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Abstract This paper presents models for calculating the
optimal cutting feed rate and spindle speed at each stage in
a multistage transfer machine. The optimal -cutting
conditions are determined by taking into account the
cutting constraints for three objective functions, which are:
minimum expected cycle time, minimum expected cost per
unit, and maximum expected profit rate, using a one-
dimensional search procedure. The efficiency range in
which the optimal solutions for the three objective
functions can be found is also analyzed. In addition, the
optimal cutting conditions at each stage are compared to
those of a stand-alone cutting machine.

Keywords Multistage machining system - Machining
economics - Tool life - Replacement - Transfer machines

1 Introduction

The machining economics problem has been studied
extensively for a single machine with a single tool. In
practice, however, the conversion of raw materials into a
product is rarely performed in a single process. Rather, it is
processed through a series of multiple-stage operations, as
are performed on a flow-type transfer machine, such as
Gnutti FMF. In a transfer machine, the cycle time is the
same for all the stages and there are no buffers between any
two consecutive stages. In the present paper, a transfer
machine is analyzed in which each part is processed
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through M production stages sequenced in a production-
technological order, where each production stage maintains
a single machine tool. The optimal cutting conditions for
the multistage machining system is determined under three
different objective functions—minimum expected cycle
time, minimum expected cost per component, and maxi-
mum expected contribution to profit per unit of time (profit
rate), taking into account cutting constraints. The optimiza-
tion is done under the failure replacement strategy (FRS),
where a tool is replaced only when a failure occurs. A proof
that the number of stages does not affect the computational
complexity of each problem is given, and a one-dimen-
sional search procedure for optimizing each of the
objective functions is suggested. In addition, the efficiency
range of economical cutting conditions in which the
optimal solution for the three objective functions can be
found is presented and analyzed.

Hitomi [8] developed algorithms to calculate the optimal
machining conditions for a multistage machining system.
He assumed an unlimited buffer size between the
machines. This paper, on the other hand, deals with a
flow-type transfer machine with no buffers between the
machine stages. Agapiou [1] described a mathematical
algorithm for the optimization of the multistage machining
system problem. Agapiou’s goal was to minimize the unit
cost under the physical limitations of the machines
(maximum available cutting force, speed, and feed) for a
given cycle time.

Our models are based on the economical trade-off
between a short and a long tool life. A short tool life is
uneconomical because of high tool replacement costs, while
the use of low speed and low feed which increase the tool
lives is uneconomical also because of a low production rate.
The trade-off between tool life, feed, and speed is presented
by Taylor’s well known tool-life equation, V7T f" = C,
where T is the tool life; Vis the cutting speed; fis the feed;
and n, m, and C are constants. Recommended values for the
parameters n, m, and C can be found in standard machining
handbooks (e.g., Rembold et al. [12]). In most cases,
n<m<lI.



The following assumptions are made for all of the
models described in this paper:

1. The first machine is never “starved” because the
demand is greater than the capacity of the transfer
machine.

2. The revenue per component is not dependent on the
production rate; that is, a linear revenue function is
assumed. This assumption is commonly used when the
profit rate criterion is under consideration (e.g., Hitomi
[6-8]), and is very realistic for nonmonopolistic
organizations. Cowton and Wirth [5] suggested a
nonlinear revenue function to maximize profits, such
as would be faced by a monopolist.

3. The number of passes that each tool performs is
predetermined, and, without loss of generality, a single
pass at each stage is performed.

The reminder of the paper is organized as follows.
Section 2 presents the basic model, the cutting constraints,
and the minimization of the expected cycle time function.
In Section 3, an algorithm for minimizing the expected cost
per unit function is presented. The optimization of the
expected profit rate function is introduced in Section 4,
and, in Section 5, the efficiency range of the feed rate at
each stage is presented and analyzed. In Section 6, a
numerical example is presented and analyzed. A summary
concludes the paper.

2 Production rate criterion
2.1 Expected cycle time function

The expected cycle time of a multistage machining system
under the FRS is the sum of two terms: the maximal
production time (i.e., the production time of the bottleneck
stage) and the expected tool changing time. It is given by
the following equation:

E(Tp) = max (Tm; + Te;) +

i=1,...,

Z Td; x

(M

where M is the number of stages and E(7p) is the expected
production time per component (min). At stage i, T; is the
expected tool life (min); 7m; is the machining time per
component (min); 7e; is the sum of the tool retract time,
load, unload, and set-up time per component (min); and 7d;
is the tool changing time (min).

The machining time for the turning, boring, and drilling
operations is expressed as (Agapiou [1]):

7TD,‘]:1‘
12V;

@

m; =
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while for milling operations it is:

7TDi (Zl + 8,‘)

Tm; —
" TNy,

€)

where, at stage 7, L; is the workpiece length to be machined
(in); f; is the feed (in/rev); D; is the diameter of a generated
surface or cutter (in); Nz is the number of inserts per
milling cutter body; and ¢; is the overtravel of the milling
cutter on the workpiece (in). We denote L; =L; for

L; +FL for

turning, boring, and drilling operations, and L; =

milling operations.

The expected cycle time (Eq. 1) may be expressed in
terms of the cutting parameters through the following
relationships (see Agapiou [1] and Cakir and Giirarda [4]):

T = 5 @
yi= T )
i=E (©)
To— i x (@)” < (1) o ™

where, at stage i, Hf; is the feed rate (in/min) and A, is the
spindle speed (rpm).

By using Egs. 2, 4, 5, 6 and 7, the expected cycle time
function is rewritten as:

mi—ni =m

+ZK><Td><Hf”' ><N”’ ®)
i=1
where:
Di 1/n;
Ki=1Lix C7V/" x (”12) ©)

The expected cycle time function has to be minimized
under the various cutting constraints as described in the
following section.
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2.2 Cutting constraints

The maximum feed is restricted by its maximum
permissible shear stress. For example, for a drilling
operation, the maximum permissible feed, f.., can be
given by the relationship (Bhattacherya and Ham [3]):

fmax = C; x K; x DO.G (10)
where Cy depends upon the work material being drilled and
K; is a coefficient that takes the drilling hole length into
account (for values of C, as a function of the work material

and K; as a function of the drill length, see Bhattacherya
and Ham [3]). Therefore (see Cakir and Giirarda [4]):

Hf;
N; > max <Nmin,»7 —f> (11)
fmaxi

where Npin, 1s the minimum value of the available spindle
speed at stage i.
Since the selected feed rate of the drill head, Hf;, has to

be within the feasible feed rate range at each stage, Hf;
should satisfy the two following constraints:

Hf; < Hfmax, (12)
and:
Hf; > Hfmin, (13)

2.3 Minimum expected cycle time under the failure
replacement strategy

Our objective is to determine the feed rate and spindle
speed at each stage in order to minimize the expected cycle
time function (Eq. 8) under the relevant cutting constraints
(Egs. 11, 12, 13). The problem can be formulated as:

M m,-—n,- 1=m;
min E(Tp) = U + ZK,- x Td; x Hf, " x N,
i=1

1-m;

(P1)

subject to:

. L;
Constraints [I, M]: U>—+Te Vi=1,..., M

Hf;
Constraints [M + 1, 2M]: N; > Npin, Vi=1,...,
Hf;
Constraints 2M + 1, 3M]: N; > I Vi=1,...,

max

Constraints [3M + 1, 4M]: Hf; > Hfwin,Vi=1, ...,

Constraints [4M + 1, 5M|: Hfi < Hfmax Vi=1, ...,

where U; = 157 + Te; is the sum of the processing time,

tool retract time, load, unload, and set-up time per
component at stage i, i.e., U; includes the total operation
times at stage i per cycle in cases where no breakages

— Li .
(Uh) = i=1 M(Hﬁ + Te’)

presents the production time of the bottleneck machine.
From the constraints above, it is easy to observe that the U

occur. Therefore, U = max
i=1,.... M

.....

value is upper bounded by Upax = 'nllax { Hf"‘ + Te e,}
= Y/min;

,,,,, n

and lower bounded by Upi, = 'H{IaX { Hf" + Te e,}.
=1,...,n Jmax;

Since the maximum between convex functions and the
sum of the convex functions is a convex function itself, the
expected cycle time is a convex function. In addition, all of
the constraints are also convex functions. Thus, any
feasible solution that satisfies the Karush Kuhn-Tucker
(KKT) conditions is optimal for P1.

P1 is a convex programming problem that includes 2A/+1
variables (U, Hf;, and N, for i=1,..., M) and 5M constraints.
In the following, we prove two different properties of the
optimal solution that will help us to reduce both the number
of variables and the number of constraints in P1.

Property I The minimal available spindle speed at each
stage minimizes the expected cycle time.

Proof The derivative of the expected cycle time with
respect to the spindle speed at stage i is positive for any
chosen feed rate at the different stages. Thus, as shown in
Eq. 14, the minimal available spindle speed is selected at
each stage:

Hfi

il‘l,' ’
fmax,-

N,-zmax(Nm ) Vi=1,2,.... M (14)

Property 2 Under the optimal solution of P1, either U; =

U:jeraxM(]%+ Tej> Vi=1,2,..., M, or at least
one of the feed rate boundary constraints (constraints
[3M+1, 4M)]) is satisfied as an equality such that, in at least
one stage, the processing is being done at the minimal
feasible feed rate.

The proof of property 2 is straightforward from the
KKT conditions.

From property 2, we get that the value of Hf; is
determined directly from the U value, as shown in Eq. 15:

,,,,,

L;
Hf; = max < .

T Hfmm,) Vi=1,2,..., M,

(15)



By substituting Eq. 15 into Eq. 14 we get:

L; Hfwi
N; = max <Nmin,., max <U lT ), ffmm’>
— Te; ax.
max; (16)
Vi=1, 2,..., M,
M
minE(7Tp(U)) = U + ZKi x Td; x max { max <Hfmin,,
i=1
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i.e., the value of WV, is also directly determined from the U
value, as shown in Eq. 16.

As a result of the above analysis, P1 can be reduced to a
single-variable problem (U) with a single feasibility
constraint as given below:

mj—n;

L i
U—Te;

1—n;

’ L I
max (Hfminl ’ UflTe,-)

1=m;

X N

min;’

mi—1
nj
X fmaxi

(PL.1)

subject to:
Umin = max L +Te; p < U
- " Hfmaxi €=
< ma L + T U,
X =
T i=lo n | Hfmin, ¢ e

Since the objective function of P1.1 is a convex function,
the optimal solution for this problem is obtained by using
any one-dimensional search procedure over all of the
possible values of U. For example, according to the
bisection method (Bazaraa and Shetty [2]), the optimal
value of U can be found in log (%) iterations to
within an accuracy of €.

In order to reduce the search interval, in the following,
we prove that the optimal feed rate for the single-stage
problem is an upper bound to the optimal feed rate at any
stage in a multistage machining system, i.e., the optimal
value of U for the single-stage problem is a lower bound to
the optimal value of U in a multistage machining system.

Property 3 The optimal feed rate of the single-stage
problem is an upper bound to the optimal feed rate at each
stage of the multistage machining system.

Proof The expected cycle time function of the multistage
machining system (the objective function of P1) can be
rewritten as:

E(Tp) = max (E(Tpi)) (17)
where:

M mi—n; 1—m;
E(Tpe) = Ue+ > Ki x Td; x Hf, " x N;" (18)

i=1

For the single-stage problem, with the same parameters as
those of stage k in the multistage machining system, the
expected cycle time is:

my—ny 1—my

E(Tpi) = Ux + Ky x Tdg < Hf, " x N (19)
By inserting Eq. 19 into Eq. 18, we obtain:
mi—n; ﬂ
E(Tpe) = E(Tpi) +Y _Ki x Td; x Hf, ™ x N, (20)
i#k
For constant feed rates in stage i#k, if Hfy > Hf,*, where

Pr’
H];*k* is the optimal feed rate for the single-stage problem

Temt . . . oE(T7
under the minimum expected cycle time criterion, —agqf’,;k ) —
BE(Tpk) OE (Tpy) aE(fpk) IE(Tpi) mi—n;

i > 0 = - > 0, and TgEs = (FE) %
mj—2n; 1-m;

K; x Td; x Hf; " x N;" > 0Vi# k. Thus, in order to
minimize E(Tp), Hf; has to be reduced to at least H];’;* (for
obtaining the optimal cutting conditions for the single-
stage problem, see Shabtay and Kaspi [13]).

Using property 3, the search interval for the optimal
solution of P1.1 can be reduced, since the lowgr bound of
this range becomes Upi, = max TL‘ + T e,}

I

=1,..., n

)

The analysis of this section is summarized by the
following optimization algorithm for minimizing the
expected cycle time.

Algorithm 1: minimizing the expected cycle time

Step 1
Determine the search interval U, ,<U<U,,.x, Where

Unin = 4IIllaX { L'ﬂ
=

+ Te,}
Pk

Ry

and Upax = max
i=1,..., n

.....

Step 2
(Search procedure) Determine the optimal U value that
minimizes the objective in P1.1 by applying the bisection
method (Bazaraa and Shetty [2]) within the search interval.
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Step 3
Determine the optimal feed rate and spindle speed at
each stage by using Egs. 14 and 15.

3 Minimizing the expected cost per unit criterion under
the failure replacement strategy

In most studies, the machining economics problem has to
be optimized for the expected cost per unit criterion, since
reduced production costs tend to increase profitability in
the long run (e.g., La Commare et al. [11], lakovou et al.
[9], Jiangiang and Keow [10]). The expected cost per unit
function is the sum of two terms: the labor cost per unit,
which is proportional to the expected cycle time, and the
tool failure cost. The expected cost per unit function for a
multistage system is:

Tc,

E(cost) = Co x E(Tp) + ZCt x =

i=1 i

@n

where Ct; is the tool failure cost at stage 7, which is the sum
of the edge and the defective part costs ($), and Co is the
operating cost ($/min). By inserting Egs. 4, 5, 6, 7, 8 into
Eq. 21, the expected cost as a function of the feed rate and
spindle speed at each stage can be expressed as:

M
E(cost) =Co x _max < + Te,) K;
..... Hf ; (22)
mi—n; 1—m;
X Hf; " x N;" x (Co x Td; x Ct;)
minE (cost(U))

M
=Cox U+ Y Kix (Cox Td; x Ct;) x max {max (Hfmm,,

i=1

Our objective is to determine the feed rate and spindle
speed at each stage in order to minimize the expected cost
per unit (Eq. 22) under the relevant cutting constraints
(Egs. 11, 12, 13). The problem can be formulated as:

min E(cost)
=Cox U
+ZK ><Hf ><N"’
i=1

(CO X Td, X Cli)

(P2)
subject to:
. L; .
Constraints [1, M]: U ZH—ﬁ+Tei Vi=1,..., M
Constraints [M + 1, 2M]: N; > Npin, Vi=1,..., M
H4
Constraints 2M + 1, 3M]: N; > I Vi=1,..., M
max
Constraints [3M + 1, 4M| : Hf; > Hfpin, Vi=1,..., M
Constraints [4M + 1, 5M|: Hfi < Hfpax,Vi=1,..., M

Since P1 and P2 have the same formulation structure, it is
easy to show that, P2, like P1, also obeys properties 1 and
2. As a result, P2 can be reformulated as:

mi—n; -

Li o 1-mj Li F L
—_ x N max | Hfmin,, ——— X w
U— Tei X ( fmm, U— Tei fmdx,

]Tllﬂ ’

(P2.1)

subject to:
U, max L +Te; p < U
. o
mimn i=1,..,n Hfmax,- ! -
< max { + Tel} = Upnax
i=1,...,n min;

Since the objective function of P2.1 is a convex function,
the optimal solution is obtained by using any one-
dimensional search procedure. Actually, the search interval
for the optimal solution for P2.1 can be reduced by using a

Hf** + T e,}, where

.....

Hf:* is the optimal feed rate for minimizing the expected

cost per unit in a single-stage cutting machine with the
same parameters as those of stage & in the multistage
machining system.

The analysis of this section is summarized by the
following optimization algorithm for minimizing the
expected cost per unit.

Algorithm 2: minimizing the expected cost per unit

Step 1
Determine the search interval U,,;;<U<U,.x, Where

Upin = ‘nlqax { f** + Te,} and Upax = nllax
=I1,..., =




Step 2
(Search procedure) Determine the optimal U value that
minimizes the objective in P2.1 by applying the
bisection method (Bazaraa and Shetty [2]) within the
search interval.

Step 3
Determine the optimal feed rate and spindle speed at
each stage by using Egs. 14 and 15.

4 Maximization of the expected profit rate under
the failure replacement strategy

The maximum expected profit rate has been found to be the
best criterion for optimization of the machining economics
problem (Hitomi [7] and Cowton and Wirth [5]). It is
defined as:

— E(cost

(o) = T Eleost) 23)
E(Tp)

where r is the revenue per component. Inserting

Egs. 4, 5, 6, 7, 8 and 22 into Eq. 23, the expected
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profit rate as a function of the feed rate and
spindle speed at each stage can be expressed as:

m;

r—ZCt x Ky x Hf; " X N; ™

= 1-m;

E(Q) —Co

mj—

—i—ZK x Td; x Hf; " X N;"

ni 1—m;

m'_dx( —l—Tel)
1

24)

Our goal is to determine the feed rate and the spindle
speed at each stage in order to maximize Eq. 24 under the
constraints for P1 and P2. The problem is formulated as:

"y omi

r—ZCt x K; x Hf; " ><N"'
max E(Q) = = l

U+ZK><Td ><Hf " XN "
i=1

mj—

= P

and is subject to the same constraints as those of P1 and P2.
It is easy to prove that P3 also obeys properties 1 and 2.
Thus, P3 is reformulated as a one-decision variable

problem (U):

Y mi=n; 1-m; 1-nj mi—1
L; i i i i
r— ; Ct; x K; x max {max (Hfmin,., U—Te,-) X Nmm, max (Hfmml, W) xfmdx[}
max E(Q) = ’;4 ETE— ET—— (P3.1)
L i i L; i .
U+ z;K,- x Td; x max {max (Hfmin,-, m) X Nmlrl , max (Hfmin‘, m) X fmax,}
iz
subject to: The analysis of this section is summarized by the

Upin = max

i=1

L;
n{Hf

max;

+T€i} SU

,,,,,

T =
Hfmm, + ez} max

Under the assumption that there is at least one point for
which r>E(cost), we can conclude that the expected profit
rate is a unimodal function, since the numerator of the
derivative of the expected profit rate function with respect
to U is a decreasing non-continuous monotonic function.
Thus, any one-dimensional search procedure can be used to
maximize the expected profit rate.

following optimization algorithm for maximizing the
expected profit rate.

Algorithm 3: maximizing the expected profit rate

Step 1
Determine the search interval U,,;,<U<U.x, Where
Unin = max { T T Te,} and U = max
..... max; 1,....n
{H/‘Lfmiinl + Tei}.

Step 2
(Search procedure) Determine the optimal U value that
maximizes the objective in P3.1 by applying the
bisection method (Bazaraa and Shetty [2]) within the
search interval.
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Table 1 Characteristics for the various operations

Table 3 Cutting constraints

Operation number ~ Type of operation  Length Diameter
(L; (in)) (D (in))

1 Turning 8 3

2 Turning 5 2.6

3 Turning 3 2.6

4 Turning 5 2.5

5 Drilling 3 0.5

6 Drilling 1.3 0.35

7 Tapping 1 0.5

Step 3

Determine the optimal feed rate and spindle speed at
each stage by using Eqgs. 14 and 15.

5 The efficiency range

Let us define the efficiency range of economical cutting
conditions as follows (this definition is an extension of
Hitomi’s definition [7]):

v glitur <u;

ifU; = Uy (25)

i= |y, ulitu > v

where U] is the optimal solution for the expected cost per
unit criterion and U, is the optimal solution for the

expected cycle time criterion. In the following properties
4-6, we prove that the efficiency range is £ = [U;, UC"}

and that the optimal solution for the maximum expected
profit rate criterion is within the efficiency range.

Property 4 Uy < U7, thatis, E = |Uy, U;].

Proof In Sections 2 and 3, we proved that the expected
cycle time and cost per unit are single-variable (U),
convex, non-differentiable functions. Thus, the minimum
expected cycle time occurs at either a differentiable or a
non-differentiable point. Since, at any differentiable point,

dﬂ%g(l/)) < Co X %, if Uy is at a differentiable

Table 2 Tool-life parameters for the various operations

Feed limit Feed rate
(fmax, (in/min) limits

Operation number Spindle speed
limitation

(Nmin, (rev/min)) (in/rev))  ower Upper
1 80 0.03 1 50
2 80 0.03 1 50
3 80 0.03 1 60
4 80 0.03 1 80
5 40 0.01 0.2 20
6 40 0.01 0.2 25
7 40 0.01 0.2 25

point, then U; > U,. Otherwise, if U, is at a non-

dE(Tp(UV)) _

i and

differentiable point, then lilg[l;

. dE(cos dE(T]
lim otV o co x EUIPUD - 0. Hence, we can
U—U;

conclude that Up* < Ul

Property 5 There is at least one point where a positive
profit rate occurs within the efficiency range.

Proof Under the assumption that there is at least one point
of positive profit rate (otherwise, the optimal policy is to
do nothing), it is obvious that the solution that minimizes
the expected cost per unit is also a solution with a positive
profit rate. Since the point of minimum expected cost per
unit is within the efficiency range, then the property is
proved.

Property 6 The optimal solution for the expected profit
rate criterion, Uy,, is within the efficiency range.

Proof Outside the efficiency range, a value of U can be
found in one of two ranges:

1. The range where U <U,. In this range, E
(cost(U + A)) < E(cost(U)) and E(Tp(U + A)) <
E(Tp(U)). If the profit rate is negative, then,
according to property 5, there is at least one point
where a positive profit rate occurs within the efficiency
range. Otherwise, if the profit rate is positive, it is
worthwhile to increase U to at least U;, which reduces

Table 4 Economic and time parameters

Operation number Tool material n; m; Constant (K;)  Operation number Te; (min) Td; (min) Ct; ($)
1 Uncoated carbide 0.25 0.29 2.18x107° 1 0.25 0.5 2
2 Uncoated carbide 025 0.29 7.69x107'° 2 0.235 0.5 2
3 Uncoated carbide 025 0.29 4.61x107'° 3 0.25 0.5 2
4 Uncoated carbide 025 029 6.57x10°'° 4 0.25 0.5 2
5 High-speed still 0.1 0.5  5.87x1072 5 0.225 2 4
6 High-speed still 0.1 0.5  7.18x107%* 6 0.225 2 4
7 High-speed still 0.1 0.5 1.96x10% 7 0.225 2 4




Table 5 Optimal cutting conditions for the three objective functions
under the failure replacement strategy

Criteria Expected cycle Expected cost Expected profit
parameter time per unit rate

U* (min) 0.701 1.215 0.768
Hf;" (in/min) 17.76 8.29 15.44
N, (rpm) 591.87 276.40 514.52
Hf," (in/min) 10.74 5.10 9.38
N," (rpm) 358.00 170.11 312.53
Hf3" (in/min) 6.66 3.11 5.79
N5~ (rpm) 221.95 103.65 192.95
Hfy" (in/min) 11.10 5.18 9.65
N, (rpm) 369.92 172.75 321.57
Hfs" (in/min) 6.31 3.03 5.52
Ns" (rpm) 630.84 303.10 552.20
Hfs" (in/min) 2.73 1.31 2.39
Ng~ (rpm) 273.37 131.34 239.29
Hf;" (in/min) 2.10 1.01 1.84
N, (rpm) 210.28 101.03 184.07
Ex. cycle time 0.851 1.230 0.867
(min)

Ex. cost ($/unit)  0.770 0.307 0.568
Ex. profit 4972 3.815 5.112
($/min)

the expected cycle time and the expected cost per unit,
and, therefore, increases the expected profit rate.

2. The range where U > U;. In this range, E
(cost(U + A)) > E(cost(U)) and E(Tp(U + A)) >
E(Tp(U)). If the profit rate is negative, then,
according to property 5, there is at least point where
a positive profit rate occurs within the efficiency range.
Otherwise, if the profit rate is positive, it is worthwhile
to reduce U to at least U;. This procedure reduces the
expected cycle time and the expected cost per unit, and,
therefore, increases the expected profit rate.

10
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6 Numerical example

In this section, we illustrate our method by using a
numerical example. Due to difficulties in obtaining data
from a practical process, we took the relevant data from the
numerical example given by Agapiou [1], as described in
the following.

A simple part made of gray cast iron material is
considered (the part is presented in Fig. 1 in Agapiou’s
paper). The machining process of this part is simulated in a
transfer line consisting of seven stations. The processing
operations and the part processing dimensions are given in
Table 1 (note that the original data in Agapiou’s paper is
given in mm, but we convert it into in).

The first four stations provide a turning operation and the
following two stations accomplish the drilling operation.
The final operation is done in the tapping station. The tool-
life data for all of the operations are provided in Table 2
(the conversion needed from Agapiou’s data [1] to ours is
given by the following relations: n; = — -1 m; = — &,
and C = R™).

The feed, feed rate, and spindle speed limitations are
given in Table 3 (again, some adjustments were required),
and Table 4 provides the tool failure cost data (Ct;), the tool
replacement time (7d;), and the sum of the tool retract time,
load, unload, and set-up time per component (7¢;) in each
stage. We assume that the revenue per component is 7=>5
and that the operation cost is Co=0.2 $/min.

From the data given above, the search interval is

bounded by  Upppn = max { H/L" +Tel} =
i=1 Jmax;

max {&+0.25, 3+0.235, &+025 5+ 025 3+

0.225, 42 +0.225, 53+ 0.225, L +0.225} = 0.41 and

> 25 > 25
max { L+ Te; b =
A\ Hhing i

.....

ai;’

lower

upper bounded by Upax =

Fig. 1 The expected cycle time,
cost per unit, and profit rate as a
function of U

Efficiency

range

QT ~

—

/ i
0
O.f 0.65 0.85 1.05 1.25 1.45 1.65 1.85 2.05 2.25
2. d
U (min)
—FE() — E(cost) E(Tp) ‘
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max {§+0.25, 2+ 0.235, 3+0.25, 7+ 0.25, 34+ 0.225,

1340225, 1340225, L+ 0225} = 8.25.

The results of the numerical example for the three
objective functions (obtained by applying algorithms 1-3)
are summarized in Table 5.

The efficiency range of the economical cutting condition
is £E={0.701, 1.215}. Since the optimal profit rate is
positive, the optimal solution for the maximum expected
profit rate criterion is within the efficiency range. Figure 1
depicts the expected cycle time, cost per unit, and profit
rate as a function of the decision variable (U). As shown in
the figure, the three functions are insensitive to changes in
U (therefore, they are also insensitive to changes in the feed
rates) within the close neighborhood of the optimal
solution. This finding was observed for a wide range of
numerical examples examined.

7 Summary

This paper presented and solved models to determine the
optimal cutting feed rates and spindle speeds for the
multistage machining system under the failure replacement
strategy (FRS) by taking into account the cutting
constraints for three different objective functions, which
are: minimum expected cycle time, minimum expected cost
per unit, and maximum expected profit rate. Although all of
these three problems are multivariable, each was converted
to a single-variable problem. The first two objective
functions were shown to be convex, while the third
objective function was shown to be unimodal. Thus, for
each criterion, the optimal solution was obtained by using a
one-dimensional search procedure, independent of the
number of stages. The efficiency range in which the
optimal solutions for the three objective functions can be
found was described and analyzed. The optimal feed rate of
any stage in a multistage machining system is found to be
an upper bound to the optimal feed rate of each stage that

operates as a stand-alone cutting machine. Finally, a
numerical example illustrated that the three objective
functions are insensitive to changes in the feed rate within
the close neighborhood of the optimal solution.
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