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Abstract The lithium-ion battery cycle life prediction

with particle filter (PF) depends on the physical or empir-

ical model. However, in observation equation based on

model, the adaptability and accuracy for individual battery

under different operating conditions are not fully consid-

ered. Therefore, a novel fusion prognostic framework is

proposed, in which the data-driven time series prediction

model is adopted as observation equation, and combined to

PF algorithm for lithium-ion battery cycle life prediction.

Firstly, the nonlinear degradation feature of the lithium-ion

battery capacity degradation is analyzed, and then, the

nonlinear accelerated degradation factor is extracted to

improve prediction ability of linear AR model. So an

optimized nonlinear degradation autoregressive (ND–AR)

time series model for remaining useful life (RUL) esti-

mation of lithium-ion batteries is introduced. Then, the

ND–AR model is used to realize multi-step prediction of

the battery capacity degradation states. Finally, to improve

the uncertainty representation ability of the standard PF

algorithm, the regularized particle filter is applied to design

a fusion RUL estimation framework of lithium-ion battery.

Experimental results with the lithium-ion battery test data

from NASA and CALCE (The Center for Advanced Life

Cycle Engineering, the University of Maryland) show that

the proposed fusion prognostic approach can effectively

predict the battery RUL with more accurate forecasting

result and uncertainty representation of probability density

distribution (pdf).

Keywords Lithium-ion battery �Fusion prognostics �
Data-driven prognostics � ND–AR � RPF

1 Introduction

Due to high energy density, high galvanic potential, wide

temperature range, low self-discharge rate and long lifetime,

lithium-ion batteries are core components in a wide variety

of systems. Therefore, the reliability of lithium-ion batteries

becomes a subject of great interest to the electronics industry

[1, 2]. With the challenges of safety management, charging

and discharging control, performance degradation of the

lithium-ion battery, capacity fade and remaining useful life

(RUL) estimation has become a hotspot and challenging

issue in the fields of reliability engineering, automatic test,

power sources, electric vehicles, etc. As a result, lithium-ion

battery RUL prognostics became the hot issues in the prog-

nostics and health management (PHM) of electronics [3, 4].

The prognostics and RUL estimation entails the use of the

current and previous system states to forecast the future

states of the battery system. Reliable predicted information

can be used to schedule repairs and maintenance in advance

and provide an alarm before faults reach critical levels so as

to prevent performance degradation, malfunction or even

catastrophic failures [5, 6].
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Generally, among the various approaches of battery

RUL prognostics, it can be generally classified into two

categories: model-based approaches and data-driven

approaches [1, 7]. Model-based approaches typically

involve building physical models (or mathematical and

chemistry models) to describe the physics of the system

states and failure evolvement. The physical understanding

of the system is usually incorporated into the estimation of

system states and RUL [8]. However, model-based may not

be suitable for many actual applications in which the

physical parameters and failure modes may vary under

various operation conditions [9]. It is usually difficult to

obtain suitable physical model to describe the system

dynamic characteristics; otherwise, it is hard to identify the

adaptive parameters for complicated model of complex

systems. Moreover, the model-based approaches cannot be

applied for those complex systems in which the internal

state variables are inaccessible to direct testing and moni-

toring with general sensors. In this case, inference has to be

made from indirect measurements using techniques such as

particle filter (PF) algorithm. Saha et al. [4, 10] in the

Prognostics Center of Excellence (PCoE) of the NASA

AMES Center has achieved the battery RUL prediction and

the uncertainty representation and management with PF

algorithm. To overcome the high dependence on the elec-

trochemical impedance spectroscopy (EIS ) test equipment,

Saha and Goebel established an empirical degradation

model which the PF is employed to update considering the

coulombic efficiency factor and capacity regeneration

phenomenon. Orchard et al. [11] proposed a prediction

framework which combined PF and anomaly detection

model for the battery capacity estimation and cycle life

prediction, taking into account the power regeneration

phenomenon in usage. The anomaly detection module is

responsible for the detection of capacity regenerative

phenomenon, and the PF method is used to realize RUL

prediction. Moreover, a PF-based simplified prognostic

algorithm is proposed to realize fast risk analysis and state-

of-charge estimation, as a result, a real-time application is

implemented [12]. However, a limitation associated with

the PF-based prognostic method is that the prediction

model parameters cannot be updated during the prediction

period since no new monitoring data are available, as a

result, the prediction accuracy cannot be satisfied in many

industrial applications.

Data-driven approaches for battery prognostics extract

features from the monitoring data such as current, voltage,

time and impedance, using statistical and machine learning

techniques to track the degradation and estimate the RUL.

These data-driven methods can capture the inherent rela-

tionships and learn trends present in the data to provide

RUL estimations [13]. The classical data-driven methods

for system state prediction include statistical stochastic

models such as the autoregressive (AR) model and auto-

regressive moving average (ARMA) model. With the

development of computing intelligence and machine

learning, more research work of data-driven prognostics

have been focused on the use of flexible models for battery

RUL predictions such as various types of neural networks

(NNs) [14, 15], neural fuzzy (NF) systems [16], support

vector machine (SVM) [10]. Data-driven methods rely on

past patterns of the degradation of similar systems to

forecast the future system states. The predicted accuracy

depends on both the quantity of modeling data samples and

the history knowledge involved in the monitoring data [5].

Another principal disadvantage of data-driven methods is

that the prognostic process is usually opaque, and the

model is invisible to users.

To overcome the limitation of the data-driven approa-

ches and model-based approaches, the fusion prognostics

became the research focus to improve the RUL prediction

performance. Kozlowski [17] proposed a data-driven bat-

tery RUL prediction approach that combined three pre-

dictors—autoregressive and moving average (ARMA)

model, neural networks and fuzzy—to achieve a fusion

prognostic method. Liu et al. [18] proposed a fusion

prognostic framework to increase the system long-term

prediction performance. Saha et al. [19] presented a com-

bined battery RUL estimation method with the relevance

vector machine (RVM) and PF algorithm. The PF is used to

realize the parameters identification of the RVM model. An

ensemble model for predicting the RUL of lithium-ion

battery is introduced by combining the fused empirical

exponential and polynomial regression model and PF

algorithm [20]. The PF is applied to adjust the parameters

of the fused regression model online to track the degra-

dation trend of the battery cycle life.

To address the uncertainty representation ability of PF

algorithm and integrate the advantages of data-driven

approach and model-based approach, respectively, this

research work proposed a novel fusion prognostic frame-

work for lithium-ion battery RUL prediction. The devel-

oped framework aims to integrate the strengths of the data-

driven prognostic method and the model-based PF

approach for a more flexible and high-performance pre-

diction. The proposed fusion framework is new in the

following aspects: (1) An optimized nonlinear degradation

autoregressive (ND–AR) model is proposed for the multi-

step state prediction of lithium-ion battery, which achieves

low computing complexity and reflect the ‘‘accelerated’’

degradation trend in the latter battery cycle lifetime.

(2) Data-driven ND–AR model is adopted as the observation

equation of the regularized particle filter (RPF) to improve

the prediction and uncertainty representation performance,

which is a novel fusion implementation compared with

the fusion approaches mentioned above. (3) A fusion
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prognostic framework combined ND–AR model and RPF

algorithm is presented for battery RUL estimation to

improve the prognostic effectiveness and efficiency.

This paper is organized as follows. In Sect. 2, the related

prediction model including AR model and PF/RPF algo-

rithm is introduced. The proposed ND–AR model and the

fusion prognostic framework are described in detail in Sect.

3. The effectiveness of the proposed fusion prognostics

framework is demonstrated via battery RUL prediction

experiments and evaluations with two lithium-ion battery

data sets in Sect. 4. A summary of important observations

and conclusive remarks as well as future work are given in

Sect. 5.

2 Related work

2.1 AR model

Time series analysis and prediction based on stochastic

process theory and mathematical statistics has been widely

applied in signal processing, intelligent information ana-

lysis and PHM and so on. In the engineering field, the AR

model is used more extensive than the moving average

(MA) model and the ARMA model, because the parameter

identification of the AR model is relatively simple, as well

as the computing complexity is low. Furthermore, it has

already been proved that the MA model and ARMA model

of lower order can be equivalent with AR model of much

higher order [21], while the approximated prediction per-

formance is achieved. The degradation of battery capacity

data is obtained with state monitoring and testing time

series data samples, which can take advantage of the AR

model to realize state prediction and RUL estimation.

In the AR model, for time series fxtg;

xt ¼ /1xt�1 þ /2xt�2 þ � � � þ /pxt�p þ at

/p 6¼ 0

(
ð1Þ

where /iði ¼ 1; 2; . . .; pÞ are autoregressive coefficients,

at; t ¼ 0;�1; . . . is the independent white noise sequence

with zero mean and constant variance r2
a:

The parameter p is defined as the order of the AR model,

so the model can be denoted as AR(p). At this time, the AR

model is described as the time series fxtg can equal to the

linear function of the historical value and random noise. In

the AR(p) model, the number of the parameters is p ? 2,

the parameters include the order p, coefficients

/1;/2. . .;/p and r2
a: It is indicated from the Eq. (1) that

the AR model is a type of linear prediction function.

While the AR model is applied to time series prediction,

the selection of the order the model is a key issue. Because

the coefficients f/pg are relevant to the order p, we should

first determine the suitable order p to obtain the adaptive

coefficients f/pg:
In this work, the Akaike information criterion (AIC)

method [22] is used for the determination of the model

order. The AIC method is defined as Eq. (2).

AICðpÞ ¼ N ln r2
p þ 2p ð2Þ

Here, p is the determination of the model order, N is the

number of the data samples, r2
p is the prediction variance of

p order model.

The methods for parameters estimation of the AR model

include the least square estimation, maximum likelihood

estimation, Yule–Wallker method (autocorrelation method),

the Burg method, covariance method, etc. In this paper, the

Burg algorithm which can directly calculate the parameters

with the observed time series is applied to achieve parame-

ters estimation for the AR model. This algorithm can avoid

the priori estimation of the autocorrelation function, as a

result, the computing is simple, and the real-time perfor-

mance is excellent. Especially, the Burg algorithm is suitable

for the parameters estimation of short time series, which

meets the requirements of the battery RUL estimation.

2.2 Particle filter algorithm for RUL prognostics

While the system states could not be directly measured, the

PF algorithm provides a Bayesian learning framework to

achieve states estimation and prognostics of complex sys-

tems. Given a discrete time state estimation problem, the

system state vector Xk 2 Rn evolves according to the fol-

lowing system model as Eq. (3)

Xk ¼ fk�1ðXk�1;wk�1Þ ð3Þ

where f : Rn ! Rn is the system state transition function

and wk 2 Rn is a noise whose known distribution is

independent of time. At each discrete time instant, an

observation Yk 2 Rp becomes available. The observation is

related to the unobservable state vector via the observation

equation shown as Eq. (4).

Yk ¼ hkðXk; mkÞ ð4Þ

where h : Rn ! Rp is the measurement function and mk 2
Rp is another noise whose known distribution is indepen-

dent of the system noise and time. The Bayesian learning

approach to system state estimation is to recursively esti-

mate the pdf of the unobservable state Xk based on a

sequence of noisy measurements Y1:k; k ¼ 1; 2; . . .; k:
Assume that Xk has an initial density pðX0Þ and the

probability transition density is represented by pðXk Xk�1j Þ.
The inference of the property of the states Xk relies on the

marginal filter density pðXk Y1:kj Þ: Suppose that the density

pðXk�1 Yk�1j Þ is available at step k - 1. The prior density
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of the state at step k can then be estimated via the transition

density pðXk Xk�1j Þ.

pðXk Y1:k�1j Þ ¼
Z

pðXk Xk�1j ÞpðXk�1 Y1:k�1j ÞdXk�1 ð5Þ

Correspondingly, the marginal filter density is computed

by the Bayesian theorem,

pðXk Y1:kj Þ ¼ pðYk Xkj ÞpðXk Y1:k�1j Þ
pðYk Y1:k�1j Þ ð6Þ

where the normalizing constant is determined by,

pðYk Y1:k�1j Þ ¼
Z

pðYk Xkj ÞpðXk Y1:k�1j ÞdXk ð7Þ

Equations (6–8) constitute the basis for the optimal

Bayesian recursive state estimation problem. This recursive

propagation of the posterior density is only a conceptual

solution, which generally cannot be determined

analytically [26]. If the system is linear with Gaussian

noise, the above method reduces to the Kalman filter. For

nonlinear/non-Gaussian systems, there are no closed-form

solutions and thus numerical approximations are usually

employed [23]. The PF is a technique for implementing the

recursive Bayesian filtering via Monte Carlo simulations,

where by the posterior density function pðXk Y1:kj Þ is

represented by a set of random samples (particles)

X1
k ; . . .;XM

k and their associated weights p1
k ; . . .; pM

k , that is,

pðYk Y1:k�1j Þ �
XM

i¼1

pi
kdðXk � Xi

kÞ;
XM

i¼1

pi
k ¼ 1 ð8Þ

where M is the number of particles, the weights p1
k ; . . .; pM

k

can be recursively updated using the importance sampling

with an importance density GðXi
k Xi

k�1;YkÞ
�� ,

pi
k / pi

k�1

pðYk Xi
k

�� ÞpðXi
k Xi

k�1

�� Þ
GðXi

k Xi
k�1;YkÞ

�� ð9Þ

While the importance density is approximated as

pðXk Xk�1j Þ, Eq. (9) turns to pi
k / pi

k�1pðYk X1
k

�� Þ.
As shown in Eqs. (8) and (9), the system state in PF was

represented by a series of approximate states whose pdf is

closer to the actual state, and each particles has its own

weight [24]. The PF algorithm is a Bayesian state estima-

tion method based on Monte Carlo idea that can handle any

nonlinear non-Gaussian problems. It estimates the system

states based on state space model and the system dynamic

state space model can be described as Eq. (10).

Xk ¼ f ðXk�1; lk�1Þ þ wk�1

Yk ¼ hðXkÞ þ lk

�
ð10Þ

where Xk is the system state variable, Yk represents the

observed value of Xk, f(�) and h(�) are state transition

equation and observation equation, lk�1 represents the

control variables, wk and mk represents the system noise

and observed noise, respectively.

Two steps are involved in PF: prediction (estimation)

step and update (correlation) step. In prediction step, firstly,

a large number of particles are generated according to a

priori probability distribution. A new predicted particle can

be obtained by iteration updating each particle based on

state transition equation with control variables. In update

step, the particles that are more closer to the actual state

will get observation value more likely.

The standard PF can achieve the system state prediction

with uncertainty representation, but the particles diversity

will decrease in the sequential importance sampling (SIS)

process. That is the particle with high weight was selected

more times, which would lead to so many duplicated points

in the sampling results. Consequently, the results could not

represent the pdf distribution of the state variables; thus, it

will bring the divergence of the prediction result. To solve

the undesirable prediction accuracy and precision caused

by the particles diversity problem, in this work, the regu-

larized particle filter algorithm is adopted to improve the

prediction precision of pdf [25].

2.3 Regularized particle filter algorithm

Regularized particle filter (RPF) [26] is proposed to

improve the particle degradation by the SIS. The difference

between the RPF and SIS PF is the re-sampling process.

The SIS re-samples from the discrete approximate distri-

bution, while the RPF re-samples from the successive

approximate distribution. The particles are obtained from

the re-sampling of successive approximate distribution by

the Eq. (11).

ðXk Y1:kj Þ � p̂ðXk Y1:kj Þ ¼
XN

i¼1

pi
kKhðXk � Xi

kÞ

KhðXÞ ¼
1

hnx
K

X

h

� � ð11Þ

Here Khð�Þ is a new Kernel function rescaled from

symmetric Kernel density function K(.), h [ 0 is the

Kernel width, nx the dimension of the state vector X, K(.) is

symmetric probability density function.Z
XKðXÞdX ¼ 0Z

Xk k2
KðXÞdX\1

ð12Þ

Comparing the re-sampling process of the RPF

algorithm with the standard PF algorithm, additional

N times sampling from the Kernel density is addicted for

the RPF algorithm. Therefore, the computing complexity
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remains no remarkable changes of the RPF algorithm.

However, when the particles diversity become deficient,

the estimation precision of the RPF is superior to the

standard PF algorithm. As a result, the RPF can assure the

prediction and estimation precision.

3 The proposed fusion framework for lithium-ion

battery RUL estimation

3.1 Nonlinear degradation AR algorithm

In this section, the basic AR model is applied to achieve the

lithium-ion battery RUL estimation with the long-term

time series prediction. Based on the experimental results,

the unsuitability for the nonlinear degradation of lithium-

ion battery RUL estimation is analyzed. Finally, the non-

linear degradation AR model for battery RUL multi-step

prediction is proposed to expect better prognostic

performance.

Figure 1 shows the battery RUL estimation result (the

Battery No. 05 from NASA PCoE Center [27]) at different

starting points with four-order AR model.

In the experiments, the prediction is fulfilled at three

different starting points, respectively: T1 = 40 cycles,

T2 = 60 cycles and T3 = 80 cycles (marked in Fig. 1).

The end-of-life (EoL) of the battery No. 05 is about 116

cycles shown in Fig. 1. We define that when the max-

imum charging capacity of the battery degrades to the

70 % of its rated capacity, the battery reaches its EoL

(In experiment, while the capacity of the battery

degrades to 1.42 Ah defined as the EoL). We can find

that different prediction results are obtained at different

prediction starting points. More quantified result is

shown as Table 1. (Here, we conduct the experiments by

every 4 cycles.)

From the Table 1, at the early stage (T = 40 cycles) and

medium-term (T = 60 cycles), the RUL prediction results

are not satisfied. Although the AR model could be applied

to realize trend prediction in time series analysis, the AR

model is still a linear modeling method. By analyzing the

degradation trend of the lithium-ion battery, we find that

with the degradation process evolved, the degradation rate

will accelerate with the increasing of cycle number.

So we can conclude that the prediction function with the

basic AR model cannot track the ‘‘accelerated’’ degrada-

tion process. With the evolvement of the degradation with

the charging and discharging, it shows an accelerated

degradation trend from the lifetime monitoring data.

Especially, while modeling at the early stage and medium

stage, the RUL prediction result could not satisfy the actual

application.

To solve the poor prediction accuracy and improve the

RUL estimation performance with AR model, the

Fig. 1 Battery RUL estimation at different starting points with AR

model (NASA Battery No. 05)

Table 1 Comparison of long-term prediction with AR model at

different starting points

Starting

points

End of

prediction

(cycle)

RUL

prediction

result (cycle)

Real RUL

value

(cycle)

Prediction

error

(cycle)

20 / / 108 /

24 158 134 104 30

28 226 198 100 98

32 197 165 96 69

36 162 126 92 34

40 166 126 88 38

44 167 123 84 39

48 170 122 80 42

52 177 125 76 49

56 165 109 72 37

60 150 90 68 22

64 156 92 64 28

68 145 77 60 17

72 136 64 56 8

76 136 60 52 8

80 134 54 48 6

84 129 45 44 1

88 128 40 40 0

92 143 51 36 15

96 134 38 32 6

100 131 31 28 3

104 137 33 24 9

108 130 22 20 2

112 128 16 16 0

116 128 12 12 0

120 133 13 8 5

124 131 7 4 3
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‘‘accelerated’’ degradation factor should be considered. To

implement more precise degradation trend tracking, an

accelerated factor could modify the un-matching of the AR

model. To check the un-matching phenomenon carefully,

we can find that with the degradation process develops (the

degradation cycle increases), the degree of the un-matching

strengthens.

The accelerated degradation characteristics above can

be understood as follows. With the charging and dis-

charging cycle, the inner lithium-ion decreases and the

resistance increases. With this degradation process devel-

oped, the degradation trend will be accelerated with the

increasing of the inner resistance. As a result, the power

loss will be gradually increased leading the accelerated

degradation process.

With this accelerated degradation factor, the linear AR

time series prediction value could be supplemented.

Moreover, with this idea, the high efficiency of the AR

model could be kept well. According to the analysis above,

we propose an improved battery RUL estimation approach

with AR model combined with nonlinear degradation

process (accelerated degradation process with the cycle

increasing). We denote this novel model as nonlinear

degradation AR model (ND–AR model). The ND–AR

model is defined as follows.

An ‘‘accelerated’’ factor is identified to the AR model

output to match the battery degradation process:

xt ¼ KT � ½/1xt�1 þ /2xt�2 þ � � � þ /pxt�p þ at� ð13Þ

here the KT is the ‘‘accelerated’’ factor. Considering the

accelerated factor is correlated with the degradation cycle,

we define the KT as follows considering the nonlinear

degradation process analyzed above.

KT ¼
1

1þ a� ðk þ bÞ ð14Þ

In Eq. (13), k is the prediction step, a and b are the

parameters that should be identified with the training data

samples, and KT becomes the time varied accelerated factor

with the prediction process.

While the parameters estimation of the AR model is

fulfilled, the parameters in Eq. (13) could be obtained by

curve fitting or least square estimation.

3.2 Fusion framework with ND–AR model and RPF

algorithm

Our motivation is to combine the ND–AR and RPF algo-

rithm together to achieve battery RUL prediction. On the

one hand, due to the monitoring data available, while the

battery is working, the data-driven method [2, 14] could be

used to realize battery cycle life prediction based on the

state information. The time series prediction method could

be adopted to achieve long-term prediction. On the other

hand, due to the inaccessibility of the real measurement

value, the long-term predicted value could be utilized as

the approximated value of the real value of the lithium-ion

battery, so the prediction result by the ND–AR time series

model could be as the state observation equation to

improve and correct the performance under various oper-

ating conditions. Furthermore, the uncertainty representa-

tion and states estimation could be obtained by the RPF

algorithm. Thus, the fusion framework could realize

monitoring and RUL estimation for individual battery by

take advantages of both data-driven approach and model-

based approach.

The empirical degradation model for the lithium-ion

battery described in [3, 4] is applied as the physical model,

which is used as the state transition model.

Ckþ1 ¼ gCCk þ b1 expð�b2=DtkÞ ð15Þ

where Ck is the charging capacity in the kth cycle, Dtk is the

rest time interval from the kth cycle to the (k ? 1)th, and

b1 and b2 are the parameters to be identified.

Figure 2 shows the schematic diagram of the proposed

fusion prognostic framework for the lithium-ion battery

RUL estimation.

The fusion prognostic framework of the ND–AR model

and RPF algorithm for lithium-ion battery cycle life esti-

mation is as follows.

Definition: Parameters b1 and b2 in lithium-ion battery

empirical degradation model, prediction starting point T,

prediction period k, length of training data set length in

ND–AR model, particles number N, process noise covari-

ance R of the wk in state transition equation observed noise

covariance Q of the mk in observation equation, battery

actual capacity value Capacity, capacity estimation value

Capout(k), the threshold of end-of-life U, ND–AR model

prediction output ARpredict(k);

Input: Capacity;

Output: capacity prediction value Capout(k) in kth step

with RPF algorithm as well as its pdf distribution corre-

sponded cycle life value RUL;

Firstly, the parameters are obtained by the tracking

ability of the RPF algorithm. Then, the ND–AR model is

built to realize long-term prediction of the battery capacity,

its output is ‘‘ARpredict(k).’’ This prediction result is used

as the observation value of the state updating equation of

the RPF algorithm. The final prediction result is output by

the RPF algorithm. The capacity prediction result

Capout(k) is output in each step and examined whether it

reaches the threshold U. If the Capout(k) reaches U, the

iteration stops and computes the corresponding RUL result

and its pdf.

The detailed steps of the fusion prognostic framework

are as follows.
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1. Extract battery capacity data ‘‘Capacity’’ from the

battery data set and preprocess the capacity data such

as eliminating the outliers and sampling the data with

different intervals.

2. Set the starting point of the prediction algorithm

T which divides the data into two parts: the historical

data whose cycle number is no more than T, we

implement the prediction algorithm after cycle T to

give the capacity value for each cycle.

3. According to the starting point T, the capacity data

before the T cycle are tracked by PF algorithm to

determine the unknown parameters b1 and b2 in the

empirical degradation model.

4. Determine the order of the AR/ND–AR model accord-

ing to the AIC criterion and model with the historical

data, the determined order of AR/ND–AR model and

KT, then complete parameters estimation by Burg

algorithm.

5. Estimate the capacity ARpredict(k) for each cycle by

using the ND–AR model we built to output the long-term

trend of the capacity degradation which will be used as the

observed values in the following RPF algorithm.

6. Initialize the RPF algorithm, set some relevant

parameters during the battery RUL prediction process:

• The number of particles N

• The process noise wk’s covariance R and the

observation noise mk’s covariance Q in the RPF

algorithm

• The failure threshold to the EoL U

7. Use the RPF algorithm to predict the cycle life of the

lithium-ion battery, the brief procedure is as follows:

• Initialize the particle set, k = 1, and generate

particles

• Start the iteration process and obtain system state

value Xi
k according to Eq. (15)

• Importance sampling: exðiÞk ¼ pðxkjxðiÞ0:k�1; y1:kÞ and

calculate the observed value Yi
k with the ND–AR

output

• Calculate the weight of the particles and normalize

the weight ewðiÞk

• Perform the re-sampling process: calculate the

empirical covariance matrix Sk and then compute

Dk that meets DkDT
k ¼ Sk; For i ¼ 1; 2; . . .N,

sample from a discrete distribution to obtain jðiÞ,
the discrete distribution meets PðjðiÞ ¼ lÞ ¼
w
ðlÞ
k ; l ¼ 1; 2; . . .N; for i ¼ 1; 2; . . .N; x

^ðiÞ
0:k ¼ ~x

jðiÞ
0:k

and w
^ ðiÞ

k ¼ N�1; for i ¼ 1; 2; . . .N, Epanechnikov

Kernel function ei�K and let

x
^ðiÞ	

0:k ¼ x
^jðiÞ

0:k þ hoptDkei

• Generate the state estimation of the battery

capacityCapoutk ¼
P

N
i¼1exðiÞ0:k ewðiÞk

• Let k = k ? 1, repeat the procedure above orderly

and update the capacity of the battery interactively

according to the state space model to output a

estimated state Capout(k) for each cycle.

8. Judge whether the value of Capout(k) reaches the

threshold U as the EoL, if it is, then calculate the RUL

prediction result of the cycle life: RUL = k.

9. According to the corresponding relation among the pdf

of the battery capacity value and the cycle life,

calculate the pdf of RUL and output the final result.

The detailed flowchart of the proposed fusion frame-

work for lithium-ion battery RUL estimation is shown as

Fig. 3.
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Fig. 2 The schematic diagram of the proposed fusion framework for lithium-ion battery RUL estimation
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Note that with the update of the online data sample, the

ND–AR model could be dynamically adjusted if it is

needed. As a result, the observed value for the RPF algo-

rithm could be updated to increase the prediction precision.

4 Experiments analysis and evaluation

4.1 Battery data set

To evaluate the proposed methods, we adopt two types of

battery data sets. With different battery data sets under

various experimental conditions, the adaptability and

effectiveness of the proposed method can be verified and

proved adequately.

4.1.1 NASA PCoE battery data set [10, 27]

The first lithium-ion battery data set we utilize is from

NASA Prognostics Center of Excellence (PCoE). The

battery data set is tested and obtained in the NASA PCoE.

The lithium-ion batteries were tested under certain condi-

tion (with the temperature ?25 �C) to measure the degra-

dation of the capacity.

• The 2 Ah batteries are charging with the charging

current 1.5 A until the batteries voltage reaches 4.2 V.

• The batteries are discharging with the discharging

current 2 A until the batteries voltage reaches 2.5 V.

• The batteries impedances are tested by EIS with the

scanning frequency from 0.1 Hz to 5 kHz.

We select the capacity as the health indicator (HI) of the

performance degradation for the lithium-ion battery. When

the lithium-ion battery reaches its EoL, that is the battery

charging capacity degraded to about 70 % of rated capac-

ity. In the experiments, the nominal capacity of lithium-ion

battery is 2 Ah and the failure threshold is set to 1.38 Ah.

If the battery capacity reaches 1.38 Ah, the RUL estima-

tion experiment ends. The lithium-ion battery capacity

degradation is shown as Fig. 4.

4.1.2 CALCE lithium-ion battery data set of University

of Maryland

The second lithium-ion battery data set is from CALCE

(The Center for Advanced Life Cycle Engineering, The

University of Maryland). The lithium-ion batteries are

tested to discover the degradation of the capacity. The

cycling of the batteries is implemented with the Arbin

BT2000 battery testing system under room temperature.

The 1.1 Ah rated capacity of batteries is used in the

experiment with the discharging current (0.55 A, the dis-

charging speeds is 0.5C) [2]. The battery capacity degra-

dation of various batteries is shown as Fig. 5.

Data pre-process
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Fig. 3 Fusion prognostic framework for lithium battery cycle life

estimation based on ND–AR model and RPF Algorithm
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4.2 Battery RUL estimation with ND–AR model

We first evaluate the effectiveness of the proposed ND–AR

model for capacity degradation time series of lithium-ion

batteries. Then, the fusion prognostic model with ND–AR

and RPF algorithm would be verified. To briefly introduce

the evaluation of the ND–AR model, here we only intro-

duce the prediction results with the CALCE battery data.

(And the predicted results are indicated through compari-

son with NASA PF algorithm in Sect. 4.4.)

The parameters of AR model containing the order p and

other parameters are determined using the same method as

described in Sect. 3.1. The order p value equals to 4 while

the model gets best prediction performance. With the curve

fitting method, the parameters a and b in the ND–AR

model are estimated, a = 1.5e-7, b = 100. The other

parameters are obtained with Burg algorithm to the

observed capacity degradation BCm (1: T) with the mod-

eling process.

Figures 6, 7 and 8 show the prediction result for various

lithium batteries capacity degradation data with the ND–

AR model proposed in this paper. From the prediction

results for the three batteries, we can conclude that the

capacity degradation process under different testing and

operating condition is forecasted precisely with the ND–

AR model. The prediction and estimation of RUL will be

beneficial for the system management and maintenance of

the lithium-ion batteries.
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Fig. 5 Capacity degradation curves of lithium-ion battery in CALCE
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We compare the battery RUL estimation results with

the ND–AR model and the basic AR model to indicate the

efficiency of the novel ND–AR model. Figure 9 gives the

comparison of the RUL prediction with the proposed ND–

AR model and basic AR model.

From Fig. 9, we can conclude that compared to the basic

AR model, the proposed ND–AR model can realize more

satisfied prediction result at the same starting point.

To evaluate and compare experimental results quanti-

tatively, we adopt the mean absolute error (MAE) and root

mean square error (RMSE) and error of RUL estimation

to analyze the prediction results with two methods. The

definitions of evaluated parameters are as follows.

The MAE:

MAE ¼ 1

n

Xn

i¼1

xðiÞ � �xðiÞj j ð14Þ

The RMSE:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

xðiÞ � �xðiÞ½ �2
s

ð15Þ

The error of RUL:

ERUL ¼ RULreal � RULprediction

�� �� ð16Þ

Here, n the number of prediction data set, xðiÞ is the real

value of testing and monitoring of battery capacity, �xðiÞ is

the prediction value. In the experiments, k is the prediction

steps from the starting point T.

The detailed results and quantitative comparison are

shown as Table 2, in which the average statistical results

with different starting points are involved.

From Table 2, we can find that the predictions MAE,

RMSE and error of RUL of the ND–AR model are superior

to the AR model for various lithium-ion batteries. Fur-

thermore, the long-term prediction performance is satisfied

at different starting point which shows the effectiveness

and efficiency of the optimized ND–AR model. (The three

batteries RUL estimation error are all within 10 cycles.)

4.3 Battery RUL prediction with fusion prognostics

With the data-driven optimized ND–AR model, we can

realize more satisfied RUL prediction performance. How-

ever, only with the single point prediction result, the

maintenance reference for the industrial application is

limited due to lack of uncertainty representation ability.

We evaluate and verify the fusion prognostic framework

for the lithium-ion battery RUL estimation.

Here, we first use the NASA PCoE battery data set to

implement the experiments. The related parameters are set

as: the prediction starting points T = 60 cycles, the end-of-

life (EoL) for batteries U = 1.38 Ah, the number of
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Fig. 9 Comparison of RUL estimation with the ND–AR model and

basic AR model (CALCE battery Capacity-CS2-21-0.5C)

Table 2 Comparison of AR model and ND–AR model for battery

RUL estimation

Index of

batteries

CALCE No.

CS2-8

CALCE No.

CS2-21

CALCE No.

CS2-33

MAE of ND–

AR

0.0060 0.0057 0.0066

MAE of AR 0.0304 0.0287 0.0317

RMSE of

ND–AR

0.0113 0.0105 0.0126

RMSE of AR 0.0349 0.0316 0.0397

ERUL of ND–

AR

10 8 7

ERUL of AR 34 27 28
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with PDF uncertainty representation (at starting points T1 = 40,
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particles N = 500, state initial value of the battery capacity

C0 = Capacity(T) = 1.586 Ah (T = 60 cycles), the

covariance of process noise wk R = 0.0001, the covariance

of the measure noise vk Q = 0.0001. The combined ND–

AR model and RPF algorithm RUL prediction results are

shown as Fig. 10.

In Fig. 10, the center point of the pdf represents the

accuracy of prediction, while the width of the pdf repre-

sents the precision of prediction. With the prediction

starting point moves forward, the center point of the pdf in

prediction results gets closer to the actual end-of-life (100

cycles). At the same time, the width of the pdf distribution

becomes more centralized and the scatter of pdf becomes

smaller, which means the uncertainty of the prediction

results decreased and the RUL estimation performance

improved.

As shown in Fig. 10, the actual EoL of the battery No.

18 is 100 cycles. While the prediction starting point T = 60

cycles, the actual RUL is: RUL true ¼ 100cycle

�T ¼ 40cycle. The predicted life is 83 cycles. So the

estimated RUL value is: RUL prediction ¼ 83cycle

�T ¼ 23cycle, prediction error is RUL error ¼ 23cyclej
�40cyclej ¼ 17cycle.

The quantitative RUL prediction results (at early cycle

life, medium cycle life and latter cycle life as the prediction

starting points) are shown as Table 3. (Here, we conduct

the experiment by every 4 cycles during the medium

degraded process, such as at cycles 44, 48, 52, etc. More-

over, we implement experiment by every 10 cycles at the

early stage, such as 20, 30, because the degraded prediction

is difficult and of less scientific reference for users. The

same setting is adopted during the latter degraded period

due to that the predicted value is very close to the actual

value of RUL.)

From Table 3, when the starting points are 40 cycles, 60

cycles and 80 cycles, respectively, the end of prediction

(EoP) is 77 cycles, 88 cycles and 98 cycles, gradually be

closer to the actual cycle life (100 cycles). By analyzing the

experimental results, the prediction accuracy and precision

at the early stage is much lower. However, for actual

industrial application, the operator is not so attention to the

early stage prediction results.

By examining Table 3 and Fig. 10, the predicted

remaining cycle life of lithium-ion batteries could be

obtained precisely at the medium and latter stages. More-

over, the integration of uncertainty with the prediction

RUL results is represented by its pdf. The precise and

accurate prediction RUL result and its pdf uncertainty

representation could be scientific reference for the opera-

tors and decision makers. For different industrial require-

ments, the relative boundary of probability could be set to

take different levels of attentions for different system

Table 3 Comparison of the RUL prognostic results at different

starting points

Starting

points

End of

prediction/cycle

RUL prediction/

cycle

Prediction error/

cycle

20 63 43 37

30 73 43 27

40 77 37 23

44 81 37 19

48 81 33 19

52 86 34 14

56 84 28 16

60 88 28 12

64 89 25 11

68 93 25 7

72 92 20 8

76 97 21 3

80 98 18 2

90 98 8 2
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maintenance. With predicted probability increased, the

appropriate maintenance strategy could be adopted com-

bined with the expert knowledge.

To verify the efficiency of the proposed approaches, we

also implemented prediction experiment for other lithium-

ion batteries. The lithium-ion Battery No. 05 and Battery

No. 06 of NASA PCoE are used to evaluate the RUL

prognostic method. (In the same battery group, the capacity

of the Battery No. 07 has not reached its threshold

involving in the battery state monitoring data set. Thus, in

the experiment, we did not use this lithium-ion battery data

set.) The detailed experimental results are shown as

Fig. 11.

The quantitative battery cycle life prediction results are

as shown as Table 4. (The same experimental setting is

adopted as the Table 3.)

With the experimental results and analysis above, the

RUL estimation accuracy and precision is more satisfied at

the medium and latter cycle life for the Battery No. 06 and

Battery No. 07. Furthermore, the uncertainty with the pre-

diction results shows prospective for the industrial applica-

tion especially for the battery management and maintenance.

The fusion prognostic method with the NASA battery

data set and CALCE battery data set (the detail experi-

mental result with the CALCE battery data set as well as

the comparison with other similar methods will be intro-

duced in Sect. 4.4) indicates that the combined approach of

ND–AR model and RPF algorithm can realize high preci-

sion RUL prediction as well as its uncertainty representa-

tion and management. Moreover, the precision of

uncertainty representation is also improved with the pro-

posed fusion approach and optimized PF algorithm.

4.4 Comparison with other prognostics approaches

To further verify the efficiency of the proposed methods,

we also realize the comparison with other two types of

work: One is the battery RUL prediction based on PF

algorithm by NASA [28] and the other is the prediction

with D-S evidence theory and Bayesian Monte Carlo

method proposed by Wei He et al. [2] of CALCE.

4.4.1 RUL prognostics comparison I

We first compared the RUL estimation performance with

the proposed fusion approach and PF algorithm. In the

experiment, the NASA Battery No. 18 was adopted to

achieve comparison and evaluation. The parameters are set

the same with the experiment in Sect. 4.3 (Fig. 12).

In order to completely compare the different prognostics

methods and give the quantitative performance, in this

Table 4 RUL prediction results for other batteries with the fusion

approach

Battery index Starting points/

cycle

EoP/

cycle

RUL/

cycle

Error/

cycle

Battery No. 05

(=128)

20 70 50 58

30 91 61 37

T1 = 40 100 60 28

44 102 58 26

48 108 60 20

52 105 53 23

56 108 52 20

T2 = 60 110 50 18

64 112 48 16

68 118 50 10

72 116 44 12

76 122 52 4

T3 = 80 120 40 8

90 127 37 1

100 132 32 4

Battery No. 06

(=112)

20 69 49 43

30 76 46 36

T1 = 40 84 44 28

44 86 42 26

48 88 40 24

52 94 42 18

56 93 37 19

T2 = 60 96 36 16

64 97 33 15

68 103 25 9

72 106 24 8

76 105 29 7

T3 = 80 108 28 4

90 113 23 1

100 112 12 0
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Fig. 12 RUL estimation results with proposed fusion prognostic

algorithm and standard PF algorithm
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work, we used four types of criteria to evaluate the pre-

dicted algorithm in this experiment: MAE, RMSE, RUL

prediction error (defined as Eqs. 14–16) and valid samples

Neff

^
in PF algorithm. The valid samples in PF algorithm

Neff

^
is defined as:

Neff

^
¼ 1PN

i¼1 ð ~w
ðiÞ
k Þ

2
ð17Þ

From Fig. 12 and Table 5, with the combined ND–AR

and RPF algorithm, the battery RUL prediction MAE and

RMSE is much smaller than the standard PF algorithm.

This represents the dispersion degree of particles is lower.

The pdf distribution shows the high peak and narrow range,

which means that the valid samples of the RPF algorithm is

also superior to the PF algorithm. Thus, the uncertainty of

the prediction is superior to the NASA PF RUL framework.

More evaluation experiments are achieved to further

analyze the proposed approaches and other battery RUL

prediction methods. Here, we compared the followed three

types of RUL estimation methods: standard PF by NASA,

fusion AR and RPF approach (as AR_RPF), and fusion

improved ND–AR and RPF approach (as ND-AR_RPF).

The ‘‘Capacity-CS2-33’’ battery data set of CALCE

is used in the experiment. The parameters for experi-

ments are as follows: prediction starting points

Ti ¼ f30; 40; . . . 90; 100g, the number of particles

N = 500, the noise covariance R = 0.0004 and

Q = 0.0004, the EoL (capacity) U = 0.88 Ah. We applied

five evaluation criteria: Prognostic Horizon (PH), a-k
Accuracy, Relative Accuracy (RA), Cumulative Relative

Accuracy (CRA) and Convergence to compare the effi-

ciency and performance of the RUL prediction methods

[29]. The detailed results are shown as Fig. 13.

From Fig. 13, we can conclude that the RUL prediction

with our proposed methods is better than the standard PF

algorithm. Especially, at the early prediction stage, the

prediction error is small with the PH performance. At the

same time, for later prediction stage, the prediction value is

almost following at the error limits and very closer to the

actual cycle life. The similar conclusion could be obtained

as the Fig. 14 (Convergence).

In Fig. 14, the Euclidean distance CM;1;CM;2;CM;3 is as

the Convergence performance for three methods (corre-

sponded to Standard PF, AR_RPF and ND-AR_RPF,

respectively). The specific regional center coordinates are

as follows: xC;1; yC;1 ¼ 65:33; 13:09; xC;2; yC;2 ¼ 61:77;

9:36; xC;3; yC;3 ¼ 57:87; 4:68:

The result above indicates that the performance of

proposed optimized ND–AR model and RPF algorithm is

the best in convergence among the three approaches. The

other quantitative criteria are shown as Fig. 15 and

Table 6.

From Fig. 15 and Table 6, we can find that the PH

performance: PHND�AR RPF\PHAR RPF\PHPF . The

combined ND–AR model and RPF algorithm first dropped

to the given intervals (a = 20 %). The same conditions

could be obtained for the criteria of RA, CRA and CM. All

the prediction performance criteria above verified that the

proposed method could realize satisfied prediction preci-

sion and accuracy compared to the standard PF and fusion

AR and RPF method.

Table 5 Prediction comparison with PF and fusion prognostic

approach

Approaches MAE/Ah RMSE/Ah RUL error/cycle
Neff

^

NASA_PF 0.0522 0.0378 11 382

ND-AR_RPF 0.0335 0.0246 9 413

30 40 50 60 70 80 90 100 110 120
0

20

40

60

80

100

Charge and discharge cycles/cycle

R
U

L 
/ c

yc
le

PH performance (20% error)

80% accuracy range
real RUL

RUL with PF
RUL with AR and RPF
RUL with ND-AR and RPF

End of Life

Fig. 13 Battery RUL prediction results and its PH performance

30 40 50 60 70 80 90 100 110
0

5

10

15

20

25

30

35

40

45

50

cycle

R
U

L
 / 

cy
cl

e

Convergence (α = 20%)

CM,1

CM,2

CM,3

C
M,1

<C
M,2

<C
M,3

End of Life

M(i): Relative Accuracy

Fig. 14 Convergence performance with various approaches for

battery RUL estimation

Neural Comput & Applic (2014) 25:557–572 569

123



4.4.2 RUL prognostics comparison II

Wei He et al. [2] applied Dempster-Shafer evidence theory

(DST) and Bayesian Monte Carlo method (denoted as D_B

method in the experiment) to achieve lithium-ion battery

RUL prediction. We compared the proposed novel

approach (denoted as ND-AR_RPF) with the prediction

method by Wei He. We implemented battery RUL esti-

mation to the CALCE data, in which the Battery No. B4 is

used to evaluate these two RUL methods. In the experi-

ment, the data set was sampled by every five data points to

simple the capacity data. The other related parameters as

set as: the prediction starting point T = 50(95) cycle, the

capacity threshold of the EoL U = 0.88 Ah, the number of

the particles N = 500, the covariance of process noise Wk

R = 0.0001, the covariance of the measure noise Vk

Q = 0.0001, state initial value of the battery capacity

C0 = Capacity (T) = 1.056 Ah (T = 50 9 5 cycle). The

experimental results are shown as Fig. 16.

We can see from Fig. 16 that the actual EoL is 112(95)

cycle for the CALCE Battery No. B4, while the prediction

result by the proposed method is 111(95) cycle, and the

uncertainty representation with the RPF algorithm is

106–120(95) cycle, the quantitative comparison results is

shown as Table 7. (The prediction result of D_B method

could be referred in [2].)

It can be concluded from the Table 7 that the RUL

prediction error is smaller, which indicated that the pro-

posed method is superior to the prediction method by Wei

He et al. Considering the uncertainty quantitative result,

with the RPF algorithm, we obtain the uncertainty distri-

bution interval equals to 70 cycles, which is much smaller

than the 120 cycles with the D_B methods. It shows that

the point estimation performance and the uncertainty

quantitative representation performance, the proposed

methods are much better.

5 Conclusion and future work

This paper explores an improved nonlinear degradation

autoregressive (ND–AR) model for lithium-ion battery

RUL estimation. A battery RUL prognostic framework of

fusion ND–AR model and RPF algorithm is proposed to

realize various lithium-ion batteries RUL estimation. The

main contribution of this research can be concluded that:

(1) based on low computing complexity AR time series

model, the ‘‘accelerated’’ nonlinear degradation feature of

the battery capacity fade is analyzed based on experiments.

(2) A nonlinear degradation factor is extracted to combine

with standard AR time series model to realize better RUL

Table 6 Quantitative comparison and evaluation of different

approaches

Approaches RUL error

T = 60

cycle

PH

(cycle)

RA

(k = 0.5)

CRA

(k = 0.5)

CM

PF 21 28 0.6842 0.1429 37.6820

AR_RPF 14 38 0.8361 0.4175 33.1298

ND-

AR_RPF

8 58 0.9174 0.6263 28.2591

Table 7 RUL estimation results with proposed ND-AR_RPF algo-

rithm and D_B method

Methods RUL error/

cycle

PDF intervals/

cycle

PDF ranges/

cycle

ND-AR_RPF 5 530–600 70

D_B 7 550–670 120

RUL error RAPH  Convergence RAC

Fig. 15 Quantitative evaluation and comparison of different
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Fig. 16 Battery RUL estimation with ND-AR_RPF algorithm

(CALCE Battery No. B4)
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estimation result and more precisely prediction perfor-

mance could be fulfilled. (3) With RPF prediction algo-

rithm, a data-driven ND–AR method is applied as the

observation equation. As a result, the state tracking and

predicting ability is improved. (4) Fusion prognostic

framework with ND–AR model and RPF algorithm is

implemented to realize various lithium-ion batteries RUL

estimation. (5) The combined approach achieves batteries

RUL uncertainty representation and management.

With the experiment, we can conclude that the improved

model is suitable for cycle life estimation of the lithium

battery. This proposed fusion lithium-ion battery RUL

prognostic framework shows better prospective in indus-

trial application comparing with RUL prediction based on

other RUL prediction methods. Moreover, the modeling of

the fusion method is relative simple. The framework can be

used as a practical technique solution for the lithium-ion

battery RUL estimation. The proposed method is not only

suitable for battery cycle life prediction with small sample

size, but also of the ability uncertainty representation and

management. Compared to the standard PF algorithm and

other statistical methods, more accurate uncertainty repre-

sentation could be provided, which proved great scientific

reference for the maintenance and management of complex

systems.

In the future, we will consider the uncertainty repre-

sentation ability of the proposed ND–AR model (data-

driven prognostics). The dynamic parameters training and

models fusion for battery with complex operating condition

should be focused in our future work. Furthermore, the

capacity regeneration modeling and low depth of dis-

charging (DOD) modeling for precise RUL prediction are

focusing to improve applicable capability.
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