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Abstract. Frequency and time references play an essential role in modern technology and in liv-
ing systems. The precision of self-sustained oscillations is limited by the effects of noise, which
becomes evermore important as the sizes of the devices become smaller. In this paper, we review our
recent theoretical results on using nonlinear dynamics and pattern formation to reduce the effects
of noise and improve the frequency precision of oscillators, with particular reference to ongoing
experiments on oscillators based on nanomechanical resonators. We discuss using resonator
nonlinearity, novel oscillator architectures and the synchronization of arrays of oscillators, to
improve the frequency precision.
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1. Introduction

Oscillators play crucial roles in much of modern technology, for example in timekeeping
(quartz crystal watches), communication (frequency references for mixing down radio
frequency signals), and sensors. They are also important in timekeeping in biological sys-
tems. A key characteristic is the intrinsic frequency precision of the device. One way of
quantifying this is to use the spectral density of the output signal in the frequency domain:
the narrower the peak, the more precisely can the frequency be defined. Improving
this frequency precision is the fundamental issue, broadly common to all oscillators, con-
sidered in this paper. There are other important practical characteristics, including the
robustness of the frequency to environmental perturbations such as vibrations and tem-
perature fluctuations and long term drift due to aging, that are more dependent on the
details of the device implementation; these are not considered here.
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Unlike a resonator driven by an external oscillating signal, where the linewidth of the
spectral response as the frequency is swept is determined by the dissipation in the reso-
nator, the linewidth of a self-sustained oscillator is only nonzero in the presence of noise.
An oscillator is mathematically described by a limit cycle in the phase space of dynamical
variables, and the linewidth of the signal corresponding to a limit cycle is zero. Dissipa-
tion serves to relax the system to the limit cycle, which is itself determined by a balance of
energy injection and dissipation, but does not broaden the spectral line. The spectral line
is broadened only if there is some stochastic influence that causes the phase-space trajec-
tory to fluctuate away from the limit cycle. Thus, the frequency imprecision (linewidth)
is due to noise.

High-precision clocks and frequency references are typically based on a high-quality
factor (Q) resonator, often mechanical, used as the frequency defining element. A familiar
example is the quartz crystal resonator in watches, cell phones, etc. Providing the reso-
nator is driven at an amplitude such that nonlinear effects are small, the frequency is
insensitive to the amplitude of the motion, and so imperfect control of this quantity does
not degrade the frequency precision. This is the same principle described by Galileo three
centuries ago. On the other hand, the effects of noise acting on the resonator are reduced
by going to higher amplitudes. Thus, the limiting operating condition presently used to
optimize performance is to drive the resonator as strongly as possible before nonlinearity
degrades the performance too much. As attempts are made to reduce the size of the
resonator, using MEMS or NEMS, the noise becomes relatively larger, and this strategy
will eventually fail to give the desired performance. In this paper, we discuss theoretical
work aimed to mitigate the bad effects of resonator nonlinearity on oscillator performance
and to exploit the nonlinearity in novel ways to improve the performance. Our focus is on
oscillators built from nanomechanical devices, but the ideas apply generally. This paper
is a summary of work published in a number of papers [1–6]; more details can be found in
those publications. There is also experimental work supporting some of the results [7,8].

2. Oscillator phase noise

An oscillator on a limit cycle can be characterized by a phase variable θ roughly giving
the angle around the limit cycle. It is convenient to perform a nonlinear transformation
so that the phase variable advances uniformly in time and then the time derivative θ̇ = ω

is the frequency of the oscillations. The net effect of noise acting on the oscillator is that
the advance of the phase becomes nonuniform, and the frequency precision is degraded.
This idea has been studied for many decades: some early references are Lax [9], Kaertner
[10], and Demir et al [11]. A key idea is that the phase is a free variable: any phase can be
chosen as an initial condition, and a shift in the phase is equivalent to a time translation.
A phase shift is therefore a zero (Goldstone) mode of the Floquet stability analysis of the
limit cycle resulting from time translational symmetry.

There is no restoring force to correct a phase shift induced by a noise kick: as a result
the phase undergoes Brownian motion leading to phase diffusion [12]. This phase dif-
fusion leads to a broadening of the spectral peak and a degradation in the frequency
precision. Noise kicks will also, in general, excite the exponentially decaying modes cor-
responding to the stable eigenvalues of the Floquet analysis. These deviations will shift
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weight from the spectral peak to Lorentzian sidebands with widths given by the decay
rates, but, in the absence of phase diffusion, will leave the delta-function peak of the ideal
limit cycle sharp (cf. the Debye-Waller factor of Bragg peaks for X-ray scattering off a
crystal). Thus, the fundamental limits of frequency precision are determined by the phase
diffusion.

The effect of a noise perturbation ξ(t)vn(t) with vn(t) giving the direction of the noise
kick in the phase space, and 〈ξ(t)ξ(t ′)〉 = f δ(t − t ′) for white noise, can be calculated via
the solvability condition of secular perturbation theory [11]. The resulting phase diffusion
depends on the scalar product of the noise vector vn(t) with the phase sensitivity vector
v⊥(t) defined as the zero-eigenvalue adjoint eigenvector e†

0 of Floquet stability analysis of
the limit cycle, with the normalization e†

0 · e0 = 1, where e0 is the vector corresponding to
a unit phase shift of the oscillator, and is the zero-eigenvalue eigenvector of the stability
analysis. The noise kicks projected along the phase direction then lead to Brownian
motion of the phase and phase diffusion, so that in the long time limit

〈(θ(t) − ω0t)
2〉 → 2Dt, (1)

with

D = f [v⊥(t) · vn(t)]2, (2)

where the bar denotes an average around the limit cycle and ω0 is the frequency of the
oscillator, which may be changed from the no-noise frequency by a correction propor-
tional to the noise strength. The correlation function of a periodic function of the phase
giving the output signal, e.g., x = cos θ(t), decays exponentially. For t > 0

〈x(t)x(0)〉 ∝ Re〈ei[θ(t)−θ(0)]〉
= e−〈[θ(t)−ω0t]2〉/2 cos ω0t = e−Dt cos ω0t . (3)

The corresponding spectral density (the Fourier transform of the correlation function) is
a Lorentzian with width proportional to the noise strength f

Sxx(ω) = S0

π

D

(ω − ω0)2 + D2
. (4)

Thus the linewidth giving the frequency imprecision is presented by calculating the phase
diffusion coefficient D (eq. (2)).

In the following sections, these basic ideas are applied to two important schemes
to improve oscillator performance: first, improving a single oscillator using nonlinear
dynamics of the component resonator; and secondly using synchronization of arrays of
oscillators.

3. Improving frequency precision using nonlinear dynamics

A simple schematic of an oscillator based on a high-Q mechanical resonator is shown
in figure 1. The output signal from the resonator is amplified and fed back to drive the
resonator with a phase shift to give positive feedback. Two types of noise sources can
be anticipated: noise acting directly on the resonator, including the thermomechanical
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Figure 1. Schematic of a feedback oscillator.

noise associated with the resonator dissipation via the fluctuation–dissipation theorem,
and parameter noise such as mass fluctuations due to molecules binding and unbinding
with the device or spring constant fluctuations due to temperature fluctuations; and elec-
tronic noise from the amplifier/phase-shifter combination adding noise to the feedback
drive.

The resonator is described by the equation of motion for the displacement x(t) of the
chosen mode of oscillation

ẍ + Q−1ω0ẋ + ω2
0x + bx3 = d(t), (5)

where ω0 is the linear resonance frequency and Q is the quality factor. The last term on
the left-hand side gives the crucial nonlinearity we shall be discussing: a nonlinear spring
stiffening or softening given by the coefficient b, often called the Duffing term [13]. The
term on the right-hand side is the drive d(t), which in the closed loop is the feedback.

The effect of nonlinearity on the open-loop periodically-driven resonator d(t) =
d0 cos ωt is shown in figure 2, and is often called the ‘Duffing effect’. The gain a0/d0,
with x = a0 cos(ωt+θ), normalized to the value on resonance Q, is plotted for three drive
levels d0 as a function of the scaled frequency offset Q(ω − ω0)/ω0. Above a ‘Duffing
critical drive level’ (middle panel), the resonance peak becomes re-entrant, giving mul-
tiple solutions over a range of drive frequencies due to the nonlinear frequency pulling.
(The plot is for spring stiffening, b > 0.)

The simple reasoning in designing a closed-loop oscillator is that the nonlinear fre-
quency pulling adversely affects the performance, because the resonance frequency is
now a function of amplitude. However, Greywall et al [14] and Yurke et al [15] showed
that for the special case of a saturated amplifier, so that the feedback signal does not
depend on the strength of the oscillations, there is in fact suppression of the effect of
the feedback noise on the oscillator phase noise at the special oscillation amplitude given
by the Duffing critical point. The effect of the direct resonator noise is actually worse
under this condition than for the linear resonator, but if the feedback noise dominates, as
is often the case, improved frequency precision is obtained. This is a rather surprising
result, because one typically expects a larger effect of noise at a critical point. Also
the relevance of the open-loop driven resonator curve to the closed loop oscillator is not
immediately obvious. These aspects were studied in [4].

458 Pramana – J. Phys., Vol. 84, No. 3, March 2015



Building oscillators using nonlinear dynamics and pattern formation

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

Scaled Frequency Offset
4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

Scaled Frequency Offset
4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

Scaled Frequency Offset

4 2 0 2 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Scaled Frequency Offset

4 2 0 2 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Scaled Frequency Offset

4 2 0 2 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Scaled Frequency Offset

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

Scaled Frequency Offset

Sc
al
ed

G
ai
n

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

Scaled Frequency Offset

Sc
al
ed

G
ai
n

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

Scaled Frequency Offset

Sc
al
ed

G
ai
n

4 2 0 2 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as
e

4 2 0 2 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as
e

4 2 0 2 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as
e

Figure 2. Scaled gain and phase response of a nonlinear resonator as a function of the
scaled frequency offset � = Q(ω − ω0)/ω0 at different drive levels: small drive (first
panels); critical drive level (middle panels); twice critical drive level (last panels).

We have extended the ideas of Greywall et al [14] in a number of directions. We fol-
low Lax [9], Greywall et al [14], and others, in using a slow-amplitude description of
the resonator dynamics. We apply secular perturbation theory to derive reduced equa-
tions of motion for the driven open-loop resonator and the closed-loop oscillator. This
approach has been used to discuss a number of topics in the nonlinear dynamics of sin-
gle nanomechanical resonators and resonator arrays [16–19], and the method is reviewed
in [20].

The basic idea is to write the resonator motion as a slow modulation of the simple
harmonic motion together with weak harmonics, using the small value of ε = Q−1 as the
expansion parameter

x = R[Aeiω0t ] + · · · . (6)

Here A(T ) = aeiθ is the complex amplitude, with magnitude a and phase θ , varying on
the slow time scale T = Q−1ω0t , R denotes the real part, and the · · · denotes higher order
terms in ε including harmonics generated by the nonlinearity. For the driven resonator,
taking d ∼ Q−1D to reflect the small drive needed to overcome the dissipation, and b =
Q−1β so that the frequency shift due to the nonlinearity is comparable to the linewidth
for |A| ∼ 1, and using the standard methods of secular perturbation theory [20], leads to
the equation of motion for the complex amplitude (denoting dA/dT by A′)

A′ + 1
2A− 3

8 iβ|A|2A = − 1
2 iDei�T , (7)

with ω = ω0(1 + Q−1�) so that � = Q(ω − ω0)/ω0 is the frequency offset of the drive
from the linear resonance frequency, scaled by the linewidth [21]. After transients, the
solution is A(T ) = A0ei�T with the constant complex amplitude A0 = a0eiθ0 satisfying

(i� + 1
2 − iα|A0|2)A0 = − 1

2 iD, (8)
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where α = 3
8β, giving x = a0 cos(ωt + θ0) with

a2
0 =

1
4D2

(�−αa2
0)

2 + 1
4

, θ0 = tan−1 1

2(� − αa2
0)

. (9)

The expressions for the scaled gain a0/D and phase θ0 reproduce the plots in figure 2.
The amplitude description of the resonator is based on the narrow bandwidth of the

response (high Q) and weak nonlinearity so that the nonlinear frequency shifts are com-
parable to the linewidth. On the other hand, the feedback system (amplifier/phase-shifter
combination) in the closed loop oscillator is typically strongly nonlinear (with the inten-
sity of harmonics comparable to the fundamental) and wide bandwidth. This means that
in calculating its behaviour we can neglect the slow time dependence of A and calculate
the fully nonlinear behaviour for a periodic input signal at the linear resonance frequency
a cos ω0t . This nonlinear behaviour will include up- and down-conversion of noise to
frequencies near the oscillation frequency that are important to the resonator motion. The
output signal from the feedback system is then projected onto the slow amplitude motion,
because the resonator responds strongly only when driven near resonance. This gives the
closed loop equation of motion [22]

A′ + 1
2A − iα|A|2A = − 1

2 i
[
g(a)ei� + �(T )

]
eiθ , (10)

where g(a) is the amplifier gain characteristic for a harmonic signal at the oscillation
frequency, � is the phase shift of the feedback system, and �(T ) = �R(T ) + i�I(T ) is
the complex noise given by projecting the feedback and resonator noise onto the slow time
dynamics. Note that although the noise generated by the amplifier driven by the periodic
signal is cyclostationary (the statistics is periodic rather than stationary) the slow noise
given by the projection is stationary

〈�i(T )�j (T
′)〉 = Cij (T )δ(T − T ′), (11)

(for i, j equal to R or I ), as must necessarily be the case because there is no time reference
for the oscillator [23]. The slow noise spectra Sij (�) are given by the Fourier transform
of the correlation functions Cij (T ).

The stochastic amplitude equation (10) can now be solved for the diffusion of the phase
θ giving the oscillator phase noise spectrum (eq. (4)) and hence the frequency precision.

The amplitude equation (10) falls into a class of systems where the noise projection
method is vastly simplified [1]. These are the ones for which the dynamical variables
X = (X1,X2, . . . , XN−1, θ), here (a, θ), can be chosen such that the equations of motion
are

Ẋ = f(X1,X2, . . . , XN−1), (12)

independent of θ . The no-noise limit cycle is then the fixed point Xi = X
(s)
i , i =

1, . . . , N − 1, given by

f(X(s)
1 ,X

(s)
2 , . . . , X

(s)
N−1) = 0, (13)

and then

θ = �(X
(s)
1 ,X

(s)
2 , . . . , X

(s)
N−1)t. (14)

The linear stability analysis of the limit cycle is given by the constant Jacobian matrix
Jij = ∂fi/∂Xj , the zero-eigenvalue eigenvector of J is a phase shift (0, 0, . . . , 0, 1),
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and v⊥, vn are constant vectors. This means we can attempt to tune a system parameter,
usually the feedback phase �, so that v⊥ · vn = 0, completely eliminating the effect of
a particular noise term, represented by vn, on the frequency precision. Also, v⊥ is easily
calculated as the zero-eigenvalue eigenvector of the transpose matrix J̃. An immediate
result that can be derived from this is for noise in a parameter p of eq. (10), such as the
feedback phase �. From the Jacobian it is easy to show that

v⊥ · vn = d�/dp. (15)

Thus, to eliminate the effect of noise in the parameter p, the oscillator should be operated
at the point where d�/dp = 0.

An important point is that in general the noise appearing in eq. (10) forms a ball in
the complex amplitude space: even for a single noise source in the original equations of
motion, �R,�I will in general be imperfectly correlated due to the different averaging
that occurs in projecting out the real and imaginary components. In fact, for white noise,
we can choose a phase reference �N for the noise, writing � = ei�N �̄, so that �̄R, �̄I are
uncorrelated, giving two independent noises and correspondingly two orthogonal noise
vectors vRn, vIn. In general, it will then not be possible to eliminate both components of
the noise by setting the phase sensitivity vector v⊥ perpendicular to the noise direction by
tuning the operating point. This may only be done if one of the noises �̄R, �̄I is zero, so
that the noise acts along a line in the complex amplitude space, rather than filling out a
ball.

Using these ideas, we can investigate the noise reduction scheme of Greywall et al
[14,15]. They studied the case of a saturated amplifier g(a) → s, so that eq. (10) becomes

A′ + 1
2A − iα|A|2A = − 1

2 i[sei� + �(T )]eiθ . (16)

Writing the operating point with oscillation frequency � = θ ′ as A = Ā0ei�ei�T , eq. (16)
with noise set to zero reduces to

(i� + 1
2 − iα|Ā0|2)Ā0 = − 1

2 is. (17)

Note that this is the same as eq. (8) for the driven resonator with drive level D = s and −�

playing the role of the phase shift of the response relative to the drive. For the oscillator
equation however, the phase shift � is the control parameter, whereas the frequency � is
determined by the dynamics, so that the θ0(�) curve for the resonator driven at frequency
� is inverted to become the �(�) curve for the oscillator. The unstable branches in the
open loop configuration (the portions with da0/d�, dθ0/d� < 0) become stabilized in
the closed loop. Thus, for the saturated amplifier (and only in this limit) the oscillator
operating point is directly given by the driven resonator curve.

A second feature that results from the saturated amplifier limit is that the amplifier noise
in the magnitude quadrature is suppressed by the saturation. Thus, the amplifier noise
appearing in eq. (10) is � → ei��̄ with �̄R = 0, so that the noise acts along a line, rather
than filling a ball in complex amplitude space. Equivalently, the noise can be understood
as fluctuations in the feedback phase parameter. Thus, according to eq. (15), the effect of
this noise on the oscillator phase noise can be eliminated by tuning the feedback phase to
the ‘Kenig point’ where d�/d� = 0. Since, for a saturated amplifier, �(�) is directly
given by the driven resonator response θ0(�) such as plotted in figure 2, this can be
achieved by tuning � to operate at the Duffing critical amplitude (middle panels), where
the slope θ0(�) just becomes infinite: this is the suggestion of Greywall et al [14].

Pramana – J. Phys., Vol. 84, No. 3, March 2015 461



M C Cross, Eyal Kenig and John-Mark A Allen

We can now extend the idea of Greywall et al in a number of directions. First, we
can see that the condition d�/d� = 0 can be satisfied not just at the Duffing critical
point, but also for operating points giving resonator amplitudes above the critical drive
level, at the two operation points giving dθ0/d� → ∞ as in the third panels of figure 2.
This can be exploited to reduce the effects of other noise sources in the system [1]. In
particular, consider the direct thermomechanical noise acting on the resonator which is
represented in eq. (10) by a noise ball with uncorrelated noises �R,�I of equal intensities,
and independent of the feedback phase �. The component �I acting along the resonator
phase acts directly on the oscillator phase, and so cannot be eliminated by tuning the
operating point, but the effect can be reduced by going to larger resonator amplitudes. The
component �R along the resonator magnitude adds to the oscillator phase noise through
amplitude–phase conversion: this sets the standard limitation on driving the resonator
more strongly. However, this limitation can be avoided by finding operating points that
eliminate amplitude–phase conversion. Quantitatively, if we write eq. (10) in the form of
eq. (12) using magnitude–phase variables

da

dT
= fa(a) + �R, (18)

dθ

dT
= fθ (a) + a−1�I, (19)

(where θ does not appear on the right-hand sides because of the phase invariance of the
system) the phase sensitivity vector, given by forming the Jacobian of the linear stabil-
ity analysis and finding the appropriately normalized zero-eigenvalue eigenvector of the
adjoint (transpose) matrix, is

v⊥ =
(

−∂fθ/∂a

∂fa/∂a
, 1

)
. (20)

Thus, amplitude–phase conversion is eliminated when ∂fθ/∂a = 0. Although this con-
dition cannot be satisfied identically with the Kenig point d�/d� = 0 to eliminate the
feedback noise, Kenig et al [1] showed that near the lower amplitude turning point of
figure 2 (third panels), the two points become close for the large feedback. In fact, for
large values of the drive level s, operating at the Kenig point leads to the following scaling
of the effects of the various noise sources on the oscillator phase noise: feedback phase
noise is eliminated; resonator noise in the phase quadrature ∝ s−2/3; and amplitude–phase
conversion of resonator noise in the magnitude quadrature ∝ s−2. The major result is that
the barrier for going to higher oscillator amplitudes due to the conversion of amplitude
noise to phase noise by the resonator nonlinearity is removed, so that frequency perfor-
mance can be significantly improved. These predictions were verified by Villanueva et al
[8], as illustrated in figure 3. In particular, note the significant noise reduction around a
phase shift of 170◦ where the effects of thermomechanical noise and noise in the feedback
phase and other parameters are all reduced. One noise source that is not reduced by this
strategy is noise acting directly on the linear resonance frequency of the resonator, such as
mass or spring constant fluctuations. These feed directly into the frequency fluctuations
of the oscillator, and are not reduced by going to higher oscillation amplitudes or tuning
the feedback phase.
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Figure 3. Oscillator phase noise as a function of feedback phase �. The coloured
lines show the predictions for different contributions to the phase noise: dashed purple
line – contribution from noise in the feedback phase �: note the elimination at two
values of � near 90◦ and 180◦; thin orange line – contribution from thermomechanical
noise: note the strong suppression near � = 180◦ due to the elimination of amplitude–
phase conversion here; dash–dotted purple line – contribution from intrinsic frequency
fluctuations, unaffected by the feedback phase; thick orange line – contributions from
other parameter fluctuations; black line – prediction for total noise; purple balls –
experimental points. The saturation level s = 7.23 compared with the value giving
the Duffing critical amplitude s  1.43 (in this work a scaling with β = 1 was used).
For other drive levels, a discussion of how the various noise strengths were estimated,
and other details, see [8] (figure extracted from figure 2 of Villanueva et al [8]).

A second extension of the idea of Greywall et al is to study the noise suppression of an
unsaturated amplifier [4], such as will often be used in practical oscillators. The condition
d�/d� = 0 for eliminating the effect of noise in the phase quadrature of the feedback
still applies, but �(�) can no longer simply be read off inverting the resonator response
curve θ0(�), and together with the amplitude of oscillation a0(�), can be obtained by
solving the full closed loop equation (10). For an unsaturated amplifier there will also in
general be noise in the magnitude quadrature of the feedback giving a noise ball. It will
not be possible now to eliminate the effect of both components by tuning the direction of
the noise sensitivity vector, so that completely eliminating the effect of the feedback noise
on the oscillator phase noise will not in general be possible. It is still potentially useful
to reduce the noise to some degree by tuning �: the efficacy depends on the nature of
the noise source and the characteristics of the amplifier. Some examples are considered
in [4,22].

We have also applied similar ideas to propose novel architectures for oscillators with
improved frequency precision. In the parametric feedback oscillator the feedback is
given by squaring the output signal of the resonator, and then applying the feedback
drive parametrically as a modulation of the spring constant of the nanomechanical
resonator [7]. Alternatively, we proposed using a nondegenerate parametric oscil-
lator driven by a conventional feedback oscillator as a way of reducing the phase
noise [2].
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4. Improving frequency precision using synchronization

According to Winfree in his classic book [24]:

“It is often stated in research papers (it is even alleged that I proved this in
1967, which I did not) that mutual synchronization disciplines each oscillator
to much improved regularity of oscillation at the common frequency.”

This is an attractive idea for improving the performance of NEMS oscillators, because
it is already possible to lithographically fabricate arrays of thousands of resonators [25].
Inevitably, the resonance frequencies will be slightly different due to fabrication limi-
tations. In the synchronized state however, the interactions between the oscillators
overcome this frequency dispersion and pull all the diverse oscillators to oscillate with
the same frequency. The fully synchronized state is a limit cycle, and will have a delta-
function power spectrum. The question arises is the synchronized state more robust
against the effects of noise causing broadening of the spectral peaks than the individual
oscillators? The naive expectation might be that for independent noise sources acting
on the individual oscillators, the averaging in going to the collective phase of the syn-
chronized state would lead to a 1/N reduction of the effective noise intensity for N

synchronized oscillators, leading to a corresponding improvement in the frequency preci-
sion. As Winfree anticipated, the result is not this simple in general [26]. In particular, as
reviewed subsequently, for oscillator systems such as those based on high-Q resonators
where propagation effects are important, the noise reduction and frequency improvement
are significantly reduced, and do not in fact scale with the total number of oscillators [3,5].
This is because the synchronized state in these systems consists of phase waves propaga-
ting from target or spiral sources, reminiscent of other oscillatory pattern forming systems
such as chemical systems. The noise reduction factor turns out to be only 1/NS with NS

the number of oscillators in a source region (defined precisely below).
We use a phase-only description of the oscillators [27]. The equations of motion are

the evolution equations for the phases θ = (θ1, θ2, . . . , θN ) of N oscillators

θ̇i = ωi +
∑

j∈Ni

�(θj − θi) + ξi(t), (21)

with ξi(t) the noise acting on the ith oscillator, taken to be independent and white

〈ξi(t)ξj (t
′)〉 = f δij δ(t − t ′), (22)

and ωi giving the individual oscillator frequencies, which are random variables taken
from a distribution, such as a Gaussian or Lorentzian, characterized by a width σ . We
shall assume nearest-neighbour coupling (denoted by the neighbourhood Ni of oscillator
i) on a d-dimensional lattice with the coupling function �(�θ), a periodic function of the
phase difference �θ of the oscillators. The results can be generalized to arbitrary range
coupling. The coupling is dissipative if it is an odd function of phase difference, and
reactive if an even function [29]: a physical realization may include both components.
Reactive coupling causes differences in phase to propagate through the network of oscil-
lators, and the synchronized state is often one of waves propagating away from one or
more sources in the lattice.
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For no noise and sufficiently strong coupling there will be a fully synchronized solution
with all N oscillators evolving at some common frequency � with a phase � of the
collective limit cycle defined by

θi(t) = θ
(s)
i + �(t), �(t) = �t + constant, (23)

with θ
(s)
i given as the solution to

� = ωi +
∑

j∈Ni

�(θ
(s)
j − θ

(s)
i ). (24)

Noise will broaden the delta function peaks in the spectrum of the no-noise syn-
chronized state. For small enough noise, the effect can be calculated as for the single
oscillator by projecting the noise forces along the phase sensitivity vector v⊥ of the sys-
tem [3,30,31]. This leads to diffusion of the collective phase defined by the equation of
motion

�̇ = � + �(t), 〈�(t)�(t ′)〉 = Fδ(t − t ′). (25)

Here the noise strength F is given by the projection of the individual oscillator noises
onto v⊥ ≡ e†

0, so that the noise reduction relative to the single oscillator is [3]

R = F

f
= e†

0 · e†
0

(e†
0 · e0)2

. (26)

Here e0 = (1, 1, . . . , 1) is the zero-eigenvalue eigenvector of the linear stability analysis
about the synchronized state defined by the Jacobian matrix J

Jij = �′(θ (s)
j − θ

(s)
i ) for i, j nearest neighbours, (27a)

Jii = −
∑

j∈Ni

�′(θ (s)
j − θ

(s)
i ), (27b)

with other elements zero. Note that e0 is the Goldstone mode and is normalized to cor-
respond to a uniform unit phase shift. Also, v⊥ ≡ e†

0 is the zero-eigenvalue adjoint
eigenvector. The vectors e0, e†

0 are given by solving

J · e0 = 0, (28a)

J† · e†
0 = 0, (28b)

with J
†
ij = Jji .

The factor R = F/f gives the improvement in frequency precision of the synchronized
state compared with an individual oscillator, i.e., the narrowing of the spectral peak. Note
that we are treating noise perturbatively in the small noise limit and for a finite system:
in this case the result is given by just the effect on the overall phase of the synchronized
state, which is the zero-mode of the system. We are not considering modifications to the
synchronized state due to the noise, such as changes in values of the critical disorder for
synchronization, or changes in the nature of the synchronized state. In a finite system,
there will be barriers to such fluctuations, and their rates will vary with the noise strength
f as e−U/f with U an effective barrier height depending on the states considered. These
fluctuations can therefore be ignored for small enough f . As the number of oscillators
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tends to infinity, some barriers will become very small, and the synchronized state may
be significantly changed or even eliminated by the addition of noise [32], as for phase
transitions in equilibrium systems at finite temperature.

We now apply these results to specific examples of the coupling function �.
The standard Winfree–Kuramoto model is given by the dissipative coupling function

�(�θ) = K sin �θ . The properties of the system depend on the ratio of the coupling
strength to the width of the disorder K/σ , and we can rescale the time variable to set
K = 1 with a rescaled σ . It is readily confirmed that for the Winfree–Kuramoto model
the Jacobian is self-adjoint so that e†

0 = e0, and then eq. (26) gives the result R = N−1 so
that the naive averaging argument for the noise reduction and improvement in frequency
precision gives the correct answer.

In the Winfree–Kuramoto model, phases relax in an overdamped way to the average
phase of the neighbours. For oscillators based on high-Q resonators on the other hand,
one might expect oscillatory relaxation leading to propagation effects in the lattice. These
effects can be included using the coupling function extended to include a reactive term of
relative strength γ

�(�θ) = sin �θ + γ (1 − cos �θ) (29)

introduced by Sakaguchi et al [33]. The synchronized states of this model consist of waves
propagating out from one or more sources [33,34]. Two examples from numerical simu-
lations of a 64 × 64 lattice are shown in figure 4. Either of the two sources in the figure
may form, depending on initial conditions. States with multiple sources may also exist,
but these will not be discussed here.

Analysing the synchronized states such as shown in figure 4 using eqs (27) and (29)
for the generalized coupling function, we find the phase sensitivity vector e†

0 to be ‘local-
ized’ to a core region of NS oscillators forming the sources [3,5]. The noise reduction
ratio (eq. (26)) then gives an improvement over the single oscillator only of 1/NS. We
briefly describe the calculations here, focussing on a two-dimensional lattice and using a
continuum approximation. A more complete analysis based on an approximation of the
interaction function on the discrete lattice rather than the continuum approximation, and
results for other systems, can be found in the original papers [3,5].

We assume weak disorder (small distribution width σ ). In this limit we expect the dif-
ference between the phases of neighbouring oscillators to be small, for all oscillators in

Figure 4. Synchronized states for the coupling function (eq. (29)). All the oscillators
evolve with the same frequency, but with phase lags as shown by the colours giving
the phases plotted from 0 to 2π on a rainbow colour scheme.
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the target state and everywhere except near the core for the spiral state. Using the inter-
action function (eq. (29)), setting the noise to zero, and performing a gradient expansion,
eq. (21) becomes

θ̇ (r) = ω(r) + ∇2θ(r) + γ (∇θ(r))2, (30)

where ω(r) is a random function corresponding to ωi . Units of length have been set by
taking the lattice constant to be unity.

We first analyse the target source, as shown in figure 4a. The Cole–Hopf transformation
θ(r) = γ −1 ln q(r) reduces eq. (30) to the linear equation

q̇(r) = γω(r)q(r) + ∇2q(r), (31)

and the synchronized state corresponds to q̇ = Eq with E = γ� [33,34]. Equation (31) is
equivalent to the Schrödinger equation (in imaginary time) for a quantum particle in a ran-
dom potential γω(r), and the properties of the solution can be extracted from the results
known for Anderson localization [35]. At long times the solution q(r, t) = qmax(r)eEmaxt

corresponding to the largest eigenvalue Emax will dominate. This gives the synchronized
state

θ(s)(r) = γ −1 ln qmax(r), (32)

with frequency � = Emax/γ . Anderson localization theory shows that qmax(r) may be
chosen positive, and it has the form of an exponentially localized state centred on a region
of the lattice with a potential maximum, corresponding in the oscillator problem to a
concentration of larger frequency oscillators. The exponential localization of qmax(r)
corresponds to a linear phase profile, defining waves propagating from a source, as shown
in figure 4a.

Within the continuum approximation, the Jacobian operator from eq. (30) is

J = ∇2 + 2γ (∇θ(s)) · ∇, (33)

giving the adjoint

Ĵ † = ∇2 − 2γ∇θ(s) · ∇ − 2γ∇2θ(s). (34)

The continuum approximation to e†
0 is the function e

†
0(r) given by

Ĵ †e
†
0(r) = 0. (35)

It can be verified by direct substitution that the solution is

e
†
0(r) = e2γ θ (s)(r) = [qmax(r)]2. (36)

An example of the adjoint eigenvector e
†
0 for a target wave source is shown in figure 5.

In the continuum approximation and using eq. (36), the noise reduction factor R

(eq. (26)) becomes [5]

R ≈
∫

e
†
0(r)

2dr
[∫

e
†
0(r) dr

]2 =
∫ [qmax(r)]4 dr

[∫ [qmax(r)]2 dr
]2 . (37)

This equation directly relates the improvement in frequency precision to the solution of
the linear Anderson problem (eq. (31)). The last expression in eq. (37) is the inverse parti-
cipation ratio p−1 of the function qmax(r) of the linear localization problem. Thus, we find
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Figure 5. Target waves and source for a realization of a 60 × 60 two-dimensional lat-
tice of oscillators with γ = 1, σ = 2. (a) Grey scale plot of cos θ

(s)
i

giving a snapshot

of the waves emanating from the source; (b) zero-eigenvalue adjoint eigenvector e†
0

showing the effective size of the source of the waves.

that the noise reduction factor is given by the size of the number of oscillators NS = p

acting as the source of the waves, rather than by the total number of oscillators, giving
an improvement in frequency stability that is significantly worse for a large number of
entrained oscillators. The size of the source is defined precisely in terms of the partici-
pation ratio of the maximum energy localized state of the corresponding Anderson
problem. For the system in figure 5, p  9.36; in this example, the frequency preci-
sion would not be improved by increasing the number of oscillators beyond about ten.
From eqs (37) and (31) it is apparent that the source size and noise reduction factor R

depend on the parameters of the model only through the product γ σ , for the approxima-
tions used. The size of the source will increase with decreasing disorder strength σ and
reactive constant γ .

Figure 4b shows a spiral source. The spiral source is not completely captured by the
approximation of small phase differences used for the target sources, because at the core,
neighbouring oscillators necessarily have large phase differences. The spirals are not
predicted by the mapping onto the linear Anderson problem, and we must proceed by a
different route to understand the properties [5]. Unlike the target source, spiral sources
exist even in the completely uniform lattice, and it is simplest to analyse their behaviour in
this limit. Without loss of generality, we then set the common oscillator frequency to zero.
We expect that small disorder may give small quantitative changes to the expressions, but
will not change the main conclusions.

Far away from the core of the spiral the phase differences between adjacent oscilla-
tors do remain small, and we may continue to use the continuum approximation. The
synchronized state in this region is θ(s) = γ −1 ln q(s) with q(s)(r) the solution to

∇2q(s) = k2q(s), k = √
�γ . (38)

Solving this equation for a single armed spiral centred at the origin in polar coordinates
r → (ρ, ϕ) gives

θ(s)(ρ, ϕ) = ϕ + γ −1 ln Kiγ (kρ), (39)

where Kα(z) is the modified Bessel function of the second kind. The value of k must
be real and positive, which means the spiral waves are outgoing from the centre; this
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condition requires �γ > 0, and so the frequency of the spiral is greater (less) than the
frequencies of the individual oscillators for γ > 0 (γ < 0). For definiteness and without
loss of generality, we take γ > 0 and so � > 0. In a finite system, there will be corrections
to eq. (39) within a distance ∼ k−1 from the boundaries.

The zero-eigenvalue adjoint eigenvector can again be found analytically. It can be
verified by direct substitution that the solution to eq. (34) with θ(s) given by eq. (39) is the
purely radial function

e
†
0(ρ) = e2γψ(ρ), (40)

with ψ(ρ) = γ −1 ln Kiγ (kρ) the radial part of the spiral solution (39). The noise
reduction ratio (37) becomes

R = k2F(γ ), (41)

where F(γ ) is plotted in figure 6 (it can be expressed in terms of a Meijer’s G-function).
R is given by k2 multiplied by an O(1) slowly varying function of γ , and k−1 sets the
length scale of the spiral and defines the core size. In a finite system of N oscillators, as
the adjoint eigenvector decays as e−2kρ/ρ for large ρ, there will be corrections from the
boundaries when k

√
N is insufficiently large. The important conclusion of this calculation

is that, because k = √
�γ is independent of N for large systems, the noise reduction ratio

R is again some constant that does not increase with N for large N . This was verified
numerically in [5] over the range 0.29 < γ < 0.43.

To calculate k(γ ),�(γ ) and so R(γ ) requires matching to the core region of the
spiral where the continuum approximation breaks down. Following Hagan [36], who
investigated spiral formation in continuum amplitude–phase equations for collective
oscillations, we anticipate this matching to lead to an expression of the form k(γ ) =
2 exp(−(π/2γ )+α), where the constant α is determined by the core structure. The value
of α  0.84 is obtained by fitting � = k2/γ to numerical results for the spiral frequency
(see [5] for details). Together with figure 6, this provides a complete prescription for
determining the effective noise reduction and improvement in the frequency precision for
a spiral synchronized state.

Figure 6. Plot of R/k2 derived from the analytic continuum approximation, with
R the relative frequency precision and k = √

�γ with � the spiral frequency, as a
function of the reactive coupling parameter γ (figure reproduced from [5]).
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5. Conclusions

For centuries, clocks and frequency references have been based on resonators with drive
levels restricted to the linear regime. In the work reviewed in this paper, we have studied
exploiting nonlinearity to improve performance. We have shown how the detrimental
effects of nonlinearity in a single resonator converting amplitude to phase noise can be
mitigated, whilst at the same time using the resonator nonlinearity to improve perfor-
mance by eliminating the effects of feedback drive noise and other noise. In addition,
we have proposed novel oscillator architectures, and have analysed how the synchroniza-
tion of many oscillators can further improve the performance. Our work exemplifies the
importance of nonlinear dynamics and pattern formation to modern technology.
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