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Coevolutionary analyses require
phylogenetically deep alignments and better
null models to accurately detect inter-protein
contacts within and between species
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Abstract

Background: When biomolecules physically interact, natural selection operates on them jointly. Contacting
positions in protein and RNA structures exhibit correlated patterns of sequence evolution due to constraints imposed
by the interaction, and molecular arms races can develop between interacting proteins in pathogens and their hosts.
To evaluate how well methods developed to detect coevolving residues within proteins can be adapted for
cross-species, inter-protein analysis, we used statistical criteria to quantify the performance of these methods in
detecting inter-protein residues within 8 angstroms of each other in the co-crystal structures of 33 bacterial protein
interactions. We also evaluated their performance for detecting known residues at the interface of a host-virus
protein complex with a partially solved structure.

Results: Our quantitative benchmarking showed that all coevolutionary methods clearly benefit from alignments
with many sequences. Methods that aim to detect direct correlations generally outperform other approaches.
However, faster mutual information based methods are occasionally competitive in small alignments and with relaxed
false positive rates. Two commonly used null distributions are anti-conservative and have high false positive rates in
some scenarios, although the empirical distribution of scores performs reasonably well with deep alignments.

Conclusions: We conclude that coevolutionary analysis of cross-species protein interactions holds great promise but
requires sequencing many more species pairs.

Keywords: Coevolution, Methods comparison, Inter-protein, Cross-species, Host-virus, Contact prediction, Protein
interaction

Background
Coevolution—“the change of a biological object triggered
by the change of a related object” [1]—is a powerful
concept when applied to molecular sequence analysis
because it reveals positional relationships that are pre-
served across evolutionary time scales. Sequence evolu-
tion is constrained by essential molecular interactions,
such as contacts within a protein or RNA structure, as well
as inter-molecular interactions within protein complexes
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and signaling pathways. These constraints define an epis-
tasis (i.e. genetic interaction) between sites (residues
or base-pairs) where the probability of a substitution
depends on the states of other sites involved in an inter-
action [2]. For example, a mildly deleterious or neutral
mutation may change the fitness landscape such that
compensatory or advantageous mutations at another site
become more likely. Understanding the basic connections
and dependencies between these molecular machines is
invaluable in learning how cells function, adapt, and how
they can be manipulated into performing new tasks or
correcting harmful behaviors, as in disease for example.
Because epistasis can induce correlation between sub-

stitution patterns among columns in multiple sequence
alignments, many methods have been developed that
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use evidence of coevolving alignment columns to detect
physical interactions within and between biomolecules.
These methods draw inspiration from diverse techniques
in molecular phylogenetics, inverse statistical mechanics,
Bayesian graphical modeling, information theory, sparse
inference, and spectral theory (reviewed in [3, 4]).
Despite good rationale for coevolutionary approaches,

physically interacting alignment columns have been noto-
riously difficult to identify from correlated patterns of
sequence evolution for several reasons. First, shared evo-
lutionary history creates a background of correlated sub-
stitution patterns against which it can be difficult to
distinguish additional constraints derived from physical
interactions. Common phylogeny is particularly strong
within a gene family (e.g. predicting intra-molecular con-
tacts). But it is also present across gene families within
a species or even between species (e.g. predicting host-
virus protein interactions), especially at shorter evolu-
tionary distances where gene trees mirror species trees
more closely. Coevolution methods have used a variety of
approaches to counter the dependence induced by shared
phylogeny, including removing closely related sequences
from alignments to reduce non-independence [5, 6], dif-
ferential weighting of sequences when computing statis-
tics [7–9], and null distributions that directly model or
indirectly account for phylogeny [10–13].
A second challenge arises when trying to distinguish

correlated evolution that arises from direct versus indi-
rect interactions. Alignment columns that are indirectly
implicated in an interaction can be strongly correlated,
and most columns are involved in multiple, partially over-
lapping interactions. For these reasons, close physical
interactions may not produce patterns of substitution that
are significantly more highly correlated than the back-
ground present in structures. This problem has been the
focus of a recent class of coevolutionmethods that focuses
on reducing the number of incorrect predictions by dis-
entangling direct from indirect correlations [9, 14–17].
An alternative point of view considers these networks
of indirectly correlated residues as protein sectors that
can easily, through cooperative substitutions, respond to
fluctuating evolutionary pressures [18]. Proteins are in
fact quite dynamic, and many unstructured proteins are
known to have important interactions [19, 20]. Coevolu-
tion methods have the exciting potential to reveal these
hard to identify interactions, however distinguishing spu-
rious correlations from true non-structural interactions
remains a challenge.
The main barrier to overcoming this challenge is the

impressively difficult task of compiling “gold standard”
data sets in which true coevolving sites are clearly defined.
Structural and systems biology have had great success in
identifying and characterizing many important interac-
tions (e.g. Nucleosome [21], Proteasome [22], regulation

in protein networks [23, 24]). However, resolving large
complexes and unstructured proteins remains technically
difficult, a daunting task as the number of proteins is ever
increasing.
Finally, due to low power—resulting in part from the

previous two challenges—physically interacting sites can
typically only be detected inmultiple sequence alignments
that span large evolutionary divergences and contain
many hundreds to thousands of sequences. Recent evalua-
tions of a number of coevolution methods concluded that
accurate contact predictions require alignments with one
to five times as many sequences (with < 90 % sequence
redundancy) as positions [25, 26]. Even in the current data
rich era of computational biology, such deep alignments
are difficult to obtain, especially for cross-species protein
interactions (e.g. host and pathogen interactions) because
both members of the interaction must be equally deeply
sequenced. Additionally, resolving orthologs and paralogs
is not trivial.
Despite these challenges, coevolutionary prediction of

physically interacting alignment columns has been applied
with success to intra-molecular contacts [7, 27–29]
and well-characterized inter-molecular interactions [30],
such as bacterial two-component signaling systems [31],
enzyme complexes [32], and fertilization proteins [33].
Although the signal-to-noise ratio is too low and the
search space too large to use sequence evolution to
effectively identify pairs of physically interacting protein
residues across entire proteomes; most pairs of sites with
correlated substitution patterns are not in direct con-
tact, and most physically interacting sites do not have
statistically correlated substitution patterns [34].
However, the ability to now measure physical interac-

tions between biomolecules with high-throughput tech-
nologies, such as affinity purification followed by mass
spectrometry (APMS) [35], two-hybrid methods [36, 37],
and protein complementation assays [38], raises the pos-
sibility of using sequence coevolution to refine predicted
interactions in an experimentally reduced search space.
For example, correlated substitution patterns in pairs of
proteins could help determine if an experimentally mea-
sured interaction is likely to represent direct physical
contact versus an indirect interaction in a complex or a
false positive. Coevolutionary analysis could also be infor-
mative regarding which of the sites in a pair of interacting
molecules are most likely to be in physical contact.
One particularly exciting application of this approach

is to characterize and potentially manipulate interacting
residues in host-virus and host-parasite protein interac-
tomes [23, 39]. Newly emerging data on antibody and
antigen sequences within a host [40] offers an oppor-
tunity to harness coevolutionary signals to investigate
the mechanisms of broadly neutralizing antibodies and
immune evasion. The primary open question for these
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new applications is whether existing methods are sensi-
tive and specific enough to detect coevolution with the
levels of constraint and divergence that are present in
inter-molecular data sets of modest size.
To this end, we designed data processing scripts, sta-

tistical evaluation and visualization tools, and simula-
tion pipelines that allowed us to easily extend a suite
of coevolution methods designed for intra-protein inter-
action prediction (Table 1) so that they can be used to
test for patterns of correlated sequence evolution at pairs
of sites in two different proteins, potentially from dif-
ferent sets of organisms in different parts of the tree of
life (e.g. human-bacteria, bacteria-phage interactions).We
then applied this integrated framework for coevolutionary
analysis to refine and annotate a recently derived human-
HIV1 protein-protein interaction network [23] and to test
for coevolution in the well studied arms-race interaction
between the mammalian cytidine deaminase APOBEC3G
(A3G) and its HIV1 antagonist, Vif. Because fewer than
ten orthologous mammal-lentivirus proteome pairs have
been sequenced and mammalian divergence is low, we
hypothesized that power would be low in these settings.
To quantify the limitations of coevolutionary meth-

ods when only a handful of sequences are available, we
used a data set of 33 within-species bacterial protein-
protein interactions. To systematically determine the
parameters that affect performance, we focused on the

well-characterized interaction between bacterial histidine
kinase A (HisKA) and its response regulator (RR), for
which a co-crystal structure and thousands of sequences
are available. By sub-sampling HisKA-RR sequence pairs,
we show that most methods have appreciable preci-
sion or power at low false positive rates for alignments
with ∼500 or more sequences. However, the best per-
forming method for a particular analysis will depend on
whether power or precision is more important, the num-
ber of non-redundant sequences in the alignment, and
whether the goal is to find structurally or functionally
linked residues (i.e. long range interactions). By expanding
this analysis to 32 additional bacterial interactions [30], we
showed that these trends generalize beyond the specific
example of HiskA and RR. We conclude that coevolu-
tion methods are able to identify some residues important
for cross-species protein-protein interactions, but this
approach will benefit greatly from additional sequence
data.

Results
Performance benchmarking of coevolution methods
The coevolutionary methods benchmarked in our analy-
ses fall into three general groups (Table 1). Information-
based methods are various flavors of mutual information
(MI) between pairs of sites, each considered indepen-
dently. Direct methods are those that consider pairs of

Table 1 List of methods benchmarked

Method APC Re-weighting Reference Software package

Information-based MI No None [8, 71] infCalc

VI [65]

MIj [8]

MIHmin

MIw seq %id [9] DCA

Direct DI Yes seq %id, pseudocount

DI256 [68] Code S1 in [68]

DI32

DIplm seq %id [72] plmDCA

PSICOV Blosum, pseudocount [14] PSICOV

Phylogenetic CMPcor No Downsampling [10] CoMap

CMPchg [2]

CMPvol

CMPpol

Coevolution methods benchmarked fall into three categories. Information-based methods: MI: mutual information [71], VI: variation of information [65], MIj : MI divided by
alignment column-pair entropy, MIHmin: MI divided by minimum column entropy [8], MIw: MI with adjusted amino acid probabilities. Direct methods: DI: direct
information—MI with re-estimated joint probabilities [9], DI256, DI32: DI using Hopfield-Potts for dimensional reduction (256 and 32 patterns respectively) [68], DIplm:
Frobenius norm of coupling matrices in 21-state Potts model using pseudolikelihood maximization [72], PSICOV: sparse inverse covariance estimation [14]. Phylogenetic
methods: CoMap P-values for four analyses CMPcor: substitution correlation analysis [10], CMPpol for polarity compensation, CMPchg for charge compensation, CMPvol for
volume compensation [2]
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sites in the context of a sparse global statistical model for
contacts in themultiple sequence alignment. Phylogenetic
methods explicitly use a substitution rate matrix and
phylogenetic tree in their calculation of a coevolution
statistic. The phylogenetic tree is used to account for
the relatedness of the sequences—the observed sequences
are themselves correlated due to their shared evolution-
ary histories. The substitution rate matrix may take into
account the biochemical and physical properties of amino
acid residues. The main phylogenetic method we report
on, CoMap, reports a P-value based on internal simulation
of independently evolving sites. In this benchmark we use
this P-value as a statistic for comparison with other coevo-
lution methods. Other differences among the coevolu-
tion methods include the incorporation of two additional
techniques that have been shown to improve per-
formance, re-weighting sequences such that similar
sequences contribute less to the final score [5] and apply-
ing an Average Product Correction (APC) to remove
background noise and phylogenetic signal from “raw”
coevolution statistics [8].
To benchmark coevolutionmethods, we used 33 within-

species pairs of proteins with co-crystal structures deter-
mined from E. coli proteins. These include a set of paired
alignments compiled by [30] (Ovch32), plus the histi-
dine kinase-response regulator (HisKA-RR) bacterial two-
component system from Procaccini et al. [41], provided
by the authors. We included HisKA-RR, because it is a
well-characterized interaction with a very large, diverse
multiple sequence alignment (8998 sequences for each
gene pair) and genetic evidence supporting several inter-
actions. For these reasons, HisKA-RR has also been used
previously in coevolutionary analyses [42].
Because the HisKA-RR alignment is so deep, it enabled

us to quantify the effects of alignment size and diversity by
uniformly down-sampling the full alignment to produce
a wide range of smaller pairs of HisKA and RR multiple
sequence alignments. These sub-sampled alignments have
six different numbers of sequences (5, 50, 250, 500, 1000,
5000), with phylogenies also sub-sampled from the origi-
nal tree (Additional file 13: Figure S1). The 32 alignment
pairs in Ovch32 naturally varied in size (range 216–6732
sequences) (Additional file 13: Figure S2).
In addition to the number of sequences in the align-

ments (N), we consider the phylogenetic diversity (PD
[43]) of the alignments—also captured in the effective
number of sequences (Neff) as calculated by PSICOV [14],
the diversity within individual alignment columns mea-
sured by entropy, the alignment length (L) (i.e. the num-
ber of alignment columns), the proportion of contacting
residues in the alignment.
For each pair of multiple sequence alignments from

two interacting proteins, we compared every site in the
first protein to every site in the second protein and

scored these pairs of alignment columns for coevolu-
tion using each of the methods in Table 1. We then
used coevolution scores to predict inter-domain pairs of
amino acid residues that are less than 8 angstroms (Å) to
each other, measured between Cβs, in the representative
co-crystal structure (See Methods and Table 2).
We evaluated performance using power (also called

recall, sensitivity, and true positive rate (TPR)) (Eq. 1)
and precision (also called positive predictive value (PPV))
(Eq. 3) at a range of low false positive rates (FPR)—the pro-
portion of negatives falsely predicted as positives (Eq. 2).
The false positive rate is equivalent to 1 - specificity. Power
and precision are complementary performance measures
that quantify the percentage of interacting residue pairs
that are found and the percentage of identified residue
pairs that are interacting, respectively. Precision is a use-
ful measure of performance in cases where positives
(contacting pairs of residues) are overwhelmed by neg-
atives (non-contacting residues). A method with high
precision is helpful for generating lists of high confi-
dence pairs of residues for expensive follow-up studies,
even if it misses a number of truly interacting sites and
therefore has relatively low power. We additionally exam-
ined four threshold-independent performance measures,
area under Receiver-Operator Curve (auROC), area under
precision-recall curve (auPR), maximum F1-score (fmax)
(Eq. 4), maximum φ (φmax) (Eq. 5).

TPR = TP
TP + FN

(1)

FPR = FP
FP + TN

(2)

PPV = TP
TP + FP

(3)

F1 = 2 · PPV · TPR
TPR + PPV

(4)

φ = TP · TN − FP · FN√
(TP + FN)(TN + FP)(TP + FP)(TN + FN)

(5)

We also evaluated performance using two stricter
definitions of contacts. First, we defined contacts as
residue-pairs with less than 6Å between their closest
non-hydrogen atoms. We then evaluated performance in

Table 2 TP: True positive, FP: False positive, TN: True negative,
FN: False negative

Prediction

Cβ distance Coevolving Not coevolving

< 8Å TP FN

≥ 8Å FP TN
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the HisKA-RR sub-alignments using a definition of con-
tacts that, in addition to spatial proximity (Cβ < 8Å),
requires biochemical evidence for the role of the contact-
ing residues in determing ortholog- and paralog- speci-
ficity of the interaction (i.e. reducing cross-talk between
orthologous and paralagous interacting proteins). A list
of such residues in representative sequences is found in
Casino et al. [44], Li et al. [45], Haldimann et al. [46],
Skerker et al. [47], and Laub and Goulian [48]. Trends
in the results were generally similar across these choices
of definition for true interactions, but we observed some
differences in performance between definitions when the
false positive rate (FPR) is controlled (Additional file 13:
Figure S8 and S10).

Physically interacting sites can be accurately detected in
large sequence alignments
Our primary finding is that many coevolutionary meth-
ods are able to detect inter-molecular contacts at low
FPRs in alignments with hundreds of diverse sequences
from each protein, consistent with previous studies of
intra-molecular contacts [3, 17], specifically when the
alignments are deeper than they are long [25, 26]. We
capture this rectangular quality in the statistic Neff/L,
where Neff is the effective number of sequences as cal-
culated by PSICOV [14] and L is the total number of
columns in both alignments. We observe similar trends
when using the number of sequences (N) or their phylo-
genetic diversity (PD) [43], rather than Neff/L, to compare
performance.
Both power and precision improve with increasing

Neff/L for nearly all coevolutionary methods in the
HisKA-RR data set (Fig. 1). However, for alignments with
Neff/L < 1.0, power at FPR < 5 % remains relatively low
(< 50 %), and even lower (< 10 %) when controlling the
false positive rate more strictly (FPR < 0.1 %). Precision
is expectedly higher at FPR < 0.1 % than at FPR < 5 %,
but also remains below 50 % for “square” (Neff/L = 1.0)
alignments. Additionally, the performance metrics fmax
and φmax show that there are no score thresholds (i.e. the
strictness of predictions) that achieve both high precision
and power in alignments with Neff/L � 3.0 (Additional
file 13: Figure S15-S17). Despite the smaller range in
Neff/L values, these performance trends are also observed
across the Ovch32 alignments (Additional file 13: Figure
S11 and S19).
However, in the HisKA-RR alignment, we observed two

exceptions to this trend when using the strictest definition
for contacting pairs (i.e. requiring residue Cβ < 8Å cou-
pled with biochemical evidence for specificity determina-
tion). First, the standard MI statistic is the most precise
method for detecting contacting sites in alignments with
Neff/L >1.6 and FPR < 0.1 % (Additional file 13: Figure
S10, Additional file 11). Second, mutual information

normalized by the joint entropy (MIj) has relatively high
power compared to the Information-based methods and
is themost powerful method for detecting contacting sites
that are supported by experimental evidence at FPR < 5 %
(Additional file 13: Figure S8, Additional file 12). How-
ever, MIj has drastically lower power at FPR < 0.1 %
(Additional file 13: Figure S9). These findings suggest MIj
may be useful for detecting as many contacts as possi-
ble if a moderate FPR can be tolerated. Information-based
methods are straightforward to compute, adding to their
utility in these settings.
CoMap performance is an interesting case because,

in contrast to DI, DIplm, and PSICOV, it was not ini-
tially designed to find contacting residues, rather a mix
of both short and long-range interactions. In the small-
est alignments (5 sequences) we tested, we occasionally
observe CMPchg has higher power than the Direct meth-
ods (Mann-Whitney U P = 0.003). However, its lower
performance in other alignments may indicate that it is
identifying a set of coevolving residue pairs that partially
overlap with contacting residues. Additionally, a filtering
step necessary to run CoMap on large alignments may
be limiting its performance (See Methods). It remains to
explore whether CoMap can be used to prioritize residue
pairs predicted by the othermethods for functional assays.
Finally, we looked at the relationship between perfor-

mance and the proportion of residue pairs that are con-
tacts. Comparing across the structures in the Ovch32 data
set, we observed the proportion of contacts is correlated
with precision at FPR < 0.1 % (Additional file 13: Figure
S24, Additional file 10). This means that most strongly
coevolving residues in a protein pair are more likely to
be physically interacting in co-crystal structures with a
larger fraction interface residues. Power is also correlated
with the proportion of contacts, though not as strongly as
precision (Additional file 13: Figure S25).

Diversity of sequences is important for accurately
detecting contacts
The diversity of residues within the individual alignment
columns that make up each pair is another important
factor to consider. To explore this, we assessed perfor-
mance among column pairs with respect to their marginal
entropies. We computed power and precision separately
for each rate category group (See Additional file 13:
Supplemental Methods). This analysis showed that faster
evolving (i.e. above-median-HisKA paired with above-
median-RR) contacts are generally the easiest to detect
with coevolutionary methods. Dually conserved residues
(i.e. low-HisKA paired with low-RR) are the next easiest
to detect (Fig. 2). We conclude that MIw’s drop in perfor-
mance at 5000 sequences may be due to dually-variable
columns being improperly reweighted. These analyses
show that sequence variation quantitatively affects the
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Fig. 1 Coevolution statistics differ in their ability to detect residue contacts in HisKA-RR sub-alignments. Direct methods benefit from larger, more
diverse alignments. Left: Precision (PPV) at false positive rate (FPR) < 0.1 %. Right: Power (TPR) at false positive rate (FPR) < 5 %. Blue lines indicate a
loess fit to each method, 95 % confidence intervals are shown in gray. See Abbreviations and Table 1 for abbreviations

accuracy of coevolution analyses, with most methods per-
forming best when coevolving residue pairs have similar
substitution rates.
To investigate whether higher power in larger align-

ments results primarily from the number sequences per
se or depends upon the diversity of the sequences, we
compared the performance across alignments with differ-
ent diversity values but the same number of sequences.
We quantified diversity using phylogenetic diversity (PD)
[43] and the effective number of sequences as calcu-
lated by PSICOV (Neff) [14] (Additional file 13: Figure S5
and S6).
For HisKA-RR sub-alignments, we found weak positive

and negative relationships between the nominal false pos-
itive rate and PD for some methods in alignments with
5000 sequences at given target false positive rates. For
each group of equally sized alignments for each method

(and for each null distribution and significance threshold),
we tested whether the false positive rate correlates with
PD using Spearman’s rho. Few methods had uncorrected
P-values< 0.05 and none did when controlling for the 336
comparisons (smallest uncorrected P: 1.73e-3; ρ: 0.85 for
MIj at N = 5000, Pempirical < 0.001). Testing for a bulk
correlation (ignoring method; normalizing PD by align-
ment size) reveals a weak positive correlation (ρ = 0.27,
P < 1.9e-29) at Pnormal and Pempirical < 0.05 but not <

0.001. Overall this suggests that the false positive rate may
increase with more diverse sequences at loose significance
thresholds. Alternatively, the PD ranges were too small to
detect a relationship with false positive rate.
While the range in diversity for alignments with 5

sequences is small (PD: 7.5-11, Neff: 5), under the nor-
mal distribution, the false positive rate is better controlled
in diverse alignments. However, under the empirical null,
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HisKA-RR sub-alignments are parsed according to above- or below- median entropy for each size alignment size (number of sequences: N). Left:
Median precision (PPV) at FPR < 0.1 %. Right: Median power (TPR) at FPR < 5 %. See Abbreviations and Table 1 for abbreviations

the Information-based methods do not control the FPR
for these alignments and have larger false positive rates as
diversity increases in these alignments.
One caveat of the HisKA-RR analysis is that (for com-

putational reasons) we generated sub-alignments by ran-
dom sampling and therefore only explored a range of
phylogenies close to the typical diversity for each align-
ment size. We observe fairly strong correlations between
cutoff-independent performance metrics and Neff (and
also Neff/L as L is constant in HisKA-RR). The alignments
inOvch32 provide a broader range of phylogenetic scenar-
ios. Across these 32 interactions, Neff is weakly negatively
correlated with the same performancemetrics (Additional
file 8). However, accounting for alignment length (with
Neff/L) reveals that there is a positive relationship between
alignment depth and performance. (Additional file 9,
Additional file 13: Figure S5 and S7) show that high Neff
alone does not guarantee good performance. For example,
taking the best performingmethod at each alignment pair,
the alignment pair with the highest Neff had at best the

fourth poorest φmax. Conversely, the third smallest Neff
corresponds to the third best φmax; and at FPR < 0.001, it
had the highest precision (PPV = 63 %). Interestingly, it
also has the shortest length (L = 168 columns), suggesting
that perhaps taking into account the proportion of pos-
sible contacts may play an important role in estimating
expected performance.

Choice of null distribution affects performance
The previous results show performance based on the
known HisKA-RR structure. In practice, when apply-
ing the methods in our study the structure usually is
not known. One therefore uses a null distribution to
control false predictions. Specifically, an upper quan-
tile of the distribution of coevolutionary statistics in the
absence of coevolutionary constraint is used as a thresh-
old; one declares any pair of sites with a statistic exceed-
ing the threshold a predicted contact. The goal is to
minimize false predictions by predicting contacts only
when statistics are much larger than expected by chance
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under the null distribution. A variety of null distribu-
tions are commonly used, including theoretical limiting
distributions [8, 49, 50], the empirical distribution of
observed scores (under the assumption that most pairs
of sites are not coevolving) [51], and parametric, semi-
parametric, and non-parametric bootstrap distributions
[10, 52]. Theoretical and empirical nulls are computation-
ally inexpensive compared to bootstrap methods, which
require accurately simulating thousands of large data sets
(See Additional file 13: Supplemental Text).
We used our sampled sub-alignments of HisKA-RR and

the Ovch32 alignments [30] to compare the performance
of two commonly used null distributions and to evalu-
ate the sensitivity of each approach to alignment size. For
each null distribution and coevolutionary statistic, we first
employed the non-contact pairs of residues to assess if the
FPR was truly controlled or not at given target FPRs (α) of
5 % and 0.1 %.
The normal distribution can be used as theoretical

null for mutual information and its normalized variants.

Under this assumption, coevolution scores are standard-
ized to Z-scores and compared to upper quantiles of the
standard normal distribution (mean = 0, variance = 1).
We then used the resulting upper-tail P-values (Pnormal)
to predict contacting residue pairs. We found that nom-
inal FPRs using this approach consistently exceed the
target FPR across the range of Neff/L values in both the
HisKA-RR sub-alignments and the Ovch32 alignments
[30] (Fig. 3; Additional file 13: Figure S12-S14). In general,
as Neff/L increases, the nominal FPR for Direct methods
decreases while it increases in Information-based meth-
ods, suggesting that Direct methods truly benefit from
deeper alignments. Nominal FPRs were observed to be
as great as twice to 24 times the target FPR for target
FPRs 5 % and 0.1 % respectively. This suggests that either
non-contacting residue pairs carry signals of coevolution
(e.g. due to phylogeny, structural, or other evolutionary
constraints) and/or that Z-scores of coevolution statis-
tics have variance greater than one across non-contacting
residues (e.g. due to an underestimated standard deviation
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across residue pairs resulting from within protein con-
straints or residues appearing in many pairs). Three of
the four phylogeny aware CoMap methods controlled the
nominal FPR below the target in all cases suggesting that
the charge compensation analysis is predicting long-range
residue interactions as well as contacts.
Thus, while the normal distribution applied to stan-

dardized coevolution statistics can practically be used as
a null distribution, we conclude that this approach results
in elevated rates of false positive predictions, likely due
to shared phylogeny, structural constraints affecting non-
contacting residue pairs, or coevolution scores not being
normally distributed (Additional file 13: Figure S30-S32).
A theoretical null (e.g. non-central gamma [53]) that is
parameterized for individual column pairs may therefore
be more appropriate (See Additional file 13: Supplemental
Text) and warrants future investigation.
Another choice of null distribution is the observed

empirical distribution of the coevolution statistics. A
P-value (Pempirical) for a score S is simply the proportion
of scores that are more extreme than S. This straight-
forward method can be easily applied with any statis-
tic. However, it also assumes that no pairs of sites are
coevolving and should therefore produce thresholds that
are too strict when there are some coevolving sites in
the data set (i.e., making it harder to predict real con-
tacts). Although, we found that the empirical null dis-
tribution does produce nominal FPRs that exceed target
FPRs (Fig. 3; Additional file 13: Figure S13). As the pro-
portion of contacts increases, the Pempirical-values become
more conservative (Additional file 13: Figure S26 and S27).
The Direct methods best control the nominal FPR in both
sets of alignments, marginally exceeding the target FPR
in only a couple of cases (maximum FPR/α = 3.68). The
Information-based methods controlled the FPR below
1.58 times α in the Ovch32 alignments [30], however the
HisKA-RR sub-alignments reveal that at Neff/L< 0.3, con-
trol of the FPR is lost, especially inMIHmin (FPR/α > 400).
The Phylogenetic method that consistently exceeded the
target FPR was the CoMap correlation analysis (CMPcor)
which makes no assumptions regarding the biochemical
properties of the amino acids. These results suggest
that the empirical null distribution is not as conserva-
tive of an approach as one might expect from including
contacting residue pairs in the null distribution. Although,
it may suffer from some of the same effects that make the
normal null distribution anti-conservative, such as shared
phylogeny or structural constraints. In some methods like
MIminh, alignments with very few sequences (e.g. 5–50)
have a limited number of possible scores which leads to
ties in P-values between contacting and non-contacting
residues. If contacts and non-contacts have roughly the
same Pempirical values, the target and nominal FPRs should
be similar. But with large ammounts of ties, predictions

are made in blocks, possibly forcing discontinuous jumps
in the nominal FPR with respect to the target FPR. This
could compound or diminish the anti-conservativeness of
Pempirical.

Cross-species case study: applying coevolution methods to
Vif-A3G identifies some residues known to affect host-virus
interactions
Viral infectivity factor (Vif ) is a lentiviral accessory pro-
tein whose primary function is to target the antiviral
cytidine deaminase APOBEC3G (A3G) of its mammalian
hosts through ubiquitination. Because the two protein
families are in an evolutionary arms race [54, 55], we
hypothesized that they would be an informative exam-
ple for exploring the utility of coevolution methods in
host-virus protein pairs (i.e. inter-protein, inter-species
interactions). This is a novel application of coevolution
analysis, which has primarily been applied to residues
within a protein or between pairs of proteins in the same
genome.
A major challenge in performing coevolutionary analy-

sis on cross-species protein pairs is acquiring appropriate
data, including paired alignments and protein structures
for validation. For Vif-A3G, we were able to identify 16
pairs of sequences (Neff = 10.0) from different primates
(A3G orthologs) and their lentiviruses (Vif orthologs) in
public databases (Additional file 5). Our benchmarking
results on HisKA-RR indicate that such small protein fam-
ilies push the useful limits of the coevolution statistics
we tested (Neff/L = 0.014). The low sequence diversity
of A3G (Neff = 3.04) within primates compared to Vif
(Neff = 11.3) within primate lentiviruses also presents
challenges. Hence, we expect coevolutionary analysis to
potentially have limited power in this scenario. To quanti-
tatively evaluate performance, requires validated Vif-A3G
interactions. The structure of Vif in complex with A3G has
not been solved. However, biochemical assays have solidly
identified regions important for binding and ubiquitina-
tion along the individual reference sequences of HIV1
Vif [56–59] and human A3G [60, 61] (Table 3). For this
analysis, we therefore take the residues in biochemically-
validated regions to be positives even though they might

Table 3 Important residues for the Vif-A3G interaction

Position Notes

Vif 21–23,26 A3G-specific

30

40–44

55–72 A3G and A3F

A3G 121–149 essential for Vif-binding

HIV1 Vif [56–59]. Human A3G [60, 61]
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not be contacts (i.e. Cβ distance ≥ 8Å), and assume that
all remaining residues are negatives, even though other
sites (including sites deleted in these reference sequences)
are possibly involved in the interaction. While further
experimentation is needed to understand the relationship
between functionally important sites and the structure of
the protein interaction, as well as the effects of mutations
in these sites on the fitness of lentiviruses, we explore
whether any clues can be identified in the limited data
that describes the coevolutionary history of the Vif-A3G
residues.
First, we computed a subset of coevolutionary statis-

tics for all Vif-A3G residue pairs and evaluated how well
the statistics pinpoint the positive functionally important
residues compared to negatives. For this evaluation, we
used the empirical distribution of scores as a null distri-
bution to determine statistical significance (i.e., Pempirical)
because they have lower false positive rates across Neff/L
values at strict significance thresholds. Because the pos-
itives and negatives are single residues in each sequence
instead of inter-protein residue pairs, we summarized
Pempirical for each residue by assigning it the most sig-
nificant Pempirical across all inter-protein pairs to which
it belongs, and then explored the Vif and A3G results
individually (Additional file 7). From our benchmark-
ing on the bacterial data sets, we know that significance
thresholds that control the FPR vary by method and
Neff/L, and that strict thresholds that yield very low (∼ 2–
3 %) power are typically needed to control FPR in small
alignments. we therefore chose to identify a significance
threshold for each method that maximizes precision on
the known functional sites in each protein. Then, we
estimated power and FPR at these thresholds.
On Vif, with the exception of CMPcor and DI32, the

maximum precisions for each method ranged from 9 to
20 % (i.e. only one or two residues out of ten predicted
to be positives are truly positives) (Additional file 13:
Figure S34). At these precision-optimized thresholds, MIj
and MIminh predict almost every Vif residue to be coe-
volving; a stricter threshold would not result in a lower
proportion of incorrect predictions. In contrast, the pre-
cisions for CMPpol, CMPcor, DI32 are the highest (20 %,
40 %, 100 % respectively). However, this comes at the
cost of making the fewest number of predictions with the
latter only making a single prediction. For these meth-
ods, less strict thresholds are needed to identify a greater
proportion of positives at the cost of increasing the pro-
portion of false discoveries. Across all methods, low fmax
and φmax values (0.26 and below) suggest there are no sig-
nificance thresholds that balance power and precision for
this data set.
We observed similarly low performance on A3G

(Fig. 4). Encouragingly, we note that positions 128-130 are
correctly identified by multiple methods (Fig. 5). Residues

at position 130 (e.g., D vs A) are highly likely to be
adaptations that conferred species-specific resistance to
Vif-induced degradation in Old World Monkeys 5-6MYA
[54, 55]. Position 128, that also provides species-specific
resistance, is thought to be more recent [54, 55, 62]. While
these coevolution methods alone may not yet be accurate
enough to identify functional residues, they potentially
enhance other evolutionary analyses. For example, of the
many Apobec sites under positive selection [55], it is
reasonable that lentiviruses are more likely shaping the
evolution of those sites that coevolve with Vif than sites
that coevolve with other viral or virus-like agents.
Secondly, we visualized the localization of Vif residues

predicted to be coevolving with A3G on a partial struc-
ture of Vif in complex with cofactors utilized for protein
ubiquitination [63] (Additional file 7, Additional file 13:
Figure S36). In [63], the authors are able to see that
a critical subset of the Vif positives is solvent-exposed.
We re-evaluated performance with only these residues
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as the positives (Table 3). There is poor precision to
identify the putative solvent-exposed interface among the
methods; CMPcor at 40 % and CMPvol at 10 % are the
only methods with precision > 6 % (Additional file 13:
Figure S35).
Our analysis of the Vif-A3G interaction confirms

that power to detect functionally important residues in
each protein family is also low in inter-protein analy-
ses between species, even though it is plausible that an
arms race between lentivirus and mammal would give
rise to stronger signals of coevolution compared to back-
ground. It is important to consider that perhaps the
positions considered positives may not all be of equal evo-
lutionary importance across primates. Interfaces may be
gained or lost and the rapid evolution of the two proteins
likely produces many alternative solutions to maintain-
ing an antagonistic interaction. There were many pre-
dicted positions that were not in the positives and further
systematic validation and more comprehensive sequenc-
ing of lentiviruses and primates is needed to determine
which pairs of residues are actually in close proximity
or functionally required for other reasons. Additionally,
there appears to be some level of complementarity in
the predictions made by VI and MIminh and the CMP
methods, which measure different biochemical trade offs
between coevolving residues. This strengthens the ratio-
nale for integrating methods to better predict interface

residues experiencing potentially different evolutionary
constraints (e.g. structural, catalytic activity, specificity).
Coevolutionary analysis can help to generate and priori-
tize candidates for these experiments.

A toolkit for inter-molecular coevolution analysis
Due to the diversity of coevolution methods and the
time spanned during which they were developed, it is no
surprise that they vary widely in the input and output
formats they tolerate. Additionally, many of the coevo-
lution methods we tested are computationally expensive,
so we prepared our workflow to take advantage of mul-
tiprocessing workstations and high performance comput-
ing clusters. We outline a few utilities we developed to
aid in processing sequences, structures, and coevolution
results for benchmarking and making predictions and
visualizations.
Our toolkit consists of three parts, (1) a collection of

wrappers for running the coevolution programs from
the command line and where possible in a Sun Grid
Engine super computing environment (https://github.
com/aavilahe/coevo_tools), (2) an R package for evalu-
ating performance and calculating Pempirical and Pnormal
(https://github.com/aavilahe/coevo_analysis_Rpackage),
and (3) pre- and post-processing utilities to facilitate input
and output format management, mapping alignments to
structural models, and visualizing coevolving residues on

https://github.com/aavilahe/coevo_tools
https://github.com/aavilahe/coevo_tools
https://github.com/aavilahe/coevo_analysis_Rpackage
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protein structures (https://github.com/aavilahe/coevo_
analysis_pypackage).
We also implemented the canonical mutual informa-

tion statistic, the normalizations of mutual information
in Martin et al. [64], and VI, the information theoretic
distance described by Meila [65] (https://github.com/
aavilahe/infcalc).

File formats
The coevolution methods we tested accept three dif-
ferent file formats and alignments as two separate files
or one horizontally concatenated file. The different for-
mats, (fasta, phylip, raw reads) store more or less
meta-data and have limits on the length of sequence
identifiers.
Our coevo package at https://github.com/aavilahe/

coevo_analysis_pypackage depends on the Biopython
library and contains many auxiliary functions and exe-
cutable python scripts for input file preparation.
A typical processing step may involve truncating

sequence identifiers when converting between sequence
formats, taking care that they remain informative and
unique. For example:

Some methods require one concatenated alignment,
while others read in two separate ones.

The coevolution methods return tab, space, or comma
delimited output with and without headers. The scores
returned are often indexed by column numbers of the con-
catenated alignment and not the original two alignments
of interest, and can be numbered starting from 0 or 1.
The scores module in our coevo package includes

definitions for the various formats we encountered,
extracts the relevant indices and scores, optionally merges
results from different methods, and processes them to a
standard tab delimited format with appropriate headers

and indices that correspond to the alignments of interest.
For example:

Structure
Another important procedure is to map column numbers
from a given alignment to a reference PDB structure. For
example, we used map_column_to_resnum.py, and
get_dists.py to map atomic distances to column-
pairs in existing alignments in order to compare them
to coevolution scores and P-values and to validate pre-
dictions. The HisKA-RR complex in (PDB: 3DGE) is
actually an ABAB tetramer—two sets of identical chains
form a structure such that a HisKA chain will make con-
tact with two RR chains. One can use min_dists.py
to get the minimum distances between residues from
both interactions. For a detailed example, see https://
github.com/aavilahe/coevo_analysis_pypackage/blob/dev/
example/pdb_tests/example_3DGE_column_distances.sh.
Visualization of coevolution score summaries on indi-

vidual residues can be accomplished by generating
an attributes file for use with UCSF Chimera [66]
using make_attributes.py (e.g. Additional file 7,
Additional file 13: Figure S36 shows Vif residues predicted
to coevolve with A3G, each Vif residue is colored by most
significant P-value out of all A3G residues).

https://github.com/aavilahe/coevo_analysis_pypackage
https://github.com/aavilahe/coevo_analysis_pypackage
https://github.com/aavilahe/infcalc
https://github.com/aavilahe/infcalc
https://github.com/aavilahe/coevo_analysis_pypackage
https://github.com/aavilahe/coevo_analysis_pypackage
https://github.com/aavilahe/coevo_analysis_pypackage/blob/dev/example/pdb_tests/example_3DGE_column_distances.sh
https://github.com/aavilahe/coevo_analysis_pypackage/blob/dev/example/pdb_tests/example_3DGE_column_distances.sh
https://github.com/aavilahe/coevo_analysis_pypackage/blob/dev/example/pdb_tests/example_3DGE_column_distances.sh
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Discussion
In this work we aimed to paint a picture of the per-
formance of emerging methods to identify inter-protein
contacts using coevolution and to identify properties of
alignments where performance is expected to be best. As
previously noted in intra-protein predictions [3, 9, 14],
re-weighting of the sequences to account for the under-
lying phylogeny is important for inter-protein predictions
as well, however as the comparison between MIw and
MI shows, it is important to tune the parameters con-
trolling the re-weighting in cases where there are fast
evolving alignment columns in an overall conserved pro-
tein family. Fortunately, methods that search for direct
correlations—using a global statistical model for the
sequence alignments—seem to be able to correct for the
improper weighting (compare MIw to DI). These meth-
ods are more precise at strict false positive rates than their
counterparts especially when the alignments have Neff/
L < 1.0. However, it may be beneficial to use a faster, MI-
based method if the use case allows for a relaxed FPR and
is concerned with power versus precision.
We also investigated the use of three null models to

control the false positive rate. Counter-intuitively, a null
model that explicitly models evolution independently for
each alignment fails to control the false positive rate. We
believe that our simulated alignments are systematically
scoring too low because they fail to capture the correct
amount of variation in the observed alignments, result-
ing in artificially significant P-values, except for when the
effects of having small alignment sizes results in overly
conservative P-values. Using a standard normal or the
empirical distribution of scores as null models also failed
to control the false positive rate, likely due to the correla-
tion structure imposed by the shared evolutionary history
of the residues, the distribution of evolutionary rates of
the residues, or because asymptotic assumptions do not
hold at small sample sizes. Thus, choosing an appropri-
ate P-value cutoff in a real analysis when the structure is
unknown and alignment depth is shallow still remains a
challenge. However, we show that in diverse enough align-
ments the empirical null successfully controls the false
positive rate for Direct methods. As a future direction, we
suggest exploring theoretical null distributions that can be
parameterized for individual alignment column pairs such
as [53] or further improving protein evolution simulators
to generate distributions of scores where the evolution-
ary rates are more similar between the null and alternate
hypothesis.
These results are encouraging, but still leave us with

the challenge of how to choose an appropriate P-value
cutoff in a real analysis when the structure is unknown.
Since our findings indicate that nominal FPRs exceed
target FPRs using Pnormal and Pempirical for nearly all
methods, stricter P-value cutoffs than the target false

positive rate seem warranted. But it is not clear how
much stricter will be needed in any given alignment
pair. Additional information to consider when making
such modifications should include incorporating align-
ment properties such as Neff/L, and the expected pro-
portion of contacts expected to exist (Additional file 13:
Figure S27; Fig. 3). However, large data sets of many pro-
tein interactions are needed in order to be confident in
parameters or prior probabilities to be used to correct the
P-values. Hence, in most applications one must simply
aim to control a target FPR, knowing that the true error
rate is likely to be larger. For this reason, the empirical null
distribution may be the best choice to use as it controls
error rates across the majority of alignment sizes, target
FPRs, and coevolution methods tested (Fig. 3; Additional
file 13: Figure S13). As a rule of thumb, the empirical null
overall controls the FPR for the Direct methods, however
in small alignments (5 sequences or Neff/L < 0.3) it can
be up to 1.5 times the target FPR. For the purposes of
data collection and experimental design, we therefore rec-
ommend sequencing phylogenetically deeply enough to
attain Neff/L > 1.0 to control FPR and > 2.0 to ensure
modest TPR and PPV.
A related problem to the one discussed here is to search

a large set of protein pairs (within or between species)
to determine which ones are interacting. In this set-
ting, coevolution method performance is potentially more
important than when predicting contacting residues for
known interactions, because the search space will con-
tain so many negatives (i.e., non-interacting pairs). A
permissive P-value cutoff will lead to a large number
of false positives and that may misinform investigators,
while being too strict will lead to false negatives that keep
potentially important findings hidden. It would be inter-
esting to understand if thresholds and the methods for
choosing them generalize to all protein-protein interac-
tions. Different experimental techniques have strengths
and weakness in identifying different types of interactions.
Interactions may be transient, but highly critical, or tightly
binding but too conserved to detect any sequence vari-
ation among the sequenced orthologs Mulberry Ideally,
we would like to understand what a null model teaches
us about phylogeny-induced correlations when structural
inter- or intra-protein constraints are minimal, perhaps
at an evolutionary stage where a protein interaction is
acquired or lost. What can this reveal about the birth
and death of protein interactions, regulatory networks,
and neofunctionalization? Another challenge for predict-
ing interacting protein pairs from coevolutionary tests
is how to summarize statistics for individual pairs of
residues to produce a single score for a pair of proteins.
Although outside the scope of our work, such a strategy
would likely involve comparing tails of score or P-value
distributions. Deciding on how to define how much of
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the tail to consider will depend highly on having an esti-
mate of the false positive rate. Based on some preliminary
investigations of these questions, we conclude that it is
unlikely that cross-species interacting protein pairs can be
accurately distinguished from non-interacting pairs on a
genome-wide scale.
The progress of high-throughput interaction map-

ping highlights the need for continued refinement of
inter-protein coevolution detection methods. Given that
improper re-weighting of sequences can negatively affect
power and the false positive rate, perhaps expanding
Direct methods to independently obtain sequence weights
for each alignment or using an evolution-based proba-
bilistic weight (such as in CoMap or using phylogenetic
logistic regression) for unusual variation in each column
is a logical next step forward. Another important contri-
bution would be to develop a generalizable null model
that can help differentiate contacts when there are very
few sequences available for protein families. Further-
more, investigating the correlations among the coevolu-
tion statistics themselves in inter-protein data sets could
potentially disentangle structural from non-structural
coevolutionary forces as well as serving to construct an
ensemble method. Comprehensively sequencing orthol-
ogous pairs of protein families is a straightforward way
to test the usefulness of these future contributions while
simultaneously enabling current methods to perform to
their fullest.

Conclusion
We benchmarked 13 coevolution methods on 33 pro-
tein interactions with associated sequence alignments
of varying depths. We conclude that coevolutionary
analyses of cross-species protein-protein interactions is
largely hindered by a lack of phylogenetically deep pro-
tein alignments for many proteins, and furthur demon-
strate this in an example case involving an HIV1-human
protein interaction. Additionally, we report that com-
monly used null distributions generally fail to con-
trol false positives in coevolutionary analyses, though
errors are best controlled by the empirical null in large
alignments.

Methods
Multiple sequence alignments
A master alignment of 8998 horizontally concatenated
HisKA and RR sequences from Procaccini et al. [41] was
graciously provided by the authors (Additional files 2 and
3). From this alignment, aligned sequences were sam-
pled uniformly (each sequence had equal probability of
being sampled) to create sub-alignments with 5, 50, 250,
500, 1000, and 5000 sequences. We sampled 10 sub-
alignments of each alignment size (number of sequences
in sub-alignment), resulting in 60 total alignment pairs

(Additional file 4).
The Ovch32 alignments [30] were downloaded

from complexes section of the Baker lab website
(http://gremlin.bakerlab.org/complexes/PDB_benchmark_
alignments.zip) on Aug 29, 2014 (Additional file 1). A
stable link is located at the Dryad repository, doi:10.5061/
dryad.s00vr/7 [67]. The corresponding structures were
downloaded from PDB and processed to obtain contacts
between representative protein chains. See Supplemental
Files for accessions. Columns comprised of more than
75 % gaps were removed as in [30]. Additionally, only
columns mapping to the representative structure were
kept.
The CoMap implementation requires a preprocessing

step to remove sequence redundancy (a data mung-
ing alternative to sequence weighting). This additional
step was also necessary to prevent buffer underflow
errors when evaluating likelihoods in very large input
trees. Therefore, all alignments with more than 200
sequences were culled to contain the 200 most diverse
sequences before being passed to CoMap. The sub-
alignment used corresponds to the 200-leaf sub-tree
that maximizes PD for each original input alignment
and tree.

Measuring coevolution
The coevolution methods benchmarked are listed in
Tables 1 and 4. Wrappers for the Direct methods are
provided in our coevo_tools code repository to facili-
tate running from the command line (See Supplement
for details). For methods in the plmDCA, mfDCA and
hpDCA packages, MATLAB, or the MATLAB runtime
executable is required as well as various MATLAB Tool-
box dependencies and licenses. Default settings were used
for all methods, including sequence re-weighting and
APC. DI32 and DI256 are variations of DI in the hpDCA
package with an additional parameter for tuning dimen-
sionality reduction, “p”, set to 32 and 256 respectively as
it had no default (a selection from a parameter search
in [68]).

Evaluating coevolution performance
For each method, coevolution scores for pairs of amino
acid positions were used to predict inter-domain pairs
of amino acid residues that are close to each other
in the representative co-crystal structure (PDB ID:
3DGE).
As previously described in Ezkurdia et al. [69],

Monastyrskyy et al. [70], Jones et al. [14], and to be con-
sistent with Morcos et al. [9], we define positives as pairs
of alignment positions mapping to amino acid residues
whose beta carbons (Cβ ) are less than 8 angstroms apart
in 3DGE. All other pairs of alignment positions are con-
sidered negatives.

http://gremlin.bakerlab.org/complexes/PDB_benchmark_alignments.zip
http://gremlin.bakerlab.org/complexes/PDB_benchmark_alignments.zip
doi:10.5061/dryad.s00vr/7
doi:10.5061/dryad.s00vr/7
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Table 4 Versions and sources of coevolution methods benchmarked

Method Software package Version URL

Information-based MI infCalc v0.1.2 https://github.com/aavilahe/infcalc

VI

MIj

MIHmin

MIw DCA “2011/12” http://dca.rice.edu/portal/dca/download

Direct DI

DI256 Code S1 in [68] “2013” http://doi.org/10.1371/journal.pcbi.1003176.s002

DI32

DIplm plmDCA symmetric_v2 http://plmdca.csc.kth.se/

PSICOV PSICOV V1.09 http://bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV/

Phylogenetic CMPcor CoMap 1.5.1b5 http://home.gna.org/comap/doc/html/index.html

CMPchg

CMPvol

CMPpol

We considered the following two alternative definitions
of positives:

• Closest non-hydrogen atom-atom distance between
residues is less than 6 angstroms [14]

• Cβ distance is less than 8 angstroms and at least one
residue is mentioned as important in determining
specificity of the HisKA-RR interaction in [44–48].

Residue pairs are predicted as coevolving if their scores
or P-values are above a given threshold (eg. top 1 %, P <

0.05) (Table 2).

Phylogenetic diversity
Phylogenetic diversity (PD) is calculated as the sum of the
branch lengths in a tree built from the concatenatedmulti-
ple sequence alignment of both proteins. Trees were built
using FastTree (version2.1.7 SSE3) with options -gamma
-nosupport -wag.

Additional files

Additional file 1: PDB IDs from [67]. (CSV 0.46 kb)

Additional file 2: Accessions for HisKA-RR alignment. (CSV 796 kb)

Additional file 3: HisKA-RR master alignment. (ZIP 1136 kb)

Additional file 4: Sequence identifiers for the 60 subsampled
alignments from the HisKA-RR master alignment. (CSV 5611 kb)

Additional file 5: Accessions for Vif-A3G analysis. (CSV 0.73 kb)

Additional file 6: Uniprot identifiers for lentivirus proteins in
HIV1-human interactome analysis. (CSV 0.803 kb)

Additional file 7: Pempirical for Vif residues as an attributes file for use
with UCSF Chimera [66]. (CSV 163 kb)

Additional file 8: Spearman test for correlations between cutoff
independent metrics (φmax, fmax, auPR, auROC) and Neff for Ovch32
and HisKA-RR data sets. (CSV 0.24 kb)

Additional file 9: Spearman test for correlations between cutoff
independent metrics (φmax, fmax, auPR, auROC) and Neff/L for Ovch32
and HisKA-RR data sets. (CSV 0.24 kb)

Additional file 10: Spearman test for correlations between precision
(PPV) and the proportion of contacts for Ovch32 and HisKA-RR data
sets. (CSV 0.13 kb)

Additional file 11: Mann-Whitney tests for difference in precision
between MI and other methods for Neff/L> 1.6 and FPR< 0.1 % in
the HisKA-RR sub-alignments, with contacts defined from
experimental studies. (CSV 0.48 kb)

Additional file 12: Mann-Whitney tests for difference in power
between MIJ and other methods for Neff/L> 1.6 and FPR< 5 % in the
HisKA-RR sub-alignments, with contacts defined from experimental
studies. (CSV 0.47 kb)

Additional file 13: Figure S1. HisKA-RR. Number of effective sequences
(Neff) versus number of sequence (N) in the 60 sub-sampled HisKA-RR
alignments. Dashed line indicates the diagonal. Blue line indicates a linear
fit with 95 % confidence intervals in gray. Figure S2. Ovch32. Number of
effective sequences (Neff) versus number of sequence (N) in the Ovch32
alignments. Dashed line indicates the diagonal. Blue line indicates a linear
fit with 95 % confidence intervals in gray. Figure S3. Distribution of Cβ

distances in HisKA-RR interaction (PDB: 3DGE). Figure S4. Distribution of
Cβ distances in Ovch32 interactions [67] (See supplemental file for PDB
accessions). Figure S5. Ovch32. Precision (PPV) versus Neff at FPR < 0.1 %.
Blue lines indicate a loess fit to each method, 95 % confidence intervals are
shown in gray. Figure S6. Ovch32. Power (TPR) versus Neff at FPR < 5 %.
Blue lines indicate a loess fit to each method, 95 % confidence intervals are
shown in gray. Figure S7. Ovch32. φmax versus Neff . Blue lines indicate a
loess fit to each method, 95 % confidence intervals are shown in gray.
Figure S8. HisKA-RR alt.. Power (TPR) vs Neff/L at FPR < 5 %. A stricter
definition of positives, defined experimentally in [46–48] is used. Blue lines
indicate a loess fit to each method, 95 % confidence intervals are shown in
gray. Figure S9. HisKA-RR alt.. Power (TPR) vs Neff/L at FPR < 0.1 %. A
stricter definition of positives, defined experimentally in [46–48] is used.
Blue lines indicate a loess fit to each method, 95 % confidence intervals are
shown in gray. Figure S10. HisKA-RR alt.. Precision (PPV) vs Neff/L at FPR <

0.1 %. A stricter definition of positives, defined experimentally in [46–48] is
used. Blue lines indicate a loess fit to each method, 95 % confidence
intervals are shown in gray. Figure S11. Ovch32. Power (TPR) at FPR < 5 %
and Precision (PPV) at FPR < 0.1 % versus Neff/L. Blue lines indicate a loess
fit to each method, 95 % confidence intervals are shown in gray.

https://github.com/aavilahe/infcalc
http://dca.rice.edu/portal/dca/download
http://doi.org/10.1371/journal.pcbi.1003176.s002
http://plmdca.csc.kth.se/
http://bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV/
http://home.gna.org/comap/doc/html/index.html
http://www.biomedcentral.com/content/supplementary/s12859-015-0677-y-s1.csv
http://www.biomedcentral.com/content/supplementary/s12859-015-0677-y-s2.csv
http://www.biomedcentral.com/content/supplementary/s12859-015-0677-y-s3.zip
http://www.biomedcentral.com/content/supplementary/s12859-015-0677-y-s4.csv
http://www.biomedcentral.com/content/supplementary/s12859-015-0677-y-s5.csv
http://www.biomedcentral.com/content/supplementary/s12859-015-0677-y-s6.csv
http://www.biomedcentral.com/content/supplementary/s12859-015-0677-y-s7.txt
http://www.biomedcentral.com/content/supplementary/s12859-015-0677-y-s8.csv
http://www.biomedcentral.com/content/supplementary/s12859-015-0677-y-s9.csv
http://www.biomedcentral.com/content/supplementary/s12859-015-0677-y-s10.csv
http://www.biomedcentral.com/content/supplementary/s12859-015-0677-y-s11.csv
http://www.biomedcentral.com/content/supplementary/s12859-015-0677-y-s12.csv
http://www.biomedcentral.com/content/supplementary/s12859-015-0677-y-s13.zip
http://www.biomedcentral.com/content/supplementary/s12859-015-0677-y-s13.zip
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Figure S12. HisKA-RR. Nominal false positive rate (FPR) for target FPR 5 %.
Figure S13. Ovch32. Nominal false positive rate (FPR) for target FPR 0.1 %.
Figure S14. Ovch32. Nominal false positive rate (FPR) for target 5 %.
Figure S15. HisKA-RR. φmax. Figure S16. HisKA-RR. Fmax.
Figure S17. HisKA-RR. Area under precision-recall curve.
Figure S18. HisKA-RR. Area under ROC curve. Figure S19. Ovch32. φmax.
Figure S20. Ovch32. Fmax. Figure S21. Ovch32. Area under precision-recall
curve. Figure S22. Ovch32. Area under ROC curve. Figure S23. HisKA-RR.
Median precision (PPV) at FPR <0.1 % and median power (TPR) at FPR <

5 % per rate categories of individual alignment columns. Rate categories
are defined as above- and below- median entropy for the HisKA and RR
columns in each set of 10 alignments of equal size (number of sequences
(N)). Figure S24. Ovch32. Precision (PPV) versus the proportion of
contacting pairs of residues in each interaction (i.e. contacting pairs divided
by all pairs of residues) at FPR < 0.1 %. Figure S25. Ovch32. Precision (PPV)
versus the proportion of contacting pairs of residues in each interaction
(i.e. contacting pairs divided by all pairs of residues) at FPR < 5 %.
Figure S26. Ovch32. False positive rate (FPR) versus the proportion of
contacting pairs of residues in each interaction (i.e. contacting pairs
divided by all pairs of residues) at P < 0.05 Figure S27. Ovch32. False
positive rate (FPR) versus the proportion of contacting pairs of residues in
each interaction (i.e. contacting pairs divided by all pairs of residues) at
P < 0.001 Figure S28. HisKA-RR. The phylogenetic methods CTMP and
Spidermonkey successfully ran on a subset of our alignments. Power (TPR)
at FPR < 5 % and precision (PPV) at FPR < 0.1 %. Select methods are
included for comparison. Blue line indicates a linear fit with 95 %
confidence intervals in gray. Figure S29. HisKA-RR. The phylogenetic
method CTMP and Spidermonkey successfully ran on a subset of our
alignments. Nominal false positive rate (FPR) at target FPR 0.1 %. Select
methods are included for comparison. Blue line indicates a linear fit with
95 % confidence intervals in gray. Figure S30. HisKA-RR. Quantile quantile
plots of standardized coevolution scores are not always normally
distributed. Scores are from 10 alignments with 5 sequences.
Figure S31. HisKA-RR. Quantile quantile plots of standardized coevolution
scores are not always normally distributed. Scores are from 10 alignments
with 500 sequences. Figure S32. HisKA-RR. Quantile quantile plots of
standardized coevolution scores are not always normally distributed.
Scores are from 10 alignments with 5000 sequences. Figure S33. HisKA-RR.
Pboostrap fails to control the FPR except for PSICOV at target FPR < 5 % in
HisKA-RR alignments. Eliminating residue pairs with large simulation errors
shows PSICOV and MIHmin are most robust to variation at individual sites.
See Misc. Abbreviations and Table 1 for abbreviations. Figure S34. Vif.
Power (TPR), precision (PPV), and false positive rate (FPR) for predicting viral
protein Vif residues (not pairs) essential for interacting with its host target
A3G at Pempirical < α thresholds that maximize PPV for each coevolution
method. Residues defined as positive are taken from previous functional
mutation studies in Table 3. See Abbreviations and Table 1 for
abbreviations. Figure S35. Vif. Power (TPR), precision (PPV), and false
positive rate (FPR) for predicting viral protein Vif residues (not pairs)
essential for interacting with its host target A3G at Pempirical < α thresholds
that maximize PPV for each coevolution method. Residues defined as
positive are taken from previous functional mutation studies in Table 3. See
Abbreviations and Table 1 for abbreviations.Vifcrit PPVoptbars
Figure S36. Residues (red) on viral protein Vif (light blue) that are
predicted to coevolve with it host target A3G (structure unknown).
Cofactors are shown in gray. Predictions are made at a threshold that
maximizes precision (PPV) using A known essential residues (Table 3) using
B-DMI, Figure S37. HIV1-human. Distinguishing HIV1-human interactors
from a protein pairs in a permuted network is difficult with small Neff/L.
φmax across a the number of predicted coevolving column-pairs per
protein-pair versus Pˆpempirical threshold for making column-pair
predictions. Blue line indicates a linear fit with 95 % confidence intervals in
gray. Figure S38. HIV1-human. Neff/L distribution of alignments in
HIV1-human interactors The minimum Neff/L seen in the HisKA-RR (red)
and Ovch32 (orange) data sets is marked. (ZIP 28364 kb)
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