers, the IDV provides a Web-
browsing user-interface component that recognizes
links to numerical data files. Clicking on the links
downloads the files into the spatial-temporal visualiza-
tion window rather than into the browser window.

103

COMMUNICATIONS OF THE ACM March 2005/Vol. 48, No. 3

The Laboratory for Optical and Computational
Instrumentation at the University of Wisconsin-
Madison uses VisAD to develop the VisBio system
for visualizing and analyzing large multidimensional
microscopy data sets. Figure 3 shows a VisBio volume
rendering of a 3D microscopy image of a live embryo
of C. elegans (a species of nematode worm). In addi-
tion to various forms of image displays, the system
defines custom cursors users drag to measure dis-
tances in images and movements in time sequences. A
number of data schemas are appropriate for a variety
of microscopy data sets, depending on whether they
include depth (3D vs. 2D), time sequencing, multi-
ple spectra, and multiple optical lifetimes. With up to
six independent variables, microscopy data sets can be
quite large. Thus VisBio employs progressive refine-
ment rendering (low resolution while the scene is
changing, high resolution when change stops) and
complex memory management.

The Australian Bureau of Meteorology is using
VisAD to develop the Australian Integrated Forecast
System (AIES) 2 system, consisting of a number of
modules supporting forecaster tasks. Most of these
tasks require overlays of data with diverse structures
and properties. They also require user manipulation
of data by dragging their depictions. Meanwhile, the
U.S. National Center for Atmospheric Research in
Boulder, CO, is using VisAD to develop its Visual
MEteorology Tool (VMET) system for visual meteo-
rology. Like the IDV and AIFS, VMET must display
data with diverse structures and properties and pro-
duce a variety of data depictions.

VisAD’s reusable components are also being used
for experiments with visualization techniques. VisAD
developers have extended classes implementing data
components to support large data components parti-
tioned across processor clusters. Theyve extended
classes implementing display components to exploit
parallel processing for visualizing these partitioned
data components. And theyve also extended classes
implementing display components to depict data in
the ImmersaDesk virtual reality system, as well as for
progressive refinement rendering. The VisAD library
has proven itself a useful tool for visualization research
because it enables experiments at any level via class
extensions. It also provides the necessary infrastructure
programmers need to write practical applications that
generate evaluations of new techniques by real users.

The VisAD library, including source code, docu-
mentation, and application examples, is freely avail-
able from www.ssec.wisc.edu/~billh/visad.html. Ugo
Taddei of the Institute of Geography at the Univer-
sity of Jena in Germany has contributed a fine online
general tutorial to go along with the specialized tuto-

104

March 2005/Vol. 48, No. 3 COMMUNICATIONS OF THE ACM

rials on the site. Approximately 15 programmers
from a half dozen institutions have contributed code
to the library. The much larger community of pro-
grammers who use the library are supported by an
active mailing list used for online discussion and col-
laboration. @

REFERENCES

1. Colwell, R. From terabytes to insights. Commun. ACM 46, 7 (July
2003), 25-27.

2. Getov, V., von Laszewski, G., Philippsen, M., and Foster, I. Multipara-
digm communications in Java for grid computing. Commun. ACM 44,
10 (Oct. 2001), 118-125.

3. Haber, R., Lucas, B., and Collins, N. A data model for scientific visual-
ization with provisions for regular and irregular grids. In Proceedings of
the IEEE Visualization conférence (San Diego, Oct.). IEEE Computer
Society Press, Los Alamitos, CA, 1991, 298-305.

4. Hibbard, W., Dyer, D., and Paul, B. Display of scientific data structures
for algorithm visualization. In Proceedings of the IEEE Visualization con-
ference. 1IEEE Computer Society Press, Los Alamitos, CA, 1992,
139-146.

. Meyer, B. On to components. [EEE Comput. 32, 1 (Jan. 1999),
139-140.

6. Treinish, L. SIGGRAPH 1990 workshop report: Data structure and
access software for scientific visualization. Comput. Graph. 25, 2 (May
1991), 104-118.

7. Wollrath, A., Riggs, R., and Waldo, J. A distributed object model for
Java. In Proceedings of the 2nd Conference on Object-Oriented Technologies
and Systems (COOTS) (Toronto, June). USENIX, Berkeley, CA, 1996,
219-231.

N

WiLLIAM HIBBARD (billh@ssec.wisc.edu) is an emeritus senior
scientist and principal investigator in the Space Science and
Engineering Center at the University of Wisconsin-Madison.
CURTIS RUEDEN (ctrueden@wisc.edu) is a research intern in the
Laboratory for Optical and Computational Instrumentation at the
University of Wisconsin-Madison.

STEVE EMMERSON (steve@unidata.ucar.edu) is a software engineer
in the Unidata Program Center at the University Corporation for
Atmospheric Research, Boulder, CO.

ToM RINK (rink@ssec.wisc.edu) is an instrumentation technologist
in the Space Science and Engineering Center at the University of
Wisconsin-Madison.

DAvVID GLOWACKI (dglo@ssec.wisc.edu) is an assistant
instrumentation innovator in the Space Science and Engineering
Center at the University of Wisconsin-Madison.

Tom WHITTAKER (tomw@ssec.wisc.edu) is a researcher in the
Space Science and Engineering Center at the University of Wisconsin-
Madison.

DoON MURRAY (dmurray@unidata.ucar.edu) is a software engineer
in the Unidata Program Center at the University Corporation for
Atmospheric Research, Boulder, CO.

DAvID FULKER (fulker@ucar) is a principal investigator in the
National Science Digital Library Headquarters of the University
Corporation for Atmospheric Research, Boulder, CO.

JOHN ANDERSON (janders@pixar.com) is a senior scientist in studio
tools, research at Pixar Animation Studios. Emeryville, CA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2005 ACM 0001-0782/05/0300 $5.00

Copyright of Communications of the ACM is the property of Association for
Computing Machinery and its content may not be copied or emailed to multiple sites or
posted to a listserv without the copyright holder's express written permission.
However, users may print, download, or email articles for individual use.

