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ABSTRACT

The performance of climate models participating in phases 5 and 3 of the Coupled Model Intercomparison

Project (CMIP5 and CMIP3, respectively) is evaluated and compared with respect to precipitation over East

Asia (208–508N, 1108–1508E). The target period covers the 20 years from 1981 through 2000. The CMIP5 and

CMIP3models underestimate precipitation amounts over East Asia in the warmer season (May–September),

while they overestimate precipitation amounts in the colder season (October–April). Both sets of models

have some difficulty in simulating the seasonal march of the rainy season over China, the Korean Peninsula,

and Japan, and they also underestimate the precipitation intensity over East Asia. Nevertheless, the CMIP5

models show a higher reproducibility of precipitation over East Asia than the CMIP3 models with respect to

the geographical distribution of precipitation throughout the year, seasonal march of the rainy season, and

extreme precipitation events. Models with a higher reproducibility of annual precipitation tend to show a

higher reproducibility of precipitation intensity for both the CMIP5 and CMIP3 models. Correlation analysis

using all of the CMIP5 and CMIP3 models reveals that models with higher horizontal resolution tend to

perform better than those with a lower resolution. The advantage of the CMIP5 models over the CMIP3

models in the simulation of the East Asian climate can be partly attributed to the improved representation of

the west Pacific subtropical high in the CMIP5 models, especially during the summer.

1. Introduction

In response to a proposed activity of theWorld Climate

Research Programme (WCRP), the Working Group on

Coupled Modeling (WGCM) established phase 3 of the

Coupled Model Intercomparison Project (CMIP3) as a

standard protocol to be used in numerical experiments by

climate models (Meehl et al. 2007). A set of experiments

completed during CMIP3 made a significant contribu-

tion to the Fourth Assessment Report (AR4) of the

Intergovernmental Panel on Climate Change (IPCC;

Solomon et al. 2007) as the basis for investigating the

response of climate to external forcings (Meehl et al.

2007). In the same manner, experiments conducted by

phase 5 of CMIP (CMIP5; Taylor et al. 2012) contributed

to the Fifth Assessment Report (AR5) of the IPCC

(Stocker et al. 2013). A vast amount of model output

produced by the CMIPs has been archived at the Program

for Climate Model Diagnosis and Intercomparison

(PCMDI) and available for use by scientists. Hereafter,

models that participated in CMIP3 and CMIP5 are re-

ferred to simply as CMIP3 models and CMIP5 models,

respectively.

The performance of the atmosphere–ocean general

circulation models (AOGCMs) that participated in

CMIP5 with respect to the global-scale surface air tem-

perature and precipitation distribution has apparently

improved compared with the former generation of

models in CMIP3, as indicated by Fig. 1 of the frequently

asked questions (FAQ) in section 9.1 of Stocker et al.

(2013). Sperber et al. (2013) demonstrated that the

CMIP5 models are more skillful than the CMIP3 models

*Additional affiliation: Climate Research Department, Meteo-

rological Research Institute, Tsukuba, Japan.

Corresponding author address: Shoji Kusunoki, Climate Research

Department, Meteorological Research Institute, 1-1, Nagamine,

Tsukuba, Ibaraki 305-0052, Japan.

E-mail: skusunoki@mri-jma.go.jp

15 JULY 2015 KUSUNOK I AND ARAKAWA 5601

DOI: 10.1175/JCLI-D-14-00585.1

� 2015 American Meteorological Society

mailto:skusunoki@mri-jma.go.jp


in simulating various aspects of the Asian summer

monsoon. The advantage of the CMIP5 models over the

CMIP3 models was also reported by Ogata et al. (2014)

for the Asian summer and winter monsoons. Watterson

et al. (2014) evaluated the skill of the CMIP3 andCMIP5

models with regard to continental-scale seasonally av-

eraged surface air temperature, precipitation, and mean

sea level pressure. They introduced a combined skill

measure from the three meteorological variables and

found a modest improvement when comparing with the

CMIP5 models with the CMIP3 models.

Song and Zhou (2014a) reported the improvement of

simulated summer precipitation over East Asia by atmo-

spheric general circulation models (AGCMs) incorpo-

rated within CMIP5 when compared with those of

CMIP3. Song and Zhou (2014a) and He and Zhou (2014)

indicated the erroneous northward shift of the western

Pacific subtropical high (WPSH) in summer simulated by

the AGCMs within CMIP3 and CMIP5 that distorts the

precipitation climatology over East Asia. Song and Zhou

(2014b) revealed that in CMIP5 AOGCMs are better

than the AGCMs in simulating precipitation and low-

level circulation over East Asia in summer, which indi-

cates the importance of air–sea coupling in this region.

The target region of Sperber et al. (2013) and Ogata

et al. (2014) covered the continental-scale area of Asia.

However in this paper, we focus on model performance

with respect to precipitation over the restricted area of

East Asia, which is strongly characterized by a summer

rainy season. Kusunoki and Arakawa (2012) investi-

gated the ability of the CMIP3 models to simulate pre-

cipitation intensity in the East Asian rainy season and

found an underestimation of intensity by these models.

However, the ability to simulate extreme precipitation

events including intense rainfall over East Asia has not

yet been fully investigated for the CMIP5 models. The

purpose of this paper is to compare the performance of

CMIP5models with that of the CMIP3models over East

Asia with respect to the geographical distribution of

monthly precipitation, the seasonal march of the rainy

season over China, the Korean Peninsula, and Japan,

and extreme precipitation events.

In the remainder of this paper, section 2 describes the

models we used in this study. Section 3 outlines the ob-

servational data used to verify model performance. Sec-

tion 4 reports the performance of the models with regard

to the geographical distribution of monthly mean pre-

cipitation. Section 5 considers model performance with

respect to the seasonalmarch of the rainy season. Section 6

evaluates the ability of the models to reproduce extreme

precipitation events. Section 7 discusses the reasons for the

differences between the CMIP5 and CMIP3 models. We

present conclusions in section 8.

2. Models

Table 1 shows information on 31 CMIP5models used in

this study. The majority of these models were AOGCMs.

Several models were Earth system models (ESMs) that

incorporate various biochemical cycles such as the carbon,

sulfur, or ozone cycles. We only selected the models that

archived daily precipitation data and used the Gregorian

calendar. Eleven of the models used a realistic Gregorian

calendar that included a leap year, but the other 20models

did not. The horizontal resolution of the CMIP5 models

at 358N ranged from 68 to 342km, with an average of

193km. None of these models incorporated the so-called

‘‘flux adjustment,’’ which is a form of bias correction for

momentum, heat, and salinity flux between atmosphere

and ocean that is used to stabilize the climatology of the

model. Large climate drifts can distort both the natural

variability and the climate response to changes in radia-

tive forcing, as indicated in section 8.2.7 of Solomon et al.

(2007). Our target period was the 20-yr period from 1981

to 2000 in the ‘‘historical’’ experiment for the twentieth

century. In the historical experiment of CMIP5, models

are driven by the concentration of greenhouse gases, so

that in the ESM models the concentration of carbon di-

oxide is prescribed and interactions associated with car-

bon flux are switched off.

Table 2 shows information on 15 CMIP3 models used

in this study. These models were all AOGCMs. As with

the CMIP5 models, we only selected those models that

archived daily precipitation data and used theGregorian

calendar. Six models used a realistic Gregorian calendar

with a leap year, but the other nine models did not. The

horizontal resolution of the CMIP3 models ranged from

103 to 455 km, with an average of 254km. Four models

used flux adjustment, suggesting that these models

contain large errors with respect to some of the fluxes

between atmosphere and ocean. Our target period was

the 20-yr period from 1981 to 2000 in the 20th Century

Climate in Coupled Models (20C3M) experiments, but

some models did not cover the whole target period. The

models used in this study are identical to those used by

Kusunoki and Arakawa (2012).

Most numerical model experiments included ensem-

ble simulations, but we used only the first member from

the multiple simulations.

3. Observational data

a. Precipitation

Table 3 summarizes the observational precipitation

data used in this study. Model skill was calculated

against the One-Degree Daily (1DD) data of the Global

Precipitation Climatology Project (GPCP), version 1.1
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(v1.1), compiled by Huffman et al. (2001) from 1997 to

2008 (12 yr). The horizontal resolution of the pre-

cipitation data was 1.08 in longitude and latitude, cor-

responding to a grid spacing of about 90 km over East

Asia.We selected theseGPCP 1DDdata for verification

because daily data are required to calculate extreme

precipitation events, although GPCP 1DD data do not

cover the whole target period of our simulations (1981–

2000). Pentad and monthly data are also created from

daily data. For the verification process, the model data

were interpolated onto the location of the grid points

within the GPCP 1DD.

Since model skill depends on the choice of observa-

tional data (Sperber et al. 2013), we used additional data

to evaluate the uncertainty associated with the obser-

vation. Pentad data from GPCP v1.2 and monthly data

from GPCP v2.2 compiled by Adler et al. (2003) were

used for the period 1981–2000 (20 yr). These data cover

the whole target period of our simulations. The hori-

zontal resolution of the additional data was 2.58 in lon-

gitude and latitude, corresponding to a grid spacing of

about 210 km over East Asia.

We used the pentad and monthly data of the Climate

Prediction Center (CPC) Merged Analysis of Pre-

cipitation (CMAP), version 1201 (v1201), and monthly

CMAP v1201 data compiled byXie andArkin (1997) for

the study period 1981–2000. The horizontal resolution

this data was 2.58 in longitude and latitude.

Pentad data from the Tropical Rainfall Measuring

Mission (TRMM) 3B42 product and monthly data from

TRMM3B43 product compiled byHuffman et al. (2007)

were used for the period 1998–2010 (13 yr). The hori-

zontal resolution of this dataset was 0.258 in longitude

and latitude, corresponding to a grid spacing of about

25 km over East Asia. Regional coverage was restricted

to a global belt extending from 508S to 508N.

TABLE 1. Features of 31 CMIP5 models used in this study. Target period is from 1981 to 2000 (20 yr). The average grid size is 193 km.

(Expansions of model name acronyms are available online at http://www.ametsoc.org/PubsAcronymList.)

No. Label

Model [Table 9.A.1

of Stocker et al. (2013)]

AGCM

resolution*

No. of grid points in

AGCM Longitudinal grid spacing

(km) at 358NLongitude Latitude

1 a ACCESS1.0 G63L17 192 145 171

2 b ACCESS1.3 G63L17 192 145 171

3 c BCC_CSM1.1 T42L17 128 64 256

4 d BCC_CSM1.1(m) T106L17 320 160 102

5 e BNU-ESM T42L17 128 64 256

6 f CanESM2 T42L22 128 64 256

7 g CCSM4 T95L17 288 192 114

8 h CESM1(BGC) T95L17 288 192 114

9 i CESM1(CAM5) T95L17 288 192 114

10 j CMCC-CESM T32L33 96 48 342

11 k CMCC-CM T160L17 480 240 68

12 l CMCC-CMS T63L33 192 96 171

13 m CNRM-CM5 T85L17 256 128 128

14 n CSIRO Mk3.6.0 T63L18 192 96 171

15 o EC-EARTH T106L16 320 160 102

16 p FGOALS-g2 T42L17 128 60 256

17 q GFDL CM3 G47L23 144 90 228

18 r GFDL-ESM2G T47L17 144 90 228

19 s GFDL-ESM2M T47L17 144 90 228

20 t INM-CM4 G59L17 180 120 182

21 u IPSL-CM5A-LR T31L17 96 96 342

22 v IPSL-CM5A-MR T47L17 144 143 228

23 w IPSL-CM5B-LR T31L17 96 96 342

24 x MIROC5 T85L17 256 128 128

25 y MIROC-ESM T42L35 128 64 256

26 z MIROC-ESM-CHEM T42L35 128 64 256

27 A MPI-ESM-LR T63L25 192 96 171

28 B MPI-ESM-MR T63L25 192 96 171

29 C MRI-CGCM3 T106L23 320 160 102

30 D MRI-ESM1 T106L23 320 160 102

31 E NorESM1-M T47L17 144 96 228

* The letter G denotes gridpoint model. Two digits after G show corresponding spectral wavenumber. The digits after T denote the

triangular truncation at the corresponding spectral wavenumber. Two digits after the letter L denote the number of vertical levels.
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We also used the monthly data from the Asian Pre-

cipitation Highly Resolved Observational Data In-

tegration Toward the Evaluation of Water Resources

(APHRODITE) V1003R1 dataset compiled by Yatagai

et al. (2009) for the period 1981–2000 (20 yr). These data

only cover land area and have a horizontal resolution of

0.258 in longitude and latitude.

b. Reanalysis data

To verify the simulated large-scale circulation, we

used the Japanese 55-year Reanalysis Project (JRA-55;

Ebita et al. 2011) from 1981 to 2000 (20 yr). The hori-

zontal resolution is 1.258 in longitude and latitude, cor-

responding to a grid spacing of about 105km over East

Asia. For the verification process, the model data were

interpolated onto the location of the grid points used in

the JRA-55 dataset.

4. Monthly precipitation

The rainy season over East Asia typically starts in

May and ends in July, although this varies slightly with

depending on the location. June is the middle of the

rainy season, and Fig. 1 compares the precipitation cli-

matology simulated by the CMIP5 models with the ob-

servations for June. In the observations (Fig. 1, top

panels), the region of high precipitation amounts ex-

tends over the southern part of China, the East China

TABLE 2. Features of 15 CMIP3 models used in this study. Target period is from 1981 to 2000 (20 yr). The average grid size is 254 km.

No. Label

Model [Table 8.1 of

Solomon et al. (2007)]

AGCM

resolutiona

No. of grid points in

AGCM
Longitudinal

grid spacing

(km) at 358N
Flux

adjustmentLongitude Latitude

1 a BCCR-BCM2.0b T42L31 128 64 256 No

2 b CCSM3c T85L26 256 128 128 No

3 c CGCM3.1(T47)d T30L31 96 48 392 Yes

4 d CGCM3.1(T63)e T42L31 128 64 256 Yes

5 e CNRM-CM3 T42L45 128 64 256 No

6 f CSIRO MK3.0 T63L18 192 96 171 No

7 g ECHAM5/MPI-OM T63L31 192 96 171 No

8 h FGOALS-g1.0 T42L26 128 60 256 No

9 i GFDL CM2.0 G47L24 144 90 228 No

10 j GISS-AOM G29L12 90 60 364 No

11 k INM-CM3.0 G23L21 72 45 455 Yes

12 l MIROC3.2(hires) T106L56 320 160 103 No

13 m MIROC3.2(medres) T42L20 128 64 256 No

14 n MRI-CGCM2.3.2 T42L30 128 64 256 Yes

15 o PCMf T42L26 128 64 256 No

a The letter G denotes gridpoint model. Two digits after G show corresponding spectral wavenumber. The digits after T denote the

triangular truncation at the corresponding spectral wavenumber. Two digits after the letter L show vertical levels.
b Available data terminate in year 1998.
c Available data terminate in year 1999.
d Model name suggests T47, but the Program for Climate Model Diagnosis and Intercomparison (PCMDI) archives data had T30

resolution.
e Model name suggests T63, but PCMDI archives data had T42 resolution.
f Available data terminate in year 1999.

TABLE 3. Observational precipitation data used in this study.

Name Temporal resolution Spatial resolution Period Region Reference

GPCP 1DD v1.1 Day 1.08 1997–2008 (12 yr) Global Huffman et al. (2001)

GPCP 1DD v1.1 Pentad 1.08 1997–2008 (12 yr) Global Huffman et al. (2001)

GPCP v1.2 Pentad 2.58 1981–2000 (20 yr) Global Adler et al. (2003)

CMAP v1201 Pentad 2.58 1981–2000 (20 yr) Global Xie and Arkin (1997)

TRMM 3B42 Pentad 0.258 1998–2010 (13 yr) 508S–508N Huffman et al. (2007)

GPCP 1DD v1.1 Month 1.08 1997–2008 (12 yr) Global Huffman et al. (2001)

GPCP v2.2 Month 2.58 1981–2000 (20 yr) Global Adler et al. (2003)

CMAP v1201 Month 2.58 1981–2000 (20 yr) Global Xie and Arkin (1997)

TRMM 3B43 Month 0.258 1998–2010 (13 yr) 508S–508N Huffman et al. (2007)

APHRODITE V1003R1 Month 0.258 1981–2000 (20 yr) Land only Yatagai et al. (2009)
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FIG. 1. Precipitation (mmday21) in June: (top) Observations (Table 3), (a–z,A–E) CMIP5 models (Table 1) for 1981–2000, and (F)MME

of the CMIP5 models. The model data were interpolated onto the location of the grid points within the GPCP 1DD.
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Sea, the western part of Japan, and to the south of Japan.

The maximum values of precipitation over the southern

part of China shown by GPCP 1DD (top panel, first

column), TRMM (top panel, fourth column), and

APHRODITE (top panel, fifth column) are larger than

those byGPCP 2.58 data (top panel, second column) and

CMAP 2.58 data (top panel, third column), but this is

mainly because of the finer grid size. In general, models

(Figs. 1a–z,A–E) tend to underestimate this rainy zone

over East Asia, but some models (Figs. 1a,b,x) show

excessive precipitation. Underestimation of precipita-

tion is also evident in the average multimodel ensemble

(MME) of all 31 CMIP5 models (Fig. 1F).

Figure 2 compares the precipitation climatology sim-

ulated by the CMIP3models with the observational data

for June. As with the CMIP5 models, individual models

(Figs. 2a–o) and the MME (Fig. 2p) tend to un-

derestimate precipitation. Only the MIROC3.2(hires)

model overestimates precipitation (Fig. 2l).

To quantitatively compare the performance of the

CMIP5 models with that of the CMIP3 models, we cal-

culated the skill score S proposed by Taylor (2001)

against the GPCP 1DD data (Figs. 1 and 2, top panel,

first column); S is defined by

S5
4(11R)�

s1
1

s

�2

(11R0)

,

where R is the spatial correlation coefficient between

observation and simulation, s is the spatial standard

deviation of the simulation divided by that of the ob-

servations, and R0 is the maximum correlation attain-

able. Here we assumed that R0 5 1. Note that S

evaluates the spatial correlation coefficient as well as the

spatial standard deviation. The value of S approaches

unity in a perfect simulation. Although S is widely used

to verify model performance in many climate modeling

FIG. 2. As in Fig. 1, but for CMIP3 models (Table 2). (p) MME of the CMIP3 models.
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studies, we must recognize that S cannot evaluate model

bias because bias is corrected and excluded before the

calculation of S. In the calculation, model data were

interpolated onto the observation grid of 18 in longitude

and latitude. The target region (208–508N, 1108–1508E)
in Figs. 1 and 2 includes 40 grid points in longitude and

30 grid points in latitude, resulting in a total of 403 305
1200 grid points. Thus, the number samples for each

two-dimensional field was 1200. Latitudinal weight was

considered in the area averaging.

Figure 3 illustrates the Taylor diagram (Taylor 2001)

of S for the CMIP5 andCMIP3models as well as the bias

and root-mean-square error (RMSE). The target month

is June and the target region is the same as in Figs. 1 and

2. In the Taylor diagram (Fig. 3b), the radial distance

from the origin is proportional to the standard deviation

of a simulated pattern normalized by the observed

standard deviation. The spatial correlation coefficient

between the observed and simulated fields is given by

the angle from the y axis. The skill of theGPCP 2.58 data
and CMAP 2.58 data against the GPCP 1DD data were

also plotted to estimate the uncertainty associated with

the observations. We calculated the average skill of the

individual models (AVM) as well as the skill of the

MME. In the case of linear skill measures such as av-

erage and bias, theMME is identical to the AVM. In the

case of nonlinear skill measure such as RMSE, the cor-

relation coefficient and Taylor skill score S, the MME

and AVM differ.

Figure 3a shows that most models from CMIP5 and

CMIP3 have a negative bias, whereas ACCESS1.0 (red

letter a) and MIROC5 (red letter x) from CMIP5 and

MIROC3.2(hires) (blue letter l) from CMIP3 have a

positive bias. The bias in the CMIP3 MME (blue circle)

is slightly smaller than that for the CMIP5 MME (red

circle). Conversely, the RMSE of the CMIP5 MME is

slightly smaller than that of the CMIP3 MME. In both

the CMIP5 and CMIP3 models, the RMSE of the MME

(red and blue circles) is smaller than the AVM (red and

blue squares), and this is caused by the cancellation of

model errors by averaging. The MME average can be

expected to outperform individual models in climate

simulations (Lambert and Boer 2001; Gleckler et al.

2008; Reichler and Kim 2008) as well as seasonal fore-

casts (Kusunoki et al. 2001; Palmer et al. 2004; Hagedorn

et al. 2005).

In the Taylor diagram (Fig. 3b), the majority of points

fall inside the quadrant of radius one, which means that

the standard deviation of most models is smaller than

the observations. This implies that the simulated geo-

graphical distributions of precipitation are smoother

than the observations. In contrast the ACCESS1.0 (red

letter a), ACCESS1.3 (red letter b), and MIROC5 (red

letter x) models fromCMIP5, and theMIROC3.2(hires)

(blue letter l) model from CMIP3 show spatial vari-

ability that is greater than, or equivalent to, the obser-

vations. The spatial correlation coefficients R of these

models tend to be larger than those of other models. In

terms of the MME and AVM, the Taylor skill score S

(contour plot) of the CMIP5 models (red circle and

square) is larger than the CMIP3models (blue circle and

square). The advantage of the MME over AVM is rec-

ognized in the spatial correlations coefficientsR for both

the CMIP5 and CMIP3 models, but not for the Taylor

skill score. The differences in RMSE, bias, and S among

the three observations (green symbols) are smaller than

those of this models. This provides positive evidence

that verification against GPCP 1DD data is reasonable

and appropriate.

Figure 4 summarizes and visualizes both the bias and

Taylor skill score S of the CMIP5 models for all months.

The magnitude and sign of the bias are indicated using a

color scale, and the value of S is expressed by the size of

the circle. During the warmer season, from May to

FIG. 3. Skill of precipitation climatology for June simulated by

models verified against the GPCP 1DD v1.1 data (green circle).

Green, red, and blue symbols denote observations, CMIP5models,

and CMIP3 models, respectively. The target domain is same as in

Figs. 1 and 2. (a) RMSE vs bias (mmday21). The domain average

of the observation is shown above the panel. (b) Taylor diagram

displaying pattern statistics (Taylor 2001). The standard deviation

of the observation in the domain is shown above the panel. The

contours show the value of Taylor skill score S. Red and blue circles

indicate the MME. Red and blue squares indicate the average skill

of the individual models (AVM).
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FIG. 4. Bias (color) and S (size of circle) of CMIP5models for all months. Diameter of a circle

is proportional to the third power of S. Size of circle is much more sensitive to third power of S

than to the linear case.
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September, the models tend to underestimate pre-

cipitation (brown shades). Moreover, the Taylor skill

scores of the models are low (small circles). During

the colder season, from November to February, the

models tend to overestimate precipitation (blue shades).

The Taylor skill scores of the models are relatively

higher in the colder season (large circles) than the

warmer season. This seasonal dependence of an indi-

vidual model’s skill is also evident in the MME and

AVM. The Taylor skill score (size of circle) of theMME

is higher than the AVM, except for May and June, but

the advantage of the MME over the AVM is not clear

for the bias (color).

Figure 5 is the same as Fig. 4, but for CMIP3 models.

As with the CMIP5 models, the CMIP3 models un-

derestimate precipitation and show a reduced Taylor

skill score in the warmer season, but overestimate pre-

cipitation and have a larger Taylor skill score in the

colder season. Precipitation during the cold season over

East Asia is largely influenced by the activity of storm

tracks, and the higher skill in the cold seasons might be

partly attributed to the higher reproducibility of storm

tracks for that seasons.

It is difficult to judge whether the CMIP5 models are

better or worse than the CMIP3 models simply by

comparing Figs. 4 and 5. Therefore, theMME andAVM

are directly compared in Fig. 6 by means of the RMSE.

The advantage of the CMIP5 models is evident in all

months for the MME (red) and AVM (green). We fur-

ther confirmed the statistically significance of these dif-

ferences using the bootstrap method (see the appendix).

We found that the statistically significant advantage of

the CMIP5 models is limited to the warmer season.

Errors in warmer months such as May, June, and July

are larger than those in the colder months. The under-

estimation of precipitation and lower Taylor skill score

contribute to a larger RMSE in the warmer months. As

for each month, the RMSE value for the MME (red)

tends to be smaller than those ofAVM (green) as already

indicated by Fig. 3a for June case. A similar plot for the

Taylor skill score (figure not shown) gave the same re-

sults, but with less robustness compared with Fig. 6.

The MIROC5 model from CMIP5 shows a consider-

ably larger positive bias in June precipitation compared

with other CMIP5models (Fig. 1x; red letter x in Fig. 3a;

blue circle for June in Fig. 4). This large bias might lower

FIG. 5. As in Fig. 4, but for CMIP3 models.
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the skill of the MME and AVM. To evaluate the con-

tribution of MIROC5 to the MME and AVM, we cal-

culated the skill of the MME and AVM excluding

MIROC5. In the case of the MME for June, the RMSE

without MIROC5 was reduced by about 5% relative to

the RMSE with MIROC5. In contrast, in the case of the

AVM, the RMSE calculated without MIROC5 in-

creased by about 20% relative to that calculated with

MIROC5. MIROC5 shows a very high spatial correla-

tion coefficient and S value (red letter x in Fig. 3b; large

blue circle for June in Fig. 4). Therefore, excluding

MIROC5 leads to a lower skill in terms of the AVM. A

similar effect is also seen for MIROC3.2(hires) from

CMIP3. As there are fewer CMIP3 models (15) than

that of CMIP5 models (31), the relative contribution of

MIROC3.2(hires) is larger than that of MIROC5.

Therefore, the effect of excluding MIROC3.2(hires) on

the skill of the MME and AVM is larger than that

of MIROC5.

5. Seasonal march of the rainy zone

The rainy zone over East Asia moves northward

during the rainy season from May to July (Wang and

LinHo 2002). This rainy season and its associated rain-

bands are called the mei-yu in China, changma over the

Korean Peninsula, and baiu in Japan. The top panel in

Fig. 7 defines the three regions used to calculate the

longitudinal averages for precipitation. Figure 8 com-

pares the observed seasonal march of the rainy zones

with the CMIP5 and CMIP3 MMEs. For China (mei-

yu), the observations (Figs. 7a,d,g) show a stationary

rainy zone around 258N throughout the period from

April to August. Part of this rainy zone begins to mi-

grate north in June and reaches around 408N in July.

The precipitation maximum of this migrating section in

theGPCP 1DDdataset (Fig. 7a) is larger than that in the

GPCP 2.58 (Fig. 7d) and CMAP 2.58 (Fig. 7g) data, but
this is mainly because of the finer grid size. The CMIP5

MME (Fig. 7j) partly captures the observed pattern of

the seasonal march, but the simulated precipitation is

generally underestimated across the whole period.

In particular, the part of northward migration seen in

the model is much weaker than in the observation. The

CMIP3 MME (Fig. 7m) shows a similar defect to the

CMIP5 MME (Fig. 7j), but with a larger underestima-

tion of precipitation and a weaker northward branch of

the rainy zone.

For the Korean Peninsula and the southern island of

Japan (Okinawa), the observations (Figs. 7b,e,h) show

that the rainy zone begins to migrate northward in May

and reaches around 458N in July. The stationary rainy

zone around 258N seen over China does not develop

over the Korean Peninsula. The differences among the

observations (Figs. 7b,e,h) are relatively small. The

CMIP5 MME (Fig. 7k) shows smaller precipitation

amounts and a weaker northward migration of the rainy

zone compared with the observations (Figs. 7b,e,h). The

CMIP3 MME (Fig. 7n) shows a similar defect to the

CMIP5 MME (Fig. 7k), but with a larger underestima-

tion of precipitation and a weaker northward branch of

the rainy zone. The degree of underestimation of pre-

cipitation over the Korean Peninsula for the CMIP5

(Fig. 8k) and CMIP3 MMEs (Fig. 7n) is much larger

than for China (Figs. 7j,m).

For Japan (baiu), the observed seasonal march of the

rainy zone (Figs. 7c,f,i) is almost the same as for the

Korean Peninsula (Figs. 8b,e,h). The CMIP5 MME

(Fig. 8l) shows smaller precipitation amounts and a

weaker northward migration of the rainy zone com-

pared with the observations (Figs. 7e,f,i). The CMIP3

MME (Fig. 7o) shows a similar defect to the CMIP5

MME (Fig. 7l), but with a larger underestimation of

precipitation and a weaker northward branch of the

rainy zone. The simulated precipitation maximum in

June around 358N over Japan (Figs. 7l,o) is larger than

that over the Korean Peninsula (Figs. 7k,n), but the

simulated northward migration of the rainy zone over

Japan (Figs. 7l,o) is slower and shorter than both the

observations (Figs. 7e,f,i) and those simulated over the

Korean Peninsula (Figs. 7k,n).

FIG. 6. Comparison of RMSE (mmday21) between the CMIP5

models and the CMIP3 models for all months. The MME and

AVM are indicated in red and green, respectively. Circles indicate

a significance level exceeding 90% based on the bootstrap method

(see the appendix).
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FIG. 7. Time–latitude cross sections of climatological pentadmean precipitation (mmday21)

averaged for China (208–458N, 1108–1208E), the Korean Peninsula (208–458N, 1208–1308E), and
Japan (208–458N, 1308–1428E). (top)Map of the target regions. The target period is frompentad

20 (6–10 April) to 46 (14–18 August). (a) Observed GPCP 1DD data for the Chinese region.

(b),(c) As in (a), but for the Korean Peninsula region and Japanese region, respectively.

(d)–(f) As in (a)–(c), but for GPCP 2.58 data. (g)–(i) As in (a)–(c), but for CMAP 2.58 data.
(j)–(l) As in (a)–(c), but for CMIP5 MME. (m)–(o) As in (a)–(c), but for CMIP3 MME.
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Figure 8 compares the MME and AVM of the CMIP5

and CMIP3 models using the RMSE. The underesti-

mation of precipitation mainly leads to increase RMSE.

The advantage of the CMIP5 models is evident in all

three regions for the MME and AVM. The errors in the

MME and AVE over the Korean Peninsula for both

the CMIP5 and CMP3 models are the largest among the

three regions, suggesting some difficulty in simulating the

rainy season of the Korean Peninsula. As for each region,

the errors in theMME (red) tend to be smaller than those

of the AVM (green), which is similar to Fig. 6. The sta-

tistically significant advantage of the CMIP5 models is

evident for the MME over China and the AVM over

Japan and the Korean Peninsula. A similar plot of the

Taylor skill scores (figure not shown) shows almost the

same results, giving robustness to our analyses.

Despite of the improvement in the CMIP5 models

revealed in this section, we should recognize that the

models still fail to capture the northward migration of

the rainy zone over East Asia. Previous studies using a

very high horizontal resolution AGCM with a 20-km

grid size (Kusunoki et al. 2006; Kitoh and Kusunoki

2008) stressed that the realistic reproduction of the

seasonal march of the rainy zone requires a model with a

higher horizontal resolution. One possible reason for is

that a model with a higher horizontal resolution is more

likely to resolve small-scale structures embedded in the

mei-yu, changma, and baiu rainbands. Another possible

reason is that the higher horizontal resolutionmodel can

realistically represent the high elevation of the Tibetan

Plateau. Kitoh (2004) conducted idealized model ex-

periments in which the elevation of the Tibetan Plateau

was systematically changed from 0% to 100% of actual

values. Summer rainy season over East Asia was not

simulated in the lower elevation scenario, but the rain-

fall reproducibility of precipitation amounts and the

seasonal march of the rainy season improved as eleva-

tion was increased. These experiments highlight the

importance of the orographic effect of the Tibetan Pla-

teau on the formation of the summer rainy season over

East Asia. Models with a higher horizontal resolution

model more realistically represent the elevation of the

Tibetan Plateau than do the lower-resolution models.

This may lead to the better reproduction of the north-

ward migration of the rainy season.

6. Extreme precipitation events

The ability of models to simulate extreme precipita-

tion events was investigated for the four indices SDII,

R5d, PMAX, and CDD defined in Table 4. The indices

SDII, R5d, and PMAX measure precipitation intensity,

whereas CDD is a measure of dryness and drought.

These indices are based on annual statistics. Figure 9

compares observations from the GPCP 1DD data and

simulations by the CMIP5 and CMIP3 MMEs. The ob-

served precipitation intensity indicated by SDII (Fig. 9a)

shows that the region of intense rainfall extends broadly

over East Asia to the south of 408N with maximum

values over southern China, the Korean Peninsula, and

Japan. The CMIP5 MME (Fig. 9e) underestimates most

FIG. 8. Comparison of RMSE (mmday21) between CMIP5

models and CMIP3 models for time–latitude cross sections of

precipitation (Fig. 7). RMSEs were calculated against GPCP 1DD

data. The MME and AVM are indicated in red and green, re-

spectively. Circles indicate a significance level exceeding 90%

based on the bootstrap method (see the appendix).

TABLE 4. Indices of extreme precipitation events.

Index Expanded index name (unit) Definition

SDII Simple daily precipitation intensity index

(mmday21)

Total annual precipitation divided by the number of

rainy days (precipitation $1mm)

R5d Maximum 5-day precipitation total (mm) Maximum of consecutive 5-day precipitation

PMAX Maximum 1-day precipitation (mm) Maximum of precipitation in one day

CDD Consecutive dry days (day) Maximum number of consecutive dry days

(precipitation ,1mm)

5612 JOURNAL OF CL IMATE VOLUME 28



of the intense precipitation regions over East Asia, but

the maximums over southern China, the Korean Pen-

insula, and Japan are reproduced to some degree. The

CMIP3 MME (Fig. 9i) is similar to the CMIP5 MME

(Fig. 9e), but the intensity simulated by the CMIP3MME

is smaller than that simulated by the CMIP5 MME. For

the R5d precipitation index, the observations (Fig. 9b)

also show the region of intense rainfall to the south of

408N with maximums over the Korean Peninsula and

over the sea to the south of 258N. The CMIP5 MME

(Fig. 9f) underestimatesmost of the intense precipitation

regions over East Asia, but the maximum over Taiwan is

reproduced to some extent precipitation intensity simu-

lated by theCMIP3MME (Fig. 9j) is smaller than seen in

the CMIP5 MME (Fig. 9f). For the third precipitation

index, PMAX, the CMIP5 MME (Fig. 9g) reproduces

well the observed distribution of intense precipitation

but with some underestimation. Similar to the SDII and

R5d indices, the precipitation intensity simulated by the

CMIP3 MME (Fig. 9k) is smaller than simulated by the

CMIP5 MME (Fig. 9g).

The observed CDD (Fig. 9d) indicates that a drier

climate prevails over northern China, which reflects

the relatively lower precipitation intensity observed in

this area (Figs. 9a–c). The CMIP5 MME (Fig. 9h) and

CMIP3MME (Fig. 9l) models capture well the observed

distribution of CCD over East Asia, although the sim-

ulated CCD is underestimated in the northern part

of China.

Figure 10 compares the MME and AVM of the

CMIP5 and CMIP3 models using the RMSE. As units

and magnitudes differ among the four indices, the

RMSEs were normalized using the average of the

observations over the whole domain (208–458N, 1108–
1508E) with respect to each index. For example, the

average of observed SDII over the whole domain was

10.6mmday21 and the RMSE of the CMIP5 MME was

3.3mmday21. Therefore, the normalized RMSE be-

comes (3.3/10.6) 3 100 5 30.7%. Figure 10 clearly il-

lustrates the advantage of the CMIP5 models over the

CMIP3models for all four indices and also for theMME

and AVM. These advantages are statistically significant

except for the AVM of PMAX. As in Figs. 6 and 8, the

errors associated with the MME are smaller than those

of the AVM, suggesting the advantage of theMME over

the AVM.

FIG. 9. Extreme precipitation events (Table 4). (a) SDII (mmday21) observations from GPCP 1DD data. (b)–(d) As in (a), but for R5d

(mm), PMAX (mm), and CDD (day), respectively. (e)–(h) As in (a)–(d), but for CMIP5MME. (i)–(l) As in (a)–(d) but for CMIP3MME.
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Kusunoki and Arakawa (2012) indicated that those

CMIP3 models that show higher reproducibility of the

precipitation climatology also tend to show higher re-

producibility of precipitation intensity (SDII) over East

Asia for the rainy season from June to July. We exam-

ined whether this relationship also holds for the annual

statistics of precipitation intensity in the CMIP5 and

CMIP3 models. Table 5 summarizes the correlation

coefficients between the skill of simulating the annual

precipitation and skill of precipitation intensity as a

function of precipitation intensity and skill measure. In

the case of the CMIP5 models, the correlation co-

efficients are all positive. In particular, the highest

correlation coefficient of 0.598 is seen for the re-

lationship between R5d and R. Scatter diagram in this

particular case is depicted in Fig. 11. Most points fall

below the diagonal line. This suggests that simulating

precipitation intensity is much more difficult than

simulating annual precipitation. Similarly, the corre-

lation coefficients are also all positive for the CMIP3

model, but the level of statistical significance is lower

than for the CMIP5 models. This can be partly attrib-

uted to the smaller sample size (15). In summary, our

analysis provides robust evidences for relationship that

models with higher reproducibility of precipitation

climatology tend to show higher reproducibility of

precipitation intensity.

7. Why are CMIP5 models better than CMIP3
models?

a. Horizontal resolution

Many factors have contributed to the improvement of

climate model. Especially, the higher horizontal reso-

lution of the atmosphere enhances model performance

for numerous phenomena including extreme precipita-

tion, diurnal variations of precipitation, tropical cyclone

intensity, and so on. [For details, see Box 9.3 in Stocker

et al. (2013).] For example, Fig. 12 demonstrates the

dependence of model skill on the grid spacing for all 46

models from CMIP5 and CMIP3. The skill measure is

the spatial correlation coefficient over the East Asia

FIG. 10. Comparison of RSME (%) between the CMIP5 models

and CMIP3 models for extreme precipitation events (Figs. 9e–l).

The RMSEwere calculated against the GPCP 1DD data (Figs. 9a–

d) and normalized against the observed average over the whole

domain with respect to each index. The MME and AVM are in-

dicated in red and green, respectively. Circles indicate a signifi-

cance level exceeding 90% based on the bootstrap method (see the

appendix).

TABLE 5. Correlation coefficient between skill of annual

precipitation and skill of precipitation intensity.

Precipitation

intensity index

Skill measure

Spatial correlation

coefficient R RMSE

Taylor skill

score S

CMIP5 models (sample size 31)

SDII 0.386* 0.024 0.235

R5d 0.598** 0.482** 0.401*

PMAX 0.577** 0.435* 0.279

CMIP3 models (sample size 15)

SDII 0.329 0.276 0.277

R5d 0.556* 0.421 0.526*

PMAX 0.687** 0.378 0.517*

*Above the 95% statistical significance level.

** Above the 99% statistical significance level.

FIG. 11. Relationship between reproducibility of annual pre-

cipitation and precipitation intensity (R5d) for the CMIP5 models.

The skill measure is the spatial correlation coefficient between the

GPCP 1DD observation and simulations over the East Asia region

(208–508N, 1108–1508E). The correlation coefficient between an-

nual precipitation skill and R5d skill is 10.598, which exceeds the

99% significance level based on Student’s t test.
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region for precipitation in spring. The advantage of

models with a higher horizontal resolution is evident

from the statistically significant relationship between

grid spacing and model skill.

Kusunoki and Arakawa (2012) suggested that those

CMIP3 models with a higher horizontal resolution tend

to have relatively higher skill for precipitation distribu-

tion over EastAsia in the rainy season from June to July,

but the relationship is not statistically significant and

they only used the SDII. We extended their investiga-

tion to other extreme indices, as well as to other seasons

and the seasonal march of the rainy season for the

CMIP3 and CMIP5 models. Table 6 summarizes the

dependence of model skill on the grid size of the model.

A smaller grid size corresponds to a higher horizontal

resolution. Therefore, if higher horizontal resolution

models tend to have higher skill, the correlation co-

efficient between R and grid size becomes negative. The

situation is the same for the Taylor skill score S. Con-

versely, in the case of RMSE, the correlation coefficient

becomes positive.

All of the correlation coefficients associated with R

are negative, and the correlation coefficients associated

with S are also negative, except for winter. In contrast,

the correlation coefficients associated with the RMSE

are positive, except for winter. The signs of the corre-

lation coefficients for R, RMSE, and S suggest the ad-

vantage of a higher horizontal resolution. Moreover,

most of the correlation coefficients are statistically sig-

nificant. As for extreme events, the advantage of a high

horizontal resolution is more evident than for the sea-

sonal average and seasonal march, with a higher level of

statistical significance. As intense rainfall events are

often concentrated over a small horizontal scale, models

with a higher horizontal resolution tend to reproduce

more realistic extreme rainfall events. Moreover, in-

tense rainfall events are common in mountainous re-

gions because of the orographic effect. Models with a

higher horizontal resolution can represent orography

more realistically, which may lead to the better re-

production of strong orographic rainfall.

The results in Table 6 confirm the advantage of an

increased horizontal resolution for the CMIP5 and

CMIP3 models. The average grid size of the CMIP5

models (193 km) is smaller than that of the CMIP3

models (254 km). The difference in grid sizes is statisti-

cally significant at the 95% level using Student’s t test

and 98% level using the bootstrap method (see the ap-

pendix). The advantage of the CMIP5 models over the

CMIP3 models seen when reproducing geographical

precipitation distributions (section 4), the seasonal

march of the rainy zone (section 5), and extreme pre-

cipitation events (section 6) can be partly attributed to

the higher horizontal resolution of the CMIP5 models.

Watterson et al. (2014) demonstrated that the im-

provement in the CMIP5 models over the CMIP3

FIG. 12. Dependence of model skill on the grid spacing of the

CMIP5 (red) and CMIP3 (blue) models. The skill measure is the

spatial correlation coefficient R between the GPCP 1DD obser-

vation and simulations over the East Asia region (208–508N, 1108–
1508E) for spring (April–May) precipitation. The correlation co-

efficient between grid spacing and R 5 20.485, which exceeds the

99% significance level based on Student’s t test.

TABLE 6. Correlation coefficient between the skill and grid size

of the 15 CMIP3 and 31 CMIP5 models (total 46). Seasonal aver-

age: geographical distribution (208–508N, 1108–1508E) of seasonal
average precipitation. Seasonal march: time–latitude cross section

of precipitation averaged for longitude over China, the Korean

Peninsula, and Japan defined in Fig. 7. Extreme events: geo-

graphical distribution (208–508N, 1108–1508E) of indices. Model

skill was calculated against GPCP 1DD data. Grid sizes of models

are based on the values listed in Tables 1 and 2.

Term

Skill measure

Spatial correlation

coefficient R RMSE

Taylor skill

score S

Seasonal average

Spring (Apr–May) 20.485c 0.316b 20.365b

Summer (Jun–Aug) 20.257a 0.155 20.167

Autumn (Sep–Nov) 20.566c 0.442c 20.520c

Winter (Dec–Feb) 20.267a 20.004 0.191

Annual (Jan–Dec) 20.444c 0.206 20.525c

Seasonal march

China 20.243 0.009 20.205

Korean Peninsula 20.285a 0.249a 20.226

Japan 20.463c 0.349b 20.445c

Extreme events

SDII 20.224 0.453c 20.487c

R5d 20.300b 0.466c 20.546c

PMAX 20.469c 0.341b 20.461c

CDD 20.451c 0.520c 20.422c

a Above the 90% statistical significance level.
b Above the 95% statistical significance level.
c Above the 99% statistical significance level.
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models relates to the improvement in the horizontal

resolution of the CMIP5 models. Our results are con-

sistent with their conclusion.

However, Song and Zhou (2014a) reported that the

reproducibility of precipitation and the 850-hPawind over

East Asia in summer by the atmospheric models of

CMIP5 and CMIP3 does not depend upon the horizontal

resolution of the models. In addition, Song and Zhou

(2014b) did not find any advantage of higher horizontal

resolution in the AOGCMs of CMIP5 with respect to

precipitation and the 850-hPa wind over East Asia in

summer. The differences between their results and our

study can be partly attributed to differences in target

models, target region, target season, and skill measure.

b. Large-scale circulation

TheWPSH plays an important role in the climatology

and variability of climate over East Asia. Here, we in-

vestigated the reproducibility of the WPSH by CMIP5

and CMIP3 models in conjunction with the reproduc-

ibility of precipitation. Figure 13 compares observed

850-hPa geopotential height distributions with those

simulated by the models for seasonal and annual aver-

ages. The biases of the models are also shown. The ob-

served WPSH (above 1500m) in spring (Fig. 13a)

spreads over Taiwan and to the south of Japan. The

CMIP5 MME (Fig. 13f) and CMIP3 MME (Fig. 13p)

reproduce the observed WPSH reasonably well, but

with a slight overestimation of height (Figs. 13k,u). The

observed WPSH in summer (Fig. 13b) extends to the

south of Japan with the ridge at about 308N. Anti-

clockwise transport of moisture from the humid tropics

associated with anticyclonic circulation around the

WPSH is primarily responsible for the formation and

maintenance of the rainy season over East Asia. The

CMIP5 MME (Fig. 13g) reproduces the observed

WPSH reasonably well, but the models have a positive

bias over Japan and a negative bias to the south of Japan

(Fig. 13l), which indicates a northward bias in the loca-

tion of theWPSH. This bias is consistent with analysis of

theAGCMs of CMIP5 byHe and Zhou (2014) and Song

and Zhou (2014a). The CMIP3 MME (Fig. 11q) also

reproduces the observedWPSH reasonably well, but the

models have a northward bias in the location of the

WPSH (Fig. 13v) with a larger positive bias over Japan

compared with CMIP5 (Fig. 13j). This northward bias in

position is also consistent with analysis of theAGCMs of

CMIP3 by Song and Zhou (2014a).

Positive biases of height over Japan are also found in

autumn (Figs. 13m,w) and the annual average (Fig. 13y).

Positive biases around Japan by CMIP5 models are

smaller than those by CMIP3 models. The erroneous

northward shift of the WPSH is consistent with the

previous studies for atmospheric models of CMIP5 and

CMIP3 (Song and Zhou 2014a; He and Zhou 2014).

Figure 14 compares the RMSEs of the CMIP5 MME

with those of the CMIP3 MME for all seasons. The

RMSEs of theMME are smaller than those of the AVM

for all seasons. The advantage of the CMIP5MME over

the CMIP3 MME is also evident. This suggests that

higher reproducibility of the WPSH and its accompa-

nying circulation by the CMIP5 models is closely related

to the higher reproducibility of precipitation when

compared with the CMIP3 models. In summer, the sta-

tistically significant advantage of CMIP5 is evident only

for the AVM (green number 2 in a circle).

Figure 15 shows the relationship between the re-

producibility of the 850-hPa geopotential height and

precipitation in summer for the CMIP5 models over East

Asia. The correlation coefficient between height skill and

precipitation skill is 10.577, which is statistically signifi-

cant at the 95% level. If we use the spatial correlation

coefficient R and the RMSE as a skill measure, the cor-

relation coefficients between height skill and precipitation

skill are positive, but the statistical significance levels are

below 90%. Most points are plotted below the diagonal

line, indicating that simulating precipitation is muchmore

difficult than simulating the 850-hPa geopotential height.

The high correlation coefficient between the skill of height

and precipitation means that a model that more accu-

rately simulates the WPSH tends to have a higher repro-

ducibility for precipitation. This is consistent with analysis

of the AGCMs of CMIP5 and CMIP3 by Song and Zhou

(2014a), in that a better simulation of the summer mon-

soon circulation is generally associated with a better

simulation of the precipitation distribution.

Similarly, the CMIP3 models also show positive cor-

relation coefficient of 10.546 with a statistical signifi-

cance level above 95%. Precipitation amounts and the

frequency of intense rainfall events over East Asia in

summer are much larger than those in other seasons,

mainly because the WPSH transports large amounts of

moisture from the tropics to East Asia in summer. In

seasons other than summer, the relationship depicted in

Fig. 15 is weak and not statistically significant, suggest-

ing that circulation systems other than the WPSH con-

trol the precipitation over East Asia.

According to the assumption that precipitation in

summer over East Asia is strongly affected by the main

part of the WPSH at lower latitudes, we have tried the

same calculations as Fig. 15 but limited the target region to

the 850-hPa geopotential height in the subtropics. For the

regions 208–258N, 208–308N, and 208–358N for the same

longitude range of 1108–1508E, the correlation coefficients
between height skill and precipitation skill were 0.38 (not

statistically significant), 0.44 (not statistically significant),
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and 0.45 (significant above the 90% level), respectively.

All of these correlation coefficients are lower than those in

Fig. 15. This suggests that the reproducibility of pre-

cipitation in summer over East Asia (208–508N, 1108–
1508E) is highly connected with the reproducibility of

large-scale circulation at the 850-hPa level over the same

region rather than that of the WPSH in the subtropics.

In summary, the advantage of the CMIP5models over

the CMIP3 models can be partly attributed to the

improvement in the reproducibility of the WPSH, es-

pecially in summer.

c. Other factors

1) FLUX ADJUSTMENT

The adoption of flux adjustment into a model implies

that the model has large errors in some of the fluxes

between atmosphere and ocean. Flux adjustment was

FIG. 13. Geopotential height at 850 hPa for 1981–2000 climatology and bias. (a) the JRA-55 (Ebita et al. 2011) observations for spring

(April–May). Contour interval is 20m. Thick contour denotes 1500m. (b)–(e) As in (a), but for summer (June–August), autumn

(September–November), winter (December–February), and the annual mean (January–December), respectively. (f)–(j) As in (a)–(e),

but for CMIP5MME. (k)–(o) As in (a)–(e), but for the bias of CMIP5MME; Contour interval is 3m. (p)–(t) As in (a)–(e), but for CMIP3

MME. (u)–(y) As in (k)–(o), but for the bias of CMIP3 MME.
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used in some of the CMIP3 models, but in none of the

CMIP5 models. It seems reasonable to suggest that the

elimination of flux adjustment from the CMIP5 models

is convincing evidence of the reduction of various biases

and the improvement of physical processes in the

CMIP5 models. Consequently, the improvement of

physical processes in the CMIP5 models may partly

contribute to the improvement in the reproducibility of

precipitation over East Asia.

2) SST BIAS

The spurious extension of the cold tongue in sea sur-

face temperature (SST) near the equator commonly

found in the CMIP3 models was reduced by 30% in the

CMIP5 models. See Fig. 9.14 in Stocker et al. (2013) for

details. This improvement in the reproducibility of SST

over the tropical Pacific region might lead further to

improvement in the reproducibility of the large-scale

circulation such as the Hadley and Walker circulations.

On the other hand, Song and Zhou (2014b) reported a

cold SST bias over the eastern Pacific region in the

CMIP5 AOGCMs. Nevertheless, they found that the

AOGCMs tend to better simulates precipitation and

low-level circulation over East Asia in summer than did

theAGCMs, which are forced with observed SSTs. They

attributed this paradoxical advantage of theAOGCM to

the suppression of evaporation and precipitation over

theWPSH due to the cold SST bias. This strengthens the

WPSH, which leads to the better representation of

precipitation and low-level circulation. The cold SST

bias in AOGCM is an example of lucky accident. These

SST biases of the AOGCMs over the WPSH can be

significantly reduced by the proper treatment of the air–

sea coupling processes (Song and Zhou 2014b), as well

as of the SST biases of the regional atmosphere–ocean

coupled model (Zou and Zhou 2013).

3) CUMULUS CONVECTION

The cumulus (deep) convection scheme greatly affects

the reproducibility of precipitation by climate models.

Kusunoki and Arakawa (2012) reported that some

CMIP3 models using the Arakawa–Schubert scheme

tend to show higher skill with respect to precipitation

intensity. However, they indicated that the advantage of

the Arakawa–Schubert scheme over other convection

schemes could not be separated from the skill de-

pendency of horizontal resolution. There is a similar

difficulty in separating the deep convection scheme ef-

fect from the horizontal resolution effect for the simu-

lated summertime precipitation over India in Sperber

and Palmer (1996). It is by no means easy to classify the

deep convection schemes used in the CMIP5 models

into groups because of the increased complexity of the

schemes and the lack of an established standard for the

clustering schemes. Also, separation of the deep con-

vection scheme effect from the horizontal-resolution

FIG. 14. Comparison of RMSE (m) between the CMIP5 and

CMIP3 models for the 850-hPa geopotential height (Fig. 13). The

RMSEs were calculated against the JRA-55 data. The MME and

AVM are indicated in red and green, respectively. Circles indicate

the significance level exceeding 90% based on the bootstrap

method (see the appendix).

FIG. 15. Relationship between reproducibility of 850-hPa geo-

potential height and precipitation in summer (June–August) for

the CMIP5 models. The horizontal axis is the Taylor skill score for

the 850-hPa geopotential height against the JRA-55 data. The

vertical axis is the Taylor skill score of precipitation against the

GPCP 1DDdata. The target area is theEastAsia region (208–508N,

1108–1508E). The correlation coefficient between height skill and

precipitation skill is 10.577, which is statistically significant at the

95% level.
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effect remains challenging for the CMIP5 models. Al-

though we cannot quantify the contribution from the

improvement of the deep convection scheme, we believe

that the improvements in the CMIP5 models described

in this paper can be partly attributed to the improve-

ment of the deep convection schemes.

4) JET STREAM

The observed northward migration of the rainy zone

over East Asia is characterized by the corresponding

northward migration of the jet stream in the upper tro-

posphere. To clarify the source of the improvement in

the CMIP5 models when simulating the seasonal march

of the rainy zone, we investigated the reproducibility of

the zonal component of the 200-hPa wind (U200) by the

CMIP5 and CMIP3 models. Contrary to our expecta-

tions, the seasonal march of U200 in summer simulated

by the CMIP5 models is worse than that simulated by

the CMIP3 models in terms of the RMSE, bias, and

Taylor skill score (figure not shown). In particular, the

CMIP5 models greatly underestimate the magnitude of

U200, whereas the CMIP3 models show almost no bias.

These results indicate that the performance with respect

to precipitation is primarily affected by the WPSH

(Fig. 15), whereas the role of the upper jet stream

highlighted in previous studies such as Zhang et al.

(2006) deserves further study.

8. Conclusions

The results can be summarized as follows:

1) The CMIP5 and CMIP3 models underestimate pre-

cipitation amount over East Asia in the warm season,

but overestimate it in the cold season. The models

have some difficulty in simulating the seasonal march

of the rainy season over China, the Korean Penin-

sula, and Japan. The models underestimate the pre-

cipitation intensity over East Asia.

2) The CMIP5 models show higher reproducibility of

precipitation over East Asia than the CMIP3models

with respect to the geographical distribution of

precipitation throughout the year, the seasonal

march of the rainy season, and extreme precipitation

events.

3) Models with higher reproducibility of annual pre-

cipitation tend to show higher reproducibility of

precipitation intensity in the case of the CMIP5 and

CMIP3 models.

4) Correlation analysis using all of the CMIP5 and

CMIP3 models revealed that models with a higher

horizontal resolution tend to perform better than

lower-resolution models. The advantage of the

CMIP5 models over the CMIP3 models can be

attributed to their higher horizontal resolution.

5) The advantage of the CMIP5 models over the CMIP3

models can be partly attributed to the improvement in

the reproducibility of thewest Pacific subtropical high,

particularly in summer.
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APPENDIX

Bootstrap Method

The statistical significance of differences between the

skill of the CMIP5 and CMIP3 models with respect to

the average of themultimodel ensemble (MME) and the

average skill of individual models (AVM) in Figs. 6, 8,

10, and 14 was evaluated using the bootstrap method

(Wilks 2011). The calculations for MME consist of the

following steps:

1) Generate a resample of the 31 CMIP5 datasets with

replacement (permitting duplication) randomly

taken from the combined dataset of 46 models (31

CMIP5 models and 15 CMIP3 models).

2) Calculate the MME average for this sample. In the

case of Fig. 6, the target variable is monthly precip-

itation and the target region is the two-dimensional

field over East Asia (208–508N, 1108–1508E).
3) Calculate the skill score such as the spatial corre-

lation coefficient R, RMSE, and Taylor skill score
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S for the MME average of this resampled CMIP5

data.

4) Generate a resample of the 15 CMIP3 datasets with

replacement randomly taken from the combined

dataset of the 46 models.

5) Calculate a MME average for this resampled

CMIP3 data.

6) Calculate the skill scores for the MME average of

this resampled CMIP3 data.

7) Calculate the difference between the CMIP5 skill

and the CMIP3 skill. For the RMSE, denote this

difference as RMSE5 2 RMSE3.

8) Repeat steps 1–7 for 10 000 times.

9) Sort 10 000 samples of RMSE5 2 RMSE3 accord-

ing to their values.

10) Count the number N of resampled values greater

than the original value of RMSE5 2 RMSE3. A

large negative value of the original RMSE5 2
RMSE3 indicates the advantage of the CMIP5

models over the CMIP3 models. The ratio of N to

the total sample size of 10 000 is used to estimate as

the statistical significance level. For example, N 5
9000 corresponds to the 90% level.

The procedure is much simpler for the AVM than the

MME because the resampled data are just taken from

the skill scores of all 46 individual models.
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