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Abstract: The presence of distributed generation (DG), represented by photovoltaic generation and wind generation,
brings new challenges to distribution network operation. To accommodate the integration of DG, this study proposes a
bi-level optimisation model to determine the optimal installation site and the optimal capacity of battery energy
storage system (BESS) in distribution network. The outer optimisation determines the optimal site and capacity of
BESS aiming at minimising total net present value (NPV) of the distribution network within the project life cycle. Then
optimal power flow (OPF) and BESS capacity adjustment are implemented in the inner optimisation. OPF optimises the
scheduling of BESS and network losses. On the basis of optimal scheduling of BESS, a novel capacity adjustment
method is further proposed to achieve the optimal BESS capacity considering battery lifetime for minimising the NPV
of BESS. Finally, the proposed method is performed on a modified IEEE 33-bus system and proven to be more
effective comparing with an existing method without BESS capacity adjustment.

1 Introduction

In recent years, increasing distributed generation (DG), such as wind
turbine (WT) and photovoltaic (PV), is integrated in distribution
network (DN). There are several benefits that DG offers, such as
loss reduction, voltage profile improvement, and reliability
enhancement. However, the randomness and variability of DG
bring negative impact on the operation of DN. Battery energy
storage system (BESS) is regarded as one of the key solutions to
accommodate the integration of DG. Due to the high cost of
BESS, the problem of BESS allocation has recently received a lot
of attention from power system researchers. Extensive work has
been carried out on the capacity optimisation of a single BESS [1–
4]. BESS is installed at the node connecting DG to the grid, or
integrated on the DG side. Most of them focus on the capacity
optimisation of a single BESS without considering the placement
of BESS. However, in DN, the network losses and voltage drop
are important issues such that the location of BESS has a
significance impact on system operation. It is necessary to
optimise both the installation site and capacity of BESS in DN
such that multiple BESSs can work coordinately to reduce
network losses and minimise the total cost.

In existing literature, there are a few works that address optimal
sizing and siting of BESS in DN. In [5], optimal sizing and siting
decisions for BESS in DN are obtained through a cost–benefit
analysis method, with the goal of the optimisation to maximise the
DN operator profits from energy transactions, investment and
operation cost savings. The locations of BESS are optimised based
on energy loss sensitivity, and then BESS capacities are
determined through particle swarm optimisation in [6]. Nick et al.
[7] adapt a second-order cone programming approach to formulate
the problem of the optimal allocation of dispersed storage systems
in active DNs. In the planning model, the lifetime of BESS is
assumed to be 5 years. In [8], an analytical method for optimal
siting and sizing of distributed energy storage systems (DESSs) at
the peak hours is proposed to achieve energy loss reduction and
maximise the profits from energy arbitrage. However, the

investment cost of DESSs is not considered. In [9], the authors
adopt genetic algorithm (GA) to optimise allocation of DESSs
aiming at minimising network losses and deferring network
upgrading. Further, in [10], they improved this model to include
the impact of charging/discharging efficiency and state of charge
(SOC) limits. To minimise the overall investment and network
losses, a combination of GA with dynamic programming is
presented in [11] to optimally determine the siting and capacity of
DESSs. In [12], the BESS is considered either as a controllable
load or controllable generator. The site and capacity of BESS are
optimised by GA with the objective of maximising wind power
utilisation, and the charging/discharging power of BESS is
optimised by probabilistic optimal power flow. It comes to our
attention that in above relevant works for multiple BESS planning
in DN, the impact of charging/discharging cycles and depth of
discharge (DOD) levels on the battery lifetime is not modelled in
detail. The battery lifetime is usually assumed to be a fixed
number of charging/discharging cycles regardless of DOD
variations or just a predefined constant number.

In this paper, a bi-level optimisation model is proposed to
optimally determine the siting and sizing of multiple BESSs in
DN aiming at minimising the total net present value (NPV) of the
DN within the project life cycle. The outer optimisation
determines the optimal sites and capacity of BESSs to minimise
the total NPV of the DN. Optimal power flow (OPF) and BESS
capacity adjustment are implemented in the inner optimisation.
OPF optimises the scheduling of BESS and network losses. On
the basis of optimal scheduling of BESS, the BESS capacity
adjustment is further proposed to achieve the optimal capacity of
BESS considering battery lifetime. The BESS model is presented
in detail considering the round-trip efficiency and SOC limits. In
addition, the lifetime prediction model of BESS is built and
rain-flow counting algorithm is adapted to evaluate the lifetime of
BESS subjected to charging/discharging cycles and DOD. The
BESS lifetime model is incorporated into the battery capacity
adjustment of the inner optimisation. Finally, the effectiveness of
the proposed method is verified on a modified IEEE 33-bus system.
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2 Optimisation model for siting and sizing of
BESS in DN

An optimisation model is built to determine the optimal site and
capacity of BESS in DN. In finance, NPV is defined as the sum of
the present values of incoming and outgoing cash flows over a
period of time. An important feature of NPV is that it
encompasses the concept of time value of money. NPV takes into
consideration that money spent or obtained in future periods will
have a different value with money spent or obtained in the present
[13]. A major drawback of NPV is that it assumes the discount
rate to be constant during the planning horizon, which might bring
some errors. However, for a long-term planning, such a small error
is acceptable. NPV is widely used for investment decision making
in planning problems over a long project life cycle. For instance,
in [14], the authors presented a NPV-based economic evaluation
methodology to assess the impact of energy storage costs on
economic performance in a distribution substation. In [15], NPV is
adopted as an economy criterion in a methodology for the optimal
allocation and economic analysis of energy storage system in
microgrids. In [16], transmission power system structure is
optimised by finding the optimal power line type with the
objective of minimising NPV of the total cost including
investment cost and operating costs. Therefore, NPV is also
adopted as the objective in this work to determine the optimal
installation site and capacity of BESS from an economic
perspective. In the optimisation model, the objective is to
minimise the NPV of DN during the project life cycle. The
constraints include power flow balance, branch flow limits, BESS
efficiency, and charging/discharging characteristics. The
optimisation model is formulated as follows

f = min {NPV} (1)

PE BESS = N × PE unit (2)

EE BESS = N × EE unit (3)

PDG + PHG + PBESS + PLOSS = PL (4)

QDG + QHG + QBESS + QLOSS = QL (5)

hd = hc =
��
h

√
(6)

Sijmin ≤ Sij ≤ Sijmax (7)

1 ≤ NBESS ≤ Nnode (8)

Vmin ≤ Vjr ≤ Vmax, j = 0, 1, . . . , Nnode (9)

SOCmin ≤ SOCr(i) ≤ SOCmax, i = 0, 1, . . . , Ns (10)

where PE_BESS and EE_BESS are the total power capacity and energy
capacity of BESS, respectively; PE_unit and EE_unit are the power
capacity and energy capacity of a single battery, respectively; and
N is the total number of batteries in the BESS.

Equations (4) and (5) represent the power flow balance constraint.
PDG, PHG, PBESS, PLOSS, and PL are the active power of DG, the
main grid, BESS, line loss, and load, respectively. QDG, QHG,
QBESS, QLOSS, and QL are the reactive power of DG, the main
grid, BESS, line loss, and load, respectively.

BESS efficiency is considered in (6). ηd and ηc are the efficiencies
of discharge, charge and η is the overall round-trip efficiency.

The branch flow limit is shown in (7). Sijmax and Sijmin are the
upper and lower power limits of line ij, and Sij is the apparent
power on line ij.

Installation site node constraint is presented in (8), NBESS is the
number of BESSs, and Nnode is the number of nodes that are
available for BESS integration in DN.

Voltage constraints are considered in (9). Vmax and Vmin are the
upper and lower limits of the node voltages and Vjr is the voltage
at node j.

To avoid the impact of over charge/discharge on battery lifetime,
SOC constraints of BESS are considered in (10). SOCmin and
SOCmax are the SOC operating bounds, and Ns is the number of
sample data.

The power fluctuation characteristic of DG and load is addressed
in the model. Typical daily data is commonly used to represent
whole year.

3 Solution algorithm

3.1 Method flowchart

GA is applicable to solve constrained non-linear problems. GA is
implemented in this work to solve the optimisation model. A
bi-level optimisation solution algorithm is designed to solve the
proposed model in Section 2. Steps involved in the algorithm are
shown in the flowchart in Fig. 1.

Step 1: Input data of load, DG power, network topology of DN, and
so on. Then input the number of BESSs to be installed.
Step 2: Generate the initial population by binary encoding using (2),
(3) and (8).
Step 3: In the inner optimisation, OPF and BESS capacity adjustment
are implemented to optimise the scheduling of BESS and adjust the
capacity of BESS.

(1) OPF is adopted to optimise the charging/discharging power of
BESS to achieve minimum network losses.
(2) On the basis of optimal scheduling of BESS, the step of BESS
capacity adjustment is introduced. The BESS capacity optimised at
a single node [17] can meet the requirements of one-day energy
charging/discharging. When the capacity is larger, the DOD of
each cycle will be reduced, leading to a longer battery lifetime.
The trade-off between battery lifetime and investment cost of
BESS has not been addressed in [17]. Incorporating the BESS
lifetime prediction model, the BESS capacity adjustment proposed
in this paper accounts for the impact of charging/discharging
cycles and DODs on battery lifetime. Taking both capacity
requirement and battery lifetime into considerations, this step

Fig. 1 Flowchart of optimal installation site and capacity
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implements capacity adjustment to further optimise the BESS
capacity, which will lead to a lower total cost during the whole
project life cycle.

Step 4: Calculate the NPV of BESS, the profits from line losses
reduction and load shifting. By adding the three items together, the
NPV of DN can be obtained.
Step 5: Calculate the fitness value of each individual in the
population.

The next generation is produced by selection, mutation, and
recombination. Steps 1–5 are repeated until the number of
generation reaches its maximum. Finally, the optimisation process
ends and the optimal solution is obtained.

The following section will introduce the modules of OPF, BESS
capacity adjustment, and NPV calculation of DN.

3.2 Optimal power flow

The OPF model proposed by Carpinelli et al. [10] is adopted in this
paper. Compared with the objectives of OPF in [10], reactive power
and network upgrade are not considered in this work. When network
losses minimisation is the only objective, BESS may be charged or
discharged too much power at once. So the energy of BESS
charging/discharging is added to the objective function. The input
data are the installation locations of BESS and DG, and active/
reactive power of DG. The control vector is charging/discharging
power of BESS.

The objective function is expressed as

f = max aDCLOSS(n)− b|EBESS(n)|
{ }

(11)

where ΔCLOSS(n) is the profit from network losses reduction at nth
sampling period. EBESS(n) is charging/discharging energy at nth
sampling period. α and β are weighting factors. The objective of
this function is to maximise the profits from network losses
reduction with minimum charging/discharging energy of BESS.

The constraints are presented as follows.
For charging

EBESS(n) = EBESS(n− 1)+ PBESS(n)Dt · hC (12)

For discharging

EBESS(n) = EBESS(n− 1)− PBESS(n)Dt/hD (13)

The constraint

EBESS(min ) ≤ EBESS(n) ≤ EBESS(max ) (14)

where EBESS(n− 1) is BESS charging/discharging energy at time
n− 1. EBESS(min), EBESS(max) are the minimum and maximum
energy limits of BESS, PBESS(n) is BESS charging/discharging
power at time n, and Δt is the duration of charging/discharging.

Equations (12)–(16) show that BESS charging/discharging energy
at sequence n is determined by the energy at sequence n− 1 and
charging/discharging power at n. However, when energy in BESS
is beyond the constraints, it is revised to equal to the minimum or
maximum value.

The active power of BESS is constrained by the remaining energy
at the previous time and the physical power limits of batteries.

For charging

PBESS(n) = max PBESS N (n),
PmaxC

hC
,
EBESS(n− 1)− EBESS(max )

hCDt

{ }

(15)

For discharging

PBESS(n) = min

PBESS N(n), PmaxD × hD,
EBESS(n− 1)− EBESS(min )

[ ]
hD

Dt

⎧⎨
⎩

⎫⎬
⎭
(16)

where PBESS(n) is BESS real charging/discharging power at
sequence n, PBESS_N(n) is the required output power of BESS at
time n. PBESS_N(n) is negative when charging, and positive when
discharging. PmaxC and PmaxD are the maximum charging and
discharging power limits.

Other equality constraints can be obtained from (4) and (5) and
inequality constraints from (7), (9), and (10).

To guarantee that the SOC at the end of day is equal to the initial
SOC, the sum of BESS charging/discharging energy needs to be zero
during one day. Hence, some adjustments are made as follows. If the
total discharged energy is less than the charged energy of BESS, the
difference will be split to the peak load hours. This indicates that
BESS needs to discharge more power at peak hours to keep the
energy balance. In contrast, if the total discharged energy is larger
than the charged energy, the difference will be split to off-peak
load hours. The adjustments can help BESS gain more profit from
load shifting.

3.3 BESS capacity adjustment

The power scheduling of BESS is determined by OPF at the previous
step. The OPF is performed based on the BESS capacity at the
initialisation of optimisation flow in Section 3.1. However, the
required BESS capacity may be far less than the initialised BESS
capacity, which cannot be fully utilised and decrease the economy
efficiency. According to the physical characteristics of batteries,
when the capacity is smaller, the DOD will be higher and the
battery lifetime will decrease, and vice versa. Taking the impact of
charging/discharging cycles and DOD on battery lifetime into
account, the BESS capacity is optimised in this capacity
adjustment step aiming at minimising the NPV of BESS in the
whole project life cycle.

The battery life prediction model is introduced as follows.

3.3.1 Battery lifetime prediction model: Battery lifetime is a
non-linear function of DOD. The rain-flow counting algorithm
[18] is adopted to calculate the number of charging/discharging
cycles and DOD for each cycle. The relationship between the
number of cycles and DOD is described as

CF = a1 + a2 e
a3·DOD + a4 e

a5·DOD (17)

where CF is the number of cycles to failure under a certain level of
DOD, and a1–a5 are the constants fitted by Levenberg–Marquardt
method based on the data provided by battery manufacturers.

The battery lifetime can be estimated according to the following
equation

LBESS = 1∑
C−1

Fi

Tsim
Tyr

(18)

where LBESS is the lifetime of BESS. CFi is the number of cycles
corresponding to the DOD of the ith cycle, Tsim is the simulation
time period, Tyr represents 1 year, which means battery lifetime is
measured in years. For example, if the battery discharges once a
day with a constant DOD and the battery can withstand 1000
cycles for this DOD, the battery wears out 1/1000 per day, which
is 365/1000 for one year. Then the battery lifetime is 1/(365/1000)
year, which equals to 2.74 years.

3.3.2 Capacity adjustment: The flowchart of capacity
adjustment is shown in Fig. 2.
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The objective function is

f = min NPVBESS

{ }
(19)

NPVBESS =
∑NP

0

CBESS[i] · (1+ FDis)
−i[ ]

, i = 0, 1, . . . , Np (20)

CBESS[i] = CCap[i]+ CRep[i]+ COm[i]+ CSal[i] (21)

The equality constraint is

PBESS(k)af = PBESS(k)be (22)

where NPVBESS is the NPV of BESS. NP is the number of planning
years. FDis is the discount rate, and CBESS[i] is the annual BESS cost
of the ith year [18], CCap is the initial cost of BESS, CRep is the
replacement cost. The number of replacements equals to Np/LBESS.
COm is the operation and maintenance cost, and CSal is the salvage
value. PBESS(k)af and PBESS(k)be are charging/discharging power of
BESS after and before adjustment. This constraint ensures that the
adjusted BESS capacity satisfies the required charging/discharging
power.

GA is implemented to solve this optimisation model. First, BESS
capacity is coded in binary code to generate the first population.
Then BESS lifetime is estimated according to the battery lifetime
prediction model. Further, the NPV of BESS can be calculated. At
last, the fitness value of every individual in the population is
calculated. The loop iterates until the number of generations
reaches the maximum.

3.4 Economic evaluation model

BESS planning is usually a long-term problem. Hence, this paper
uses NPV of DN as the optimisation objective. The formulations
are expressed as follows

NPVDN =
∑NP

0

NCF[i]∗(1+ FDis)
−i[ ]

, i = 0, 1, . . . , Np (23)

NCF[i] = CBESS[i]+ CLOSS[i]+ CLDS[i] (24)

DCLOSS[i] =
∑365
j

∑24
k

DELOSS[i, j, k]∗M (k)
[ ]

(25)

CLDS[i] =
∑365
j

∑24
k

EBESS[i, j, k]∗M (k)
[ ]

(26)

where NPVDN in (23) is the NPV of DN, NCF[i] is the total cost in
the ith year, and Np is the planning horizon, in years.

CBESS in (24) is the total cost of BESS, which can be calculated by
(19). ΔCLOSS is the profit from network losses reduction and CLDS is
the profit from load shifting.

ΔELOSS[i, j, k] in (25) is the line loss at the kth hour of the jth day
in the ith year.M(k) is the electricity price at kth hour during one day.

EBESS[i, j, k] in (26) is the charging/discharging energy at the kth
hour of the jth day in the ith year.

4 Case study

4.1 Case data

In this section, the proposed method is implemented to the planning
of BESS in a modified IEEE 33-bus system [19]. In this DN, the
rated active load and reactive load is 3715 kW and 2300 kVar,
respectively, and the base voltage is 12 kV. The basic system
topology is depicted in Fig. 3. Two types of DGs, PV and WT,
are installed in this modified system. The detailed installation site
and rated power data of DG are shown in Table 1.

In this study, the time-of-use pricing mechanism is adopted. The
electricity prices and time periods are: 0.1876 $/kWh from 9:00 to
21:00 (peak hours), 0.0608 $/kWh from 0:00 to 7:00 and 23:00 to
24:00 (off-peak hours), 0.1224 $/kWh from 7:00 to 9:00 and
21:00 to 23:00.

A lot of research has been carried out on the modelling of PV, WT
and load. Such models in [20–22] are used in this paper. The output
power of PV is generated based on the PV model in HOMER
software [20], and Weibull distribution is used in the model of
wind generation [21, 22], and Gaussian distribution is used in
modelling load data [23]. Here, we provide time-series PV, WT,
and load data that are generated by the above models.

The sampling period is 1 h. The daily power curves of load, wind
power, and PV output are shown in Fig. 8 in Appendix. The active
power of load and DGs are shown in Fig. 9. The out-of-limit hours,
and maximum and minimum value (p.u.) of voltage without BESS
for the 33 nodes can be found in Table 4. The upper and lower
limits of voltage (p.u.) are 1.05 and 0.95, respectively.

Lithium battery is adopted in this planning study. The initial
power and energy capacity of BESS are set to 100 kW and 100
kWh, respectively. The upper and lower limits of SOC are 100
and 40%, respectively. The branch flow limit is 8.92 MVA.
According to industrial experience, the overall round-trip
efficiency of the BESS is set to be 0.88. The discount rate is 2%.

Fig. 2 Flowchart of capacity revision

Fig. 3 DN of IEEE 33-bus system

Table 1 Location and rated power of DG

DG
type

Installation
site

Rated active power,
kW

Rated reactive power,
kVar

WT 13 200 120
WT 15 100 60
PV 16 250 150
WT 17 200 120
PV 21 300 180
PV 24 200 120
PV 26 350 210
WT 30 200 120
WT 31 100 60
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The project life cycle is 20 years. The economic parameters of the
BESS are shown in Table 2.

The battery lifetime characteristic curve can be fitted based on the
experimental data from battery manufacturers. The life characteristic
curve of the lithium battery used in this study can be found in Fig. 10
in Appendix.

4.2 Optimisation results and comparison

The installation site and capacity of BESS are determined by the
proposed method in this paper. In the GA, the length of
chromosome is set to 20, and the maximum generation and size of
population is set to 50. The variation probability is set to 0.03, and
the crossover rate is set to 0.6. The optimal planning scheme is
shown in Fig. 1.

To demonstrate the advantage of the proposed method, the
optimisation results are compared with those obtained by the
method in [10]. To ensure the fairness of comparison, both
the proposed method and the method in [10] use the same case
data in this testing system including load, DG, BESS, and
electricity price, as well as the parameter settings in GA.

Table 3 shows the optimal results of the proposed method and the
method in [10], including the optimal installation sites, energy and
power capacity, lifetime, NPV of BESS, profit and the NPV of DN,
when the numbers of BESSs are 1, 2, and 3, respectively. From
Table 3, compared with the method in [10], the NPV of DN can be
reduced by 29, 58, and 39%, respectively, when the numbers of
BESS are 1, 2, and 3. The optimal installation sites obtained by the
two methods are the same, and the profits from load shifting and
network losses reduction are close. However, in the optimal scheme
obtained by the proposed method, the BESS capacity is smaller and
its cost is lower than that of the method in [10]. The reason is that
the capacity of BESS from the initialisation may not be the best
solution for the charging/discharging power obtained by OPF. In
other words, the capacity may be larger than needed. In addition, the
BESS capacity adjustment step in this paper further optimises the
capacity considering the battery lifetime to lower the NPV of BESS.
The lifetime is shorter but the capacity is smaller in the optimal
scheme of the proposed method. It achieves an overall better
economic performance, that is, lower NPV of BESS and NPV of DN.

4.3 BESS result

The charging/discharging power and SOC of BESS are shown in
Figs. 4 and 5 when the number of BESS that needs to be allocated is 2.

The BESS at node 17 is charged with more power during 3:00–
5:00 when the voltages at some nodes are higher than 1.05 as a

result of light loads. Whereas the BESS at node 32 discharges
more power during 12:00–16:00 when the voltages at some nodes
are lower than 0.95 due to heavy loads. The maximum and
minimum SOC are close to the preset upper and lower limits after
the capacity adjustment, which indicates that the designed BESS
capacity is the minimum that satisfies the load requirement. The
results of BESS scheduling when the number of BESS is 1 and 3
are shown in Figs. 11–14, respectively, in Appendix. After the
optimisation, none of the voltage is out of limit.

4.4 Relation between NPV of DN and number of BESS

With the increase of the number of BESSs, the variations of the NPV
of DN are depicted in Fig. 6.

As shown in Fig. 6, the NPV of DN is the lowest when the number
of BESSs to allocate is 2. Then the NPV is raised as the number of
BESSs increases. From the results in Table 3, it can be observed that
the NPV of DN with two BESSs is 48 and 32% lower than the NPVs
of the cases with one BESS and three BESSs.

4.5 GA iterative process comparison

This paper introduces BESS capacity adjustment as one step in the
inner optimisation, which can accelerate the process to find the
optimal solution. The comparison between the optimisation
process in this paper and in [10] is shown in Fig. 7.

Fig. 7 shows that the proposed method with capacity adjustment
obtains the optimal solution with fewer generations. The method
in [10] obtains the optimal solution after 40 generations, while this
paper only takes 19 generations. In the proposed method, when
the BESS capacity at initialisation cannot satisfy the constraints,
the result in this generation will be abandoned, and the result
before this generation will be saved. It can be concluded that the
proposed method outperforms the method in [10] in terms of
computational efficiency.

Table 2 Economy of energy storage system

BESS CCap, $/kWh CRep, $/kWh COm, $/kWh/year

lithium battery 403 403 8

Table 3 Optimal site, capacity, and economy of BESS

Number of
BESS

Optimation
method

Optimal
installation site

BESS energy
capacity, kWh

BESS power
capacity, kWh

BESS
life, year

NPV of
BESS, k$

Income from
load shifting, k

$

Income from line
loss reduction, k$

NPV of
DN, k$

1 this paper 17 1332 231 6.87 1249.66 −448.42 −295.48 505.76
[10] 17 1859 233 9.99 1347.36 −384.57 −247.09 715.84

2 this paper 17 450 80 8.03 380.48 −336.33 −264.92 262.65
32 585 81 8.29 483.39

[10] 17 775 169 7.9 662.49 −381.45 −228.96 622.43
32 726 110 8.9 570.34

3 this paper 17 426 79 8.21 354.76 −312.57 −271.09 385.16
32 379 54 8.15 316.98
31 277 43 5.76 297.09

[10] 17 522 89 9.63 388.57 −332.24 −270.43 631.11
32 513 76 7.22 465.84
31 435 83 7.67 379.39

Fig. 4 Output power of two BESS (17th and 32th nodes)
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5 Conclusions

A novel bi-level optimisation model is proposed to determine the
optimal installation site and capacity of BESS in DN. In the inner
optimisation, to account for the impact of charging/discharging
cycles and DODs on battery lifetime, the BESS capacity
adjustment step is introduced to lower the NPV of DN and
accelerate the convergence speed of GA. The proposed method
can be applied to multiple BESS planning in DN. The simulation
results on a modified IEEE 33-bus demonstrate the effectiveness
of the proposed method and a comparative study shows its
superiority over the method in [10]. The contributions of the paper
are summarised as follows.

(i) A bi-level optimisation model is built to optimise installation
site and capacity of BESS with the objective of minimising the
NPV of DN in the project life cycle.
(ii) In the inner loop optimisation, the method of capacity adjustment
is proposed to minimise the cost of BESS. The battery lifetime
prediction model is incorporated into the optimisation model for
BESS capacity adjustment. With the capacity adjustment, the
optimal scheme can achieve a smaller BESS capacity and lower
NPV of DN while satisfying system requirements.

(iii) The proposed solution method converges faster than the
existing method in [10]. The results of the comparative study show
that the proposed method can reduce the number of generations in
GA for searching the optimum.
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8 Appendix

See Figs. 8–14 and Table 4.

Fig. 6 Variations of NPV of DN along with the number of BESS

Fig. 7 Comparison between the optimisation process in this paper and [10]

Fig. 5 SOC of two BESS (17th and 32th nodes)
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Fig. 8 Load and DG real power/rated power ratio

Fig. 9 Load and DG real power in DN

Fig. 10 Battery life cycle characteristics

Fig. 11 Power of one battery (17th node)

Fig. 12 SOC of one battery (17th node)

Table 4 24 h voltage state of 33 buses without BESS

Node Hours out of limit Minimum value p.u. Maximum value p.u.

1 0 1.050 1.05
2 0 1.046 1.049
3 0 1.027 1.048
4 0 1.018 1.047
5 0 1.008 1.047
6 0 0.984 1.046
7 0 0.979 1.046
8 0 0.973 1.046
9 0 0.966 1.047
10 0 0.959 1.049
11 0 0.958 1.049
12 0 0.956 1.049
13 4 0.949 1.052
14 5 0.947 1.054
15 6 0.946 1.055
16 7 0.945 1.056
17 6 0.944 1.058
18 8 0.943 1.059
19 0 1.046 1.049
20 0 1.043 1.049
21 0 1.042 1.049
22 0 1.041 1.048
23 0 1.022 1.047
24 0 1.013 1.045
25 0 1.010 1.045
26 0 0.981 1.045
27 0 0.978 1.045
28 0 0.960 1.044
29 5 0.947 1.043
30 5 0.941 1.043
31 5 0.935 1.044
32 5 0.933 1.044
33 5 0.933 1.043

Fig. 13 Power of three batteries (17th, 32th, and 31th nodes)

Fig. 14 SOC of three batteries (17th, 32th, and 31th nodes)
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