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Abstract: This study proposes a novel optimal generation scheduling model for virtual power plant (VPP) considering the
degradation cost of energy storage system (ESS). The VPP is generally formed by a mix of distributed energy resources,
and the ESS is an important installation for flexible VPP dispatch due to its controllable and schedulable behaviours. For
the operations of battery storage systems, the ambient temperature and depth of discharge have significant impacts on
the wear and tear of the ESS as well as battery degradation cost. Furthermore, the battery degradation cost is
modelled and approximated by a piecewise linear function, and then incorporated into the proposed optimal VPP
scheduling model. Consequently, the optimal VPP scheduling problem is formulated as a two-stage stochastic mixed-
integer linear programming in order to maximise the expected profits of the VPP. The proposed model has been
successfully implemented and tested through a representative case study, and the influence of battery degradation
cost on optimal VPP scheduling has also been thoroughly analysed and demonstrated.

Nomenclature

Acronyms

BEV battery electric vehicle
CTPP conventional thermal power plant
CVaR conditional value at risk
DoD depth of discharge
ESS energy storage system
EV electric vehicle
MILP mixed-integer linear programming
PHEV plug-in hybrid EV
PV photovoltaic
VPP virtual power plant
WPP wind power plant

Sets

B sets of batteries
P sets of day-ahead market price scenarios
S sets of PV power output scenarios
W sets of WPP power output scenarios
T sets of time periods

Constants

gb,0 initial energy stored in battery b (MWh)
gbmax maximum capacity of battery b (MWh)
gbmin minimum capacity of battery b (MWh)
gcmax maximum power output of the CTPP (MW)
gcmin minimum power output of the CTPP (MW)
gs,t PV power output in time period t and PV power output

scenario s (MW)
gw,t WPP power output in time period t and WPP power

output scenario w (MW)
Lmin
down constant equals to min [T , (Tmin

down − T init
down) · (1− Toff

on )],
which is the number of time periods that the CTPP has to
be down from the beginning of the planning horizon (h)

Lmin
up constant equals to min [T , (Tmin

up − T init
up ) · Toff

on ], which is
the number of time periods that the CTPP has to be up
from the beginning of the planning horizon (h)

ru ramp-up limit of the CTPP (MW/h)
rd ramp-down limit of the CTPP (MW/h)
Sc start-up cost of CTPP (€)
T init
down the number of time periods that the CTPP has been down

before the beginning of the planning horizon (h)
Tmin
down minimum-down time of the CTPP (h)

Toff
on CTPP on–off status before the beginning of the planning

horizon (equals to 1 if T init
up . 0, and 0 otherwise)

T init
up the number of time periods that the CTPP has been up

before the beginning of the planning horizon (h)
Tmin
up maximum-up time of the CTPP (h)

d+b maximum energy can be charged to battery b during one
period (MWh)

d−b maximum energy can be discharge from battery b during
one period (MWh)

h+
b charge efficiency of battery b

h−
b discharge efficiency of battery b

jdown down-regulation price ratio
jup up-regulation price ratio
lp,t electricity price in the day-ahead market in time period t

and day-ahead market price scenario p (€/MWh)
πp probability of the pth day-ahead market price scenario
πs probability of the sth PV power output scenario
πw probability of the wth WPP power output scenario

Variables

CC
w,s,p,t fuel cost of the CTPP (€)

CB
w,s,p,b,t degradation cost of battery b (€)

gw,s,p,b,t energy stored in battery b at the end of time period
t (MWh)

g+w,s,p,b,t energy charged to battery b during time period
t (MWh)
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g−w,s,p,b,t energy discharged from battery b during time period
t (MWh)

gcw,s,p,t CTPP power output (MW)
gdownw,s,p,t electricity sold in the balancing market (MW)
gupw,s,p,t electricity purchased in the balancing market (MW)
Gw,s,p,b,t electricity sold (positive) or purchased (negative) in

the day-ahead market (MW)
uw,s,p,b,t binary variable equals to 1 if battery b is charged, and

0 otherwise
vw,s,p,b,t binary variable equals to 1 if battery b is discharged,

and 0 otherwise
xw,s,p,t binary variable equals to 1 if the CTPP is on, and 0

otherwise
yw,s,p,t binary variable equals to 1 if the CTPP is started up at

the beginning of the time period, and 0 otherwise
ζ auxiliary variable for computing the CVaR (€)
ηw,s,p auxiliary variable for computing the CVaR (€)

1 Introduction

Renewable energy technologies have caught great attention in recent
years because of the growing environmental consciousness. Various
investment and incentive schemes in this field have been carried out
worldwide, especially in wind power and photovoltaic (PV)
generations [1, 2]. However, the inherent fluctuation and volatility
characteristics of wind power and PV generations have brought
significant instability to power systems and the profit obtained by
individual agents is usually lower than some other advanced
energy generations. Besides, it is risky for the owners of wind
power plants (WPPs) and PV plants to trade in electricity markets
since the imbalance costs are inevitable and the incentive schemes
are not desirable within a contracted time limit [3, 4].
Consequently, renewable energy sources, energy storage systems
(ESSs), and dispatchable power plants are combined to form a
single virtual power plant (VPP). This unique aggregation not only
can overcome the uncertainties of intermittent renewable
generations and improve the power quality, but also enable the
VPP agent to make more profits. Studies on the collaborative
scheduling optimisation, risk aversion, and the ESS utilisation
have been investigated for VPP management in recent years [5–9].

The main goal for a VPP agent is to optimise the scheduling and
make profit. A short-term offering model for a VPP based on
stochastic programming was presented in [10] to maximise its
expected profit in both the day-ahead and balancing electricity
markets. Considering the long-term bilateral contracts, Pandžić
et al. [11] proposed a VPP model containing a pumped hydro
storage plant to optimise the profit. Nevertheless, the risk of actual
profit is not tackled in the aforementioned studies, and thus the
conditional value at risk (CVaR) was applied as a risk evaluation
technique for a VPP model to lower the risk of low profit
scenarios in electricity markets [12]. With a weighted CVaR, a
coordinated trading of WPP and conventional thermal power plant
(CTPP) was presented in [13], which significantly improves the
expected profits in the lowest lucrative scenarios. Electric vehicles
(EVs) have received significant attention as an emerging energy
storage form for the VPP. An agent-based approach was presented
in [14] to increase the profit of the VPP with a special payment
for EVs participation. In order to analyse the cost and emission
impacts caused by plug-in hybrid EVs (PHEVs) application in the
VPP, Arslan and Karasan [15] developed an energy management
model for a VPP including PHEVs and distributed energy resources.

Although it is convenient and clean to use EV batteries as the ESS
for a VPP, the battery lifespan limitation and wear and tear caused by
frequent charging and discharging will bring remarkable impacts on
VPP scheduling with EV batteries. An optimal control strategy was
proposed in [16] for PHEV battery fleets to maximise the efficiency
of the power-train as well as minimise the battery degradation cost.
Furthermore, the correlations among charging/discharging patterns,
depth of discharge (DoD), ambient temperature, and the
degradation cost of battery EV (BEV) batteries were formulated in
[17] on the basis of rigorous mathematical analysis. Numerical

results show that DoD and ambient temperature are two important
factors which can cause considerable degradation cost to BEV
batteries.

So far, the influence of battery degradation cost on the optimal
VPP scheduling in the day-ahead and balancing markets has not
yet been studied. It is obvious that a battery has a limited lifespan,
namely a cycle life, due to its inherent physical and chemical
characteristics [18]. Factors, such as DoD, ambient temperature,
and high discharge currents play crucial roles in shortening the
battery cycle life [19, 20], and thus lead to an inevitable cost to
VPP participation. Although the degradation cost of a single
battery can be negligible for simplicity, for a VPP comprising
plenty of batteries, the degradation cost has a significant impact on
the overall expected profit. Therefore, it is worth modelling the
battery degradation cost in the VPP scheduling problem.
Concerning the reviewed work, the main contribution of this paper
is to incorporate the battery degradation cost into the proposed
model and in-depth analysis of the effects of battery degradation
cost on the VPP scheduling.

A novel optimal scheduling model for a VPP is proposed in this
paper. The battery fleets are used as the energy storage medium
not only to compensate the fluctuation of WPP and PV
generations, but also to provide optimal operations to maximise
the expected profit. Using piecewise linearisation methods, the
VPP model with battery degradation cost, uncertain renewable
generations, and market price is formulated as a two-stage
stochastic mixed-integer linear programming (MILP).

2 Problem formulation

2.1 Uncertainty modelling

Both the day-ahead and the balancing markets are considered in this
paper to provide flexible electricity trade for a VPP operator. The
VPP submits bids/offers to the day-ahead market for several hours
(usually 10–14 h) prior to the operation hour. The balancing
market enables the VPP operator to purchase or sell electricity
close to real time for regulating energy deviations caused by
uncertain WPP and PV generations. Following current practice in
European power market, a dual pricing scheme is provided for the
VPP operator to purchase electricity in the balancing market at a
price higher than that in the day-ahead market (up-regulation), and
sell electricity in the balancing market at a price lower than that in
the day-ahead market (down-regulation) [10, 12].

The VPP model consists of a WPP, a PV power plant, a CTPP, and
the battery fleets. Since there are uncertainties in day-ahead market
price, WPP and PV generations, it is important to predict them
accurately for optimal scheduling of the VPP. Investigations on
uncertainty prediction techniques of these uncertainties are
abundant and fruitful [21–25]. In this paper, the historical data are
used to form scenarios with equal probability of occurrence for
modelling uncertainties [10, 11].

A classical two-stage stochastic programming is used to tackle the
aforementioned uncertainties [26, 27]. In the first stage, the VPP
operator should make decisions on the amount of sold/purchased
electricity in the day-ahead market, before all the uncertainties
become known (here-and-now decisions). In the second stage, the
VPP operator should decide the operations of the CTPP and
battery fleets after the revelation of uncertainties (wait-and-see
decisions). The goal of the VPP operator is to maximise the
expected profit. A top-level flowchart of the two-stage stochastic
programming is shown in Fig. 1.

2.2 Battery degradation cost

Battery fleets are utilised in the VPP not only to tackle the
intermittent renewable generations, but also to enable the VPP
operator to sell electricity with high market prices. Several factors
contribute to the battery degradation cost, while most of the
previously reported studies only consider the DoD in the
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scheduling problems. Consequently, the DoD combined with
ambient temperature is taken into account to model the battery
degradation cost.

Among the studies on battery degradation cost modelling [17, 28–
30], this paper adopts the methods proposed in [17, 28], in which the
battery degradation cost is formulated as the wear and tear for VPP
participation due to the extra cycling under extreme ambient
temperature and the change in DoD during charging/discharging
periods. Besides, additional thermal management system and DoD
deviation control aggregator are necessary in battery life regulation
[31]. In this paper, the worst case that none of them are
implemented is studied for better understanding the effect of
battery degradation cost on optimal VPP scheduling.

In this paper, the DoD can be formulated as follows

DoD = 1− gv
gvmax

(1)

where gv is the energy stored in the battery; and gvmax is the
maximum energy capacity of battery [15].

The studied battery fleets include lead-acid batteries and nickel
metal hydride (NiMH) batteries. Using the data points provided by
the manufacturer, the correlations between DoD and cycle life of
the two types of batteries can be obtained using MATLAB curve
fitting tools and expressed by (2) and (3), respectively,

Llead-acid = aDoDlead-acid + b (2)

where a and b are coefficients of cycle life dependence on DoD;
Llead-acid and DoDlead-acid are cycle life in the number of cycles
and DoD of the lead-acid battery, respectively. Here, a =−4230
and b = 4332

LNiMH = b0
DoDref

DoDNiMH

( )b1

exp b2 1− DoDNiMH

DoDref

( )( )
(3)

where β0, β1, and β2 are coefficients of cycle life dependence on
DoD; DoDref, LR, DoDNiMH, and LNiMH are the rated DoD, rated

cycle life, DoD, and cycle life of the NiMH battery, respectively.
In this paper, β0 = 1400, β1 = 0.886, and β2 =−0.3997 were
obtained from the curve fitting results.

The correlations between ambient temperature and cycle life for
the two types of batteries can be obtained from experimental data
and curve fitting method, as shown in (4) and (5), respectively,

Llead-acid = k exp(aT ) (4)

where k and α are coefficients of cycle life dependence on the
temperature; Llead-acid and T are cycle life in the number of cycles
of the lead-acid battery and ambient temperature in degree
centigrade, respectively. In this paper, k = 3291 and α =−0.05922

LNiMH = aT 3 + bT 2 + cT + d (5)

where a, b, c, and d are coefficients of cycle life dependence on
temperature; LNiMH and T are cycle life in the number of cycles of
the NiMH battery and ambient temperature in degree centigrade,
respectively. In this paper, a = 0.002424, b = 0.4879, c = 6.742, and
d = 1524.

As an example, the correlations among ambient temperature and
cycle life, DoD and cycle life of the NiMH battery are presented
in Figs. 2a and b, respectively. As shown in the figures, the cycle
life is inversely proportional with both DoD and ambient
temperature. In other words, deep discharging and high ambient
temperature can notably shorten the cycle life. It is important to
note that the cycle life reduces more with the increase of DoD
than that of temperature.

Using the model proposed by Kempton and Tomić [28], the
degradation cost Cv is defined as

Cv =
Cb

LN · Ev · DoDref
(6)

where Cb is the battery capital cost in € considering replacement
labour; LN is the battery lifespan in the number of cycles; Ev is the
total energy storage of the battery in kWh, and DoDref is the

Fig. 1 Top-level flowchart of the two-stage stochastic programming
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reference DoD. LN and Ev can be calculated under a reference
condition (ambient temperature T = 20°C, DoDref = 80%).

In this paper, the overall effect of ambient temperature and DoD
on the battery lifespan is defined as

LVPP = LATEM · LADoD
LR

(7)

where LVPP is the battery lifespan with VPP participation; LR is the
rated battery cycle life estimated by manufactures under rated
ambient temperature and DoD; LATEM and LADoD are the actual
cycle life of a battery, respectively, which can be acquired from
(2)–(5).

Hence, the battery degradation cost with VPP participation
considering the overall effect of ambient temperature and DoD can
be expressed as

CVPP = Cb

LVPP · Ev · DoDref
(8)

The degradation cost of lead-acid battery can be obtained from (2),
(4), (7), and (8), which is defined by

Clead-acid
VPP = Cb · LR

k · (aDoDlead-acid + b) · exp(aT ) · Ev · DoDref
(9)

Moreover, the degradation cost of NiMH battery can be obtained
from (3), (5), (7), and (8), which is presented by (see (10))

2.3 Formulation

The objective function of optimal VPP scheduling model with
battery degradation cost is formulated as follows
(see (11))

subject to

xw,s,p,t − xw,s,p,t−1 ≤ yw,s,p,t , ∀w [ nw, ∀s [ ns, ∀p [ np, ∀t [ T

(12)

gcmin · xw,s,p,t ≤ gcw,s,p,t ≤ gcmax · xw,s,p,t ,
∀w [ nw, ∀s [ ns, ∀p [ np, ∀t [ T

(13)

−rd≤ gcw,s,p,t − gcw,s,p,t−1 ≤ ru, ∀w[ nw, ∀s[ ns, ∀p[ np, ∀t[ T

(14)

∑Lmin
down

t=1

xw,s,p,t = 0, ∀w [ nw, ∀s [ ns, ∀p [ np (15)

∑t+Tmin
down−1

t′=t

(1− xw,s,p,t′ ) ≥ Tmin
down · (xw,s,p,t−1 − xw,s,p,t),

∀w [ nw, ∀s [ ns, ∀p [ np, ∀t [ [Lmin
down + 1, T − Tmin

down + 1]

(16)

∑T
t′=t

[1− xw,s,p,t′ − (xw,s,p,t−1 − xw,s,p,t)] ≥ 0,

∀w [ nw, ∀s [ ns, ∀p [ np, ∀t [ [T − Tmin
down + 2, T ]

(17)

∑Lmin
up

t=1

(1− xw,s,p,t) = 0, ∀w [ nw, ∀s [ ns, ∀p [ np (18)

∑t+Tmin
up −1

t′=t

xw,s,p,t′ ≥ Tmin
up · yw,s,p,t , ∀w [ nw, ∀s [ ns, ∀p [ np,

∀t [ [Lmin
up + 1, T − Tmin

up + 1]

(19)

∑T
t′=t

(xw,s,p,t − yw,s,p,t)] ≥ 0,

∀w [ nw, ∀s [ ns, ∀p [ np, ∀t [ [T − Tmin
up + 2, T ]

(20)

gbmin ≤ gw,s,p,b,t ≤ gbmax,

∀w [ nw, ∀s [ ns, ∀p [ np, ∀b [ B, ∀t [ T
(21)

Fig. 2 Correlations among DoD, ambient temperature, and cycle life of the
NiMH battery

a Correlation between ambient temperature and cycle life of the NiMH battery
b Correlation between DoD and cycle life of the NiMH battery

CNiMH
VPP = Cb · LR

b0 · (DoDref/DoDNiMH)
b1 · exp b2 · (1− (DoDNiMH/DoDref ))

( ) · (aT3 + bT2 + cT + d) · Ev · DoDref

(10)

max
∑
t[T

∑
w[nw

pw ·
∑
s[ns

ps ·
∑
p[np

pp · [l p,t · (Gw,s,p,t + gdownw,s,p,t · wdown − gupw,s,p,t · wup)− CC
w,s,p,t − yw,s,p,t · Sc − CB

w,s,p,b,t] (11)
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gw,s,p,b,0 = gb,0, ∀w [ nw, ∀s [ ns, ∀p [ np, ∀b [ B, ∀t [ T

(22)

uw,s,p,b,t + vw,s,p,b,t ≤ 1, ∀w[ nw, ∀s[ ns, ∀p[ np, ∀b[ B, ∀t[ T

(23)

0 ≤ g+w,s,p,b,t ≤ d+b · uw,s,p,b,t ,
∀w [ nw, ∀s [ ns, ∀p [ np, ∀b [ B, ∀t [ T

(24)

0 ≤ g−w,s,p,b,t ≤ d−b · vw,s,p,b,t ,
∀w [ nw, ∀s [ ns, ∀p [ np, ∀b [ B, ∀t [ T

(25)

gw,s,p,b,t = gw,s,p,b,t−1 + h+
b · g+w,s,p,b,t −

1

h−
b

· g−w,s,p,b,t ,

∀w [ nw, ∀s [ ns, ∀p [ np, ∀b [ B, ∀t [ T

(26)

gcw,s,p,t + gw,t + gs,t + gupw,s,p,t +
∑
b[B

g−w,s,p,b,t

= Gw,s,p,t + gdonww,s,p,t +
∑
b[B

g+w,s,p,b,t

∀w [ nw, ∀s [ ns, ∀p [ np, ∀b [ B, ∀t [ T

(27)

G1,1,p,t = G1,2,p,t · · · = G2,2,p,t · · · = Gnw ,ns ,p,t
,

∀p [ np, ∀t [ T
(28)

xw,s,p,t , yw,s,p,t , uw,s,p,b,t , vw,s,p,b,t [ {0, 1},

∀w [ nw, ∀s [ ns, ∀p [ np, ∀b [ B, ∀t [ T
(29)

In the above formulation, the expected profit of the VPP is
maximised by the objective function (11) which includes
electricity sold/purchased in the day-ahead market (Gw,s,p,t), sold in
the down-regulation balancing market (gdownw,s,p,t), and purchased in
the up-regulation balancing market (gupw,s,p,t), as well as the fuel
cost (CC

w,s,p,t) and start-up cost (yw,s,p,t · Sc) of the CTPP and the
battery degradation cost (CB

w,s,p,b,t). Here, jup and jdown are
up-regulation price ratio and down-regulation price ratio,
respectively. In this paper, jup = 1.3 and jdown = 0.7.

Constraints of the CTPP are presented in (12)–(20). Constraint
(12) denotes the correlation between binary xw,s,p,t and yw,s,p,t. xw,s,
p,t equals to 1 if the CTPP is on, and 0 otherwise. yw,s,p,t equals to
1 if the CTPP is started up, and 0 otherwise. Constraint (13)
presents the minimum and maximum power output limits of the
CTPP. Constraint (14) enforces the ramp rate limits.
Minimum-down time constraints are expressed in (15)–(17),
indicating that if the CTPP is switched off, it has to remain off for
Tmin
down hours. Constraint (15) enforces the CTPP to stay off for

Lmin
down hours if the CTPP has already been off at hour 0. Then, the

minimum-down time constraint for all combinations of
consecutive hours of size Tmin

down is enforced by constraint (16).
Constraint (17) is used to meet the minimum-down time constraint
for the last Tmin

down − 1 h. Constraints (18)–(20) enforce the
minimum-up time constraint in a similar manner as described above.

Constraints (21)–(26) are related to the battery fleets. Constraint
(21) enforces the minimum and maximum energy storage limits
for each battery. The initial energy stored in each battery is stated
by constraint (22). Constraint (23) describes the fact that charging
and discharging cannot be done simultaneously. uw,s,p,b,t and vw,s,p,b,t
are binary variables. uw,s,p,b,t equals to 1 if battery b is charged,
and 0 otherwise. vw,s,p,b,t equals to 1 if battery b is discharged, and
0 otherwise. Constraints (24) and (25) enforce the maximum

charging and discharging powers of each battery, respectively.
Constraint (26) declares the energy stored in each battery between
two consecutive periods. h+

b and h−
b are the charging and

discharging efficiencies of each battery, respectively.
Constraint (27) is the energy balance equality constraint. It

indicates that the electricity generated by CTPP, WPP, and PV
power plant, plus the electricity purchased in the balancing market
and the electricity discharged from battery fleets, equals to the
electricity sold (Gw,s,p,t≥ 0), or purchased (Gw,s,p,t≤ 0) in the
day-ahead market plus the electricity sold to the balancing market
and the electricity charged to battery fleets. Constraint (28) denotes
that Gw,s,p,t is only related to the time and day-ahead market prices,
ensuring that only one bidding curve is submitted to the day-ahead
market in each hour, irrespective of the WPP and PV power
outputs. Finally, binary variables are defined by constraint (29).
This model guarantees a flexible operation for the CTPP and the
battery fleets to meet the realisation of various scenarios.

3 Case studies

In this paper, the operator aims to find the optimal scheduling
decisions for a VPP considering battery degradation cost. A WPP,
a PV power plant, a CTPP, and the battery fleets are combined to
form the VPP.

3.1 Simulation environment

The considered time horizon is 24 h, and the characteristics of the
CTPP are shown in Table 1. In order to linearise the model, a
2-block piecewise linear function is used to approximate the
quadratic CTPP fuel cost function. It is assumed that the CTPP
has been shut up for 1 h (i.e. T init

down = 1) before the considered
time horizon.

Five equiprobable WPP power output scenarios based on
historical data are shown in Fig. 3a. These data are obtained from
a WPP with a rated capacity of 10.2 MW, located in Weybourne,
Norfolk coast area of the UK. Fig. 3b presents five equiprobable
power output scenarios of a PV power plant with a rated capacity
of 10 MW. They are formed using historical data collected from
EEX transparency platform [32]. Fig. 3c shows five equiprobable
day-ahead market price scenarios based on real data obtained from
APX Power UK [33].

Table 2 shows the characteristics of the two studied batteries. The
correlations among degradation cost, DoD, and ambient temperature
of the lead-acid battery are presented in Figs. 4a and b is related to
NiMH battery. As shown in the two figures, degradation cost
increases with rising ambient temperature and DoD due to the
reduction of cycle life. Besides, the degradation cost of NiMH
battery is lower comparing with that of lead-acid battery in the
same ambient temperature and DoD. Figs. 4c and d show the
correlation between degradation cost and DoD of the lead-acid
battery and NiMH battery under different ambient temperatures,
respectively. The two figures indicate that with the same DoD,
high ambient temperature causes high degradation cost. Besides,
degradation cost increases logarithmically with the increase of
DoD for the lead-acid battery but exponentially for the NiMH
battery. Piecewise linear functions are used to fit the non-linear
degradation cost function in order to keep the linearity of this
model [15]. Battery fleets in this paper are composed of 500
lead-acid batteries (battery fleet a) and 500 NiMH batteries
(battery fleet b), thus the maximum and minimum capacities of the
battery fleets are 28.935 and 3.215 MWh, respectively. It is
assumed that the initial energy storage of the battery fleets is

Table 1 CTPP data

a, MBtu/MW2h b, MBtu/MWh c, MBtu Start-up fuel, MBtu Fuel price, €/MBtu Pmax, MW Pmin, MW Min-up, h Min-down, h ramp, MW/h

0.0029 6.05 40.53 20.14 1 16 3.5 3 3 5
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3.215 MW. In this paper, the degradation cost is counted only when
the battery fleets are operated by the VPP operator.

3.2 Computational results

Assuming the ambient temperature is 20°C, Fig. 5 presents the
expected hourly and cumulative profit of the VPP together with

the hourly and cumulative degradation cost in case 1 (with battery
degradation cost) and case 2 (without battery degradation cost). In
hour 1, the initial energy stored in the battery fleets is discharged
to sell in the day-ahead market in case 2. While in case 1, no
electricity is discharged from the battery fleets to avoid the
degradation cost, resulting in lower profit than case 2. Since
the day-ahead market prices are the lowest in the following 4 h, the
electricity produced by the VPP is used to charge the battery fleets

Fig. 3 Five WPP power output, five PV plant power output, and day-ahead market price scenarios

a Five WPP power output scenarios
b Five PV plant power output scenarios
c 5 day-ahead market price scenarios
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in both of the two cases. From hours 6 to 24, the hourly profits vary
by the day-ahead market prices. In other words, electricity produced
by the VPP is sold in the day-ahead market when the market prices
are high but used to charge the battery fleets when the market prices
are low. Comparing to case 2, the profits in most of these hours are
lower in case 1 due to the degradation cost. In hours 2, 4, 5, 14, 15,
16, and 22, the profits in case 1 are higher than case 2, because the
VPP operator chooses to charge the battery fleets during these hours
in case 2 while sells electricity to day-ahead market in case 1 for
averting the degradation cost. Besides, the degradation cost in
hours 3, 8, 12, 15, and 21 increases owning to the fact that market
prices start to fall during these hours and battery fleets are used to
store the electricity. The highest profits of both the two cases are
acquired in hour 18 because of the highest market prices in most
scenarios. The expected daily profit of the VPP is 23 841.65 € but
falls to 20 839.87 € (i.e. a 12.59% reduction) when battery
degradation cost is counted. It is worth to note that the overall
degradation cost throughout the day is 779.17 € which is not the
difference between the expected daily profits of the two cases.
Hence the degradation cost has significant impacts on the optimal
VPP decisions, which will be illustrated in the following sections.

Electricity sold in the day-ahead market for different market price
scenarios in the two cases is shown in Figs. 6a and b, respectively.
As shown from Fig. 6a, electricity sold in hour 5 is higher than
that of the contiguous few hours, since the CTPP starts to generate
power with its maximum capacity in hour 5. While in the
following few hours, electricity is used to charge the battery fleets.
It is important to note that for all scenarios in case 1, the largest
amount of electricity is sold in hour 16 rather than in hour 18
which exhibits the highest market price. This is because the
market price begins to rise from hour 16 in most of the scenarios,
and thus the battery fleets are fully discharged for selling
electricity in the day-ahead market, causing a significant increase
of DoD as well as the battery degradation cost. As a result, the
VPP operator tries to discharge less electricity from the battery
fleets in order to realise optimal scheduling, though market prices
become higher during the next few hours. As shown in Fig. 6b, in
most of the five scenarios, a large amount of electricity is sold in
the day-ahead market in hours 16–20 due to high market prices
during these periods. On 1 April and 18 August, the largest
amount of electricity sold to the day-ahead market appears in hour
11. Since the power output of the PV plant on 18 August is the
largest and market prices in the same day varies a bit from hours
11 to 21, the VPP operator is willing to sell the electricity in the
day-ahead market rather than charge the battery fleets or sell it to
the balancing market. Furthermore, the market price on 1 April
has a sudden rise in hour 11, and thus nearly all the energy stored
in the battery fleets during the previous 10 h is sold to the
day-ahead market. Comparing Figs. 6a with b, the most significant
difference is that electricity sold to the day-ahead market in case 1
varies less with market prices than that in case 2. Since the
degradation cost is inevitable in case 1, the VPP operator opts to

reduce the operation of the battery fleets, and utilise balancing
market to sell/purchase more electricity to maximise the profit.
Moreover, the results in the two figures indicate that electricity

Table 2 Battery data

Characteristics Lead-acid
battery

NiMH
battery

rated capacity, kWh 28.3 36
maximum capacity, kWha 25.47 32.4
minimum capacity, kWha 2.83 3.6
initial energy storage, kWh 2.83 3.6
maximum charging/discharging power,
kWha

5.66 7.2

charging/discharging efficiency, % 91.4 92.5
rated DoD,% 80 70
capital cost, € 2716.8 4032
cycle life, cyclesb 1000 1500

aFor prolonging battery lifespan, the maximum and minimum capacities
are set to be 90 and 10% of the rated capacity, respectively. Additionally,
the maximum charging/discharging power could not exceed 20% of the
rated capacity [14].
bAssuming the ambient temperature is 20°C.

Fig. 4 Correlations among degradation cost, ambient temperature, and
DoD of the lead-acid battery and NiMH battery

a Correlations among degradation cost, ambient temperature, and DoD of the lead-acid
battery
b Correlations among degradation cost, ambient temperature, and DoD of the NiMH
battery
c Correlation between degradation cost and DoD of the lead-acid battery under different
ambient temperatures
d Correlation between degradation cost and DoD of the NiMH battery under different
ambient temperatures
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Fig. 5 Expected hourly and cumulative profit of VPP together with the hourly and cumulative degradation cost in the two cases

Fig. 6 Electricity sold to the day-ahead market in different market price scenarios in the two cases

a Electricity sold to the day-ahead market in different market price scenarios in case 1
b Electricity sold to the day-ahead market in different market price scenarios in case 2
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sold to the day-ahead market is directly proportional with the market
price. In other words, more electricity is sold when the market price
is high, and less electricity is sold otherwise.

In order to thoroughly understand the effect of battery degradation
cost on the optimal scheduling of the VPP, the following four
scenarios in the two cases are simulated and analysed in detail:

(i) low variation of WPP and PV output, low day-ahead market
prices;
(ii) low variation of WPP and PV output, high day-ahead market
prices;
(iii) high variation of WPP and PV output, low day-ahead market
prices;
(iv) high variation of WPP and PV output, high day-ahead market
prices.

Assuming that in Figs. 7 and 8, a positive value of the day-ahead
market curve indicates the electricity is sold, a positive value of the
balancing market curve indicates electricity is purchased and a
negative value of the battery fleet means it is charged. Besides,
WPP, PV, and CTPP power output are always positive.

Figs. 7a and b show the optimal scheduling results of the VPP
in the first simulation scenario for cases 1 and 2, respectively.

A comparison between the two figures indicates that, in order to
perform the offering commitments to the day-ahead market, extra
electricity (43.63 MWh) is purchased by the VPP operator
throughout the day in the balancing market in case 1. The CTPP
in case 1 produces electricity at its full capacity during hours
10–23 while the CTPP in case 2 produces less electricity due to
low day-ahead market prices. During the considered time
horizon, the overall electricity sold to the day-ahead market is
355.26 MWh in case 1 while 231.95 MWh in case 2, which
causes a significant reduction of profit in case 1 due to the low
day-ahead market price scenario. Since battery degradation
cost is counted in case 1, the VPP operator chooses to purchase
electricity in the balancing market and schedule the
CTPP generate more electricity to sell in the day-ahead market
during periods of high prices instead of operating the battery
fleets. In other words, the balancing market and CTPP perform
like the ESS in case 1. The overall electricity flowing through
the battery fleets in case 1 is 31.48 MW while in case 2 is
75.86 MW. This is because the VPP operator in case 1 tries to
use the battery fleets as little as possible to reduce the
degradation cost. In addition, battery fleet a in case 1 is not
frequently used compared with battery fleet b since the
degradation cost of lead-acid battery is higher than that of a
NiMH battery.

Fig. 7 Optimal scheduling results of the VPP in the first and second simulation scenarios in the two cases

a Optimal scheduling results of the VPP in the first simulation scenario in case 1
b Optimal scheduling results of the VPP in the first simulation scenario in case 2
c Optimal scheduling results of the VPP in the second simulation scenario in case 1
d Optimal scheduling results of the VPP in the second simulation scenario in case 2
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The optimal scheduling results of the VPP in the second
simulation scenario in cases 1 and 2 are presented in Figs. 7c and
d, respectively. It can be seen from the two figures, a large amount
of electricity is sold to the day-ahead market in both of the two
cases because of the high market prices. The CTPP stays on-line
all day long and generates electricity at its maximum capacity in
order to accomplish the offering commitments. Electricity
purchased in the balancing market during hours 1–3 and 5–24 in
case 1 is only for selling in the day-ahead market. However, in
case 2, a part of the electricity purchased in the balancing market
is employed to charge the battery fleets for more profit. It is
important to note that the electricity sold to the day-ahead market
during periods of high market prices (hours 8–12 and 16–21) in
case 2 is 249.02 MWh, nearly 58% of the total electricity sold to
the day-ahead market. While in case 1, this percentage is 54%.
This is because in case 2, battery fleets are charged in periods of
low market prices and discharged in high market prices, while
they are hardly discharged in case 1 for averting the degradation cost.

The results of the third simulation scenario are depicted in Figs. 8a
and b. As shown in Fig. 8a, a large number of the WPP generations
are sold to the balancing market, and the rest parts are either sold to
the day-ahead market or used to charge the battery fleets. As
mentioned before, selling electricity to the balancing market is less
profitable than selling it to the day-ahead market. Nevertheless,
since Gw,s,p,t is independent of the WPP generation, the VPP
operator is necessary to sell electricity to the balancing market

rather than to the day-ahead market in some cases. Although the
profit will be decreased in this scenario, the overall performance of
the scheduling is optimum. Since battery fleets are seldom
discharged in case 1, nearly all of the PV generations are sold to
the day-head market and the CTPP is on-line for the whole day
apart from hour 1 to fulfil offering commitments. As the result of
degradation cost, the battery fleets are charged during hours 3, 6–
10, but discharged only at hours 15–16. Comparing with case 1,
the battery fleets in case 2 are more frequently operated to store
electricity at periods of low market prices and sell it at high
market prices with the purpose of optimised scheduling.
Furthermore, the electricity sold to the balancing market in case 2
is less than case 1, which brings higher profit in case 2. The CTPP
stays on-line only for 7 h in case 2 due to low day-head market
prices.

Figs. 8c and d depict the results of the fourth simulation scenario.
Due to high market prices, the electricity sold to the day-ahead
market in the fourth simulation scenario is higher than that in the
third simulation scenario in both cases 1 and 2, which reaches
429.35 and 450.28 MWh, respectively. The results in Fig. 8c
indicate that the balancing market in case 1 is mainly used to
tackle the imbalances between electricity production and electricity
traded in the day-ahead market caused by the WPP and PV
generations. While in case 2, the WPP and PV generations are
utilised mostly for charging the battery fleets. Moreover, in order
to reduce the degradation cost, battery fleets in case 1 are charged

Fig. 7 Continued
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during hours 3, 6–8, and 12, which exhibit the periods of low market
prices, but discharged only a small amount of electricity (1.82 MWh)
during period of high market prices (hour 19), though this brings a
negative impact on the overall profit comparing with case 2. As a
result of high day-ahead market prices, the CTPP in both of the
two cases is running at its full capacity until hour 24.

The ambient temperature in the aforementioned two cases is
assumed to be 20°C. However, in the real world, ambient
temperature varies across a day and various areas. The expected
profits of the VPP containing two types of battery fleets under
different ambient temperatures are shown in Fig. 9. Battery fleets 1
contains 1000 lead-acid batteries and battery fleets 2 contains 1000
NiMH batteries. It is assumed that the initial energy storages of
the two battery fleets are 2.83 and 3.6 MW, respectively. The
results in Fig. 9 indicate that the expected profit decreases with the
increase of ambient temperature, because with the same DoD, high
ambient temperature causes high degradation cost for both
lead-acid and NiMH batteries. Moreover, as a result of the
logarithmical correlation between ambient temperature and
degradation cost for lead-acid battery, when the ambient
temperature increases, the expected profit of VPP containing
battery fleets 1 has more reduction compared with the VPP
containing battery fleets 2.

The above optimal scheduling results and expected profit are
obtained from the risk-neutral model (11) without consideration of
a risk measure. Nevertheless, due to the uncertainties in renewable
generations and day-ahead market prices, the VPP agent has high
risks associated with decisions trading in the electricity market.
Therefore, the optimal scheduling decisions should hedge against
these uncertainties to be more profitable while controlling the
profit variability within a moderate range. In this paper, the CVaR
at the α confidence level (CVaRα) is used as the risk measure to
assess and control the risk of the scheduling decisions, since it has
good mathematical properties and can be readily included in the
risk-neutral model. The CVaR is defined approximately as the
expected profit of the (1− α) · 100% least profitable scenarios
when it maximises a discrete profit distribution [13].

Consequently, the objective function with risk measure can be
formulated as follows

max
∑
t[T

∑
w[nw

pw ·
∑
s[ns

ps ·
∑
p[np

pp

· [l p,t · (Gw,s,p,t + gdownw,s,p,t · wdown − gupw,s,p,t · wup)

− CC
w,s,p,t − yw,s,p,t · Sc − CB

w,s,p,b,t]+ b · CVaR

(30)

Fig. 8 Optimal scheduling results of the VPP in the third and fourth simulation scenarios in the two cases

a Optimal scheduling results of the VPP in the third simulation scenario in case 1
b Optimal scheduling results of the VPP in the third simulation scenario in case 2
c Optimal scheduling results of the VPP in the fourth simulation scenario in case 1
d Optimal scheduling results of the VPP in the fourth simulation scenario in case 2
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subject to constraints (12)–(29) plus the following three constraints:

CVaR = z− 1

1− a
·
∑
w[nw

pw ·
∑
s[ns

ps ·
∑
p[np

pp · hw,s,p (31)

z−
∑
t[T

[l p,t · (Gw,s,p,t + gdownw,s,p,t · wdown − gupw,s,p,t · wup)

− CC
w,s,p,t − yw,s,p,t · Sc − CB

w,s,p,b,t] ≤ hw,s,p

∀w [ nw, ∀s [ ns, ∀p [ np

(32)

hw,s,p ≥ 0, ∀w [ nw, ∀s [ ns, ∀p [ np (33)

The objective function (30) includes the expected profit of the VPP
and the weighted CVaR. Constraint (31) is used to calculate
the CVaR. Constraints (32) and (33) are linear formulation of the
CVaR. β ∈ [0, ∞) is a weighting parameter used to define the
tradeoff between expected profit and risk averse. If the risk is
neglected, i.e. β = 0, the VPP scheduling model becomes a
risk-neutral one. As the β increases, more risk averse will be
considered by the VPP agent with regard to the expected profit.

By assuming β = 0.4and α = 95%, the expected daily profit of the
VPP considering risk measure in case 1 is 19 722.86 €, which is
lower than 20 839.87 € in the risk-neutral case (β = 0). This is
because the CVaR aims to maximise the expected profit of the
least profitable scenarios at the expense of a moderate reduction in
the expected profit. In other words, the risk of experiencing profit

distributions with high probability of low profit is controlled by
the CVaR. Fig. 10 shows the efficient frontier, i.e. a collection of
optimal points obtained for different values of β. As can be seen
from Fig. 10, the CVaR increases significantly with a moderate
reduction of expected profit when β increases. For example, a
37.6% increment of the CVaR indicates only a 6.9% reduction of
the expected profit when β is increased from 0 to 0.5. Fig. 10 also
shows that a small value of β yields the scheduling decisions with
high expected profit and high risk while a large value of β

Fig. 8 Continued

Fig. 9 Expected profit of the VPP containing two types of battery fleets
under different ambient temperatures
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represents scheduling decisions with smaller expected profit and
smaller risk.

The proposed model contains 102,121 variables (18,000 binaries)
and 89,750 constraints, which is solved by IBM ILOG CPLEX
Optimization Studio® Version 12.6 on a desktop with 3.40 GHz
core i7 processor and 16.0 GB RAM. The overall computational
time is about 3 min 54 s.

As a mathematic optimisation software package, CPLEX can
efficiently solve linear programming problems, quadratic
programming problems, mixed integer programming problems,
quadratically constrained problems and so on. Although various
evolutionary algorithms and stochastic search algorithms have
been widely applied to solve the optimisation problems, these
approaches have the disadvantages of time-consuming iterative
computations and performance instability. The proposed VPP
model is a large-scale MILP problem which cannot be efficiently
solved by most of the intelligent heuristic algorithms. Therefore,
the CPLEX is utilised to cope with the proposed MILP model. A
comparison among the results obtained with different MILP
solving algorithms is presented in Table 3.

As shown in Table 3, the optimised objective value of each
algorithm is the same. Although the branch and cut algorithm is a
high performance technique for solving various MILP problems, it
suffers from relative high gap tolerance and long computational
time compared with other algorithms. Among the four algorithms,
MILP heuristic has the highest efficiency on the computational
time, the fewest iterations and relative lower Gap. Hence, the
MILP heuristic algorithm is used to solve the proposed VPP
model in this paper.

4 Conclusions

In this paper, a two-stage stochastic MILP is developed to achieve
the optimal scheduling for a VPP with battery degradation cost.
Battery fleets including lead-acid and NiMH batteries are utilised
as the ESS. Furthermore, DoD, and ambient temperature are used
to model the battery degradation cost. Through the comprehensive
analysis for the effects of degradation cost on optimal VPP
scheduling and detailed comparison between the two cases, the
following conclusions can be drawn:

(i) Electricity sold/purchased in the day-ahead market at each hour
varies less with market prices. In other words, as a result of battery
degradation cost, battery fleets are not frequently used to be charged
or discharged.
(ii) In order to make profit, the CTPP is more committed even in
case of low day-ahead market prices, since the fuel cost of CTPP
is cheaper than the battery degradation cost. Therefore, more
electricity is sold to the day-ahead market in case of low market
prices.
(iii) Since the battery fleets are less operated, the VPP operator
purchases more electricity in the balancing market and sold it to
the day-ahead market in case of low variation of WPP and PV
power outputs. Furthermore, with the high variation of WPP and
PV generation outputs, the balancing market is mainly used to
compensate the volatile generation.
(iv) The batteries with lower degradation cost are more dispatched
by the VPP operator to reduce the degradation cost and maximise
the overall expected profit.
(v) Higher ambient temperature causes lower expected profit and
the reduction is related to the correlation between ambient
temperature and degradation cost of the battery.
(vi) The risk measure can help VPP agent hedge against the
uncertain renewable generations and market prices to achieve
optimal scheduling of the VPP while controlling the profit
variability within a moderate range.
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