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ABSTRACT

A strong dependency of model performance in quantitative precipitation forecasts (QPFs) as measured by

scores such as the threat score (TS) on rainfall amount (i.e., the better themodel performs when there is more

rain), is demonstrated through real-time forecasts by the 2.5-km Cloud-Resolving Storm Simulator (CReSS)

for 15 typhoons in Taiwan in 2010–12. Implied simply from the positive correlation between rain-area sizes

and scores, this dependency is expected to exist in all regions, models, and rainfall regimes, while for typhoon

QPFs in Taiwan it is also attributed to the model’s capability to properly handle (within 72 h) the processes

leading to more rain, which are largely controlled by the typhoon’s track, size, structure, and environment,

and the island’s topography. Because of this dependency, the performance of model QPFs for extreme events

can be assessed accurately only when forecasts targeted for periods of comparable rainfall magnitude are

included for averaging. For the most-rainy 24 h of the top-5 typhoons, the 0–24-h QPFs by CReSS have mean

TS of 0.67, 0.67, 0.58, 0.51, and 0.32 at thresholds of 25, 50, 130, 200, and 350mm, and 0.64, 0.57, 0.37, 0.33, and

0.22 from 48–72-h QPFs, respectively, suggesting superior performance even 2–2.5 days in advance. These

scores are strikingly high, precisely because Taiwan can receive extreme rainfall from typhoons. For smaller

(nonhazardous) events, themean scores are progressively lower, but also unimportant and less representative

statistically. Therefore, it is inappropriate to average scores over multiple forecasts as those for less-rainy

periods would contaminate the result for key periods. The implication for forecasters is also discussed.

1. Introduction and motivation of study

a. Background of research

As one of the most challenging tasks in modern

weather prediction, quantitative precipitation forecasts

(QPFs) are under constant and heavy demand around

the world (e.g., Fritsch et al. 1998; Golding 2000; Fritsch

and Carbone 2004; Cuo et al. 2011), especially for heavy

to extreme rainfalls because of their hazardous nature.

The verification and evaluation of QPFs, produced

mostly by numerical models today, are thus crucially

important as the results reflect the capabilities of the

models and serve as the basis by which model improve-

ment is judged. Among the various verification methods

for QPFs, categorical measures based on the 2 3 2 con-

tingency table (Wilks 1995; Jolliffe and Stephenson 2003)

are the most widely used to date, although they are less

suitable for rainfall caused by mesoscale systems (such as

squall lines) and careful attention is needed to avoid the

issue of ‘‘double penalty’’ on models that are capable of

predicting the event but not at the correct location and/or

time compared to those that cannot predict the event at

all (e.g., Ebert andMcBride 2000; Davis et al. 2006; Clark

et al. 2007). In recent years, various new verification

methods have been developed for model QPFs associ-

ated with mesoscale rainfall systems (e.g., Davis et al.

2006; Marzban and Sandgathe 2006; Wernli et al. 2008).

InTaiwan, heavy rainfalls brought by typhoons (mainly

during July–October) and in the mei-yu season (May–

June) are responsible for themajority of weather hazards,

and categorical measures such as the threat score (TS)

and bias score (BS) have been employed as the major

tools for model QPF evaluation. Besides generally easy

calculation and interpretation (section 2c), these mea-

sures are chosen also for physical and practical reasons.

First, when the circulation of a tropical cyclone (TC) or

the prevailing monsoon flow impinges on the steep to-

pography of Taiwan (Fig. 1), the rainfall from forced

uplift is phase locked to the windward slopes (i.e.,

Corresponding author address:Chung-ChiehWang,Department

of Earth Sciences, National Taiwan Normal University. No. 88,

Sec. 4, Ting-Chou Rd., Taipei 11677, Taiwan.

E-mail: cwang@ntnu.edu.tw

MAY 2015 WANG 1723

DOI: 10.1175/MWR-D-14-00137.1

� 2015 American Meteorological Society

mailto:cwang@ntnu.edu.tw


nonmoving) and is often a significant component of total

rainfall (e.g., Chang et al. 1993; Cheung et al. 2008; Chang

et al. 2013). Second, the observation from a dense net-

work of rain gauges (Hsu 1998) needed for verification is

available only over the island, and this limits the appli-

cability of many other alternative methods. From time-

averaged scores that value successful forecast of events

(i.e., hits) such as the TS, it is long recognized that model

QPFs depend on forecast range (the longer the poorer),

as forecast errors typically grow with time (e.g., Olson

et al. 1995; Ralph et al. 2010). On the other hand, one

common characteristic of these measures in individual

forecast is that the score decreases with increasing rainfall

threshold, as the rain area becomes smaller and it is more

difficult for the model to produce ‘‘hits’’ at the same

fraction. This very linkage with rain-area size implies that

the scores and the inferred model performance also de-

pend on the overall rainfall amount of events, and the

QPF is better when there is more rain (since the rain area

reaching the same threshold is now larger). This property

thus could have important implications on the fore-

casts for heavy to extreme rainfalls, and on how these

forecasts should be perceived and used for hazard

prevention and reduction. Although a possible link is

previously noted (e.g., Johnson and Olsen 1998; Yuan

et al. 2005), such a dependency has not been explored

and understood adequately, and this is the objective of

the present study.

b. An example of a good forecast

Here, an example of a high-resolution forecast at

a horizontal grid spacing of 2.5 km, which can resolve the

basic structure of convective clouds, for Typhoon (TY)

Fanapi (2010) is presented to illustrate the quality of the

prediction and the corresponding scores of QPFs. De-

tails about the model, its forecasts, and skill measures

will be described shortly in section 2. To verify the

evolution of the event, the vertical maximum indicator

(VMI) reflectivity composites from land-based radars in

Taiwan (cf. Fig. 1) every 4h from 1600 UTC 18 Sep-

tember to 0000 UTC 20 September 2010 are compared

with the real-time forecast made by the author using the

Cloud-Resolving Storm Simulator (CReSS; Tsuboki

and Sakakibara 2002, 2007) at (starting from) 0000 UTC

17 September for the same period in Fig. 2. With its

center labeled every 2h, TY Fanapi approached Taiwan

from almost due east since 18 September, but suddenly

deviated southward just prior to landfall (near 0600 UTC

19 September) then moved westward across Taiwan and

into the Taiwan Strait (Fig. 2, left column). The clouds

associated with Fanapi were rather axisymmetric before

landfall but changed to an asymmetric pattern with most

deep convection in the southern half (Wang et al. 2013a).

The forecast made at 0000 UTC 17 September (Fig. 2,

right column), with the TC center determined using

15-min outputs near 2-km height to reduce the influence

of topography, shows a storm evolution in excellent

agreement with the radar observation. Both the track

deflection before landfall and the shift into an asymmetric

rainfall structure are well captured by this forecast made

two days before 19 September. Careful comparison in-

dicates that the forecast TC is about 3–4h too early in

crossing Taiwan and slightly too far north during de-

parture (Fig. 2), but the track error is within;100km and

relatively small for the third day.

The total daily (0000–2400 UTC) rainfall distributions

from some 400 rain gauges over Taiwan (Fig. 1) during

17–19 September and the corresponding day-1 to day-3

QPFs from the forecast in Fig. 2 (i.e., at 0000 UTC

17 September) are presented in Figs. 3a–c and 3f–h,

respectively, while the rest of Fig. 3 will be discussed

later. Over Taiwan, the rainfall from Fanapi was received

mostly on 19 September (Fig. 3c), while that on 17–

18 September was much less, under the influence of the

outer circulation (cf. Figs. 3a,b and 2). Because of the high

realism of this forecast, the 24-h QPFs for day 1 (0–24h),

day 2 (24–48 h), and day 3 (48–72 h) agree closely with

FIG. 1. The topography of Taiwan (m; color) and locations of rain

gauges (dots) and Doppler radars (red triangles) operated by the

Central Weather Bureau (CWB).
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the observations (Figs. 3a–c and 3f–h), especially for

19 September, although there is some underprediction

for 18 September. On 19 September, two rainfall

maxima appeared in southern Taiwan (triangles,

Fig. 3c) and the one along the southwestern coast

(.800mm) seriously flooded Kaoshiung, the second

largest city in Taiwan. Produced by intense rainbands

south of the TC during departure, this coastal rainfall

on 19 September was also captured by the model

(Figs. 2l–p). Thus, overall the model made an excel-

lent forecast for this particular typhoon, including the

QPF, and provided valuable information to the fore-

casters and its users about what was coming at least

two days in advance.

Now, let us examine the QPF performance of this

decent forecast and plot the widely used TS and BS as

functions of 24-h rainfall threshold from 0.05 to 1000mm

(Fig. 4). For any given threshold over an accumulation

period (24 h here), the rain areas reaching this value in

the observation and forecast can be identified, and TS is

defined as their intersection divided by their union area

(0# TS# 1, the higher the better), while BS is the ratio

of rain-area sizes in the forecast to the observation and

thus measures under- or overforecast [0 # BS , ‘, e.g.,
Wilks (1995)]. To be consistent and avoid confusion, the

low, middle, and high thresholds in this paper refer to

their corresponding one-third of the range (i.e., 0.05–50,

75–200, and 250–1000mm, respectively) while the

‘‘extreme’’ events refer to thosewith 24-h rainfall$750mm.

Of course, not all TYs studied reached the high thresh-

old ($250mm) and those that did were rainy only during

certain period(s).

In Fig. 4a, the TS values for day 3 (19 September,

blue) are very high and decrease only slowly from

a perfect 1 at low thresholds #2.5mm, to about 0.6–0.8

across the middle thresholds (75–200mm), and remain

above 0.6 at 250mm and 0.4 at 350mm, consistent with

visual inspection (cf. Figs. 3c,h). Likewise, theBS for day

3 indicates superior performance with values near unity

up to the 350-mm threshold (Fig. 4b). The TS curve for

days 2 (red), on the other hand, drops much faster from

about 0.8 and is much lower (,0.2) across thresholds of

25–130mm, while the BS also reflects the underforecast

for 18 September noted earlier (cf. Figs. 4a,b and 3b,g).

The TS values for day 1 (17 September, black) are very

low (,0.2 at 0.05mm) and decrease quickly to zero and

the BS also indicates underprediction (cf. Figs. 3a,f).

c. Motivation of study

The TS curves in Fig. 4a for the three days indicate

very different skill level in model QPFs, even though

they all come from a single forecast starting from

0000 UTC 17 September. Leading to the excellent

performance for 19 September (cf. Figs. 2 and 3c,h), the

0–48-h forecast is verified to also have good quality in

the characteristics of the TC (not shown) and yet the TSs

are so much lower (except at 160mm for day 2). In this

single forecast, the TS shows no correlation with fore-

cast range but depends strongly on the daily rainfall

amount (event magnitude) in Taiwan (Figs. 3a–c,f–h,

and 4a). A few questions immediately arise regarding

this phenomenon of higher QPF scores when there is

more rain. How common is this dependency in forecasts,

and how strong is it on average? Does it come simply

from the variation in rain-area size, or is the model in

fact more skillful in predicting larger events and why?

What are its importance and implications? What is the

true skill of model QPFs, especially for extreme rainfalls

that have high potential for hazards? How can we

evaluate model QPFs more accurately and effectively?

Does this phenomenon also occur in other models, other

rainfall regimes, and other regions besides Taiwan? All

the above questions motivated the author to carry out

the present study, and will be addressed or shed light

upon by using real-time CReSS forecasts in three sea-

sons of 2010–12 for a total of 15 typhoons.

The remaining part of the paper is arranged as follows.

The model, forecast data, and methodology are de-

scribed in section 2.More examples using TS andBS and

also other verification measures are presented in section

3. In section 4, the dependency of model QPF perfor-

mance on rainfall amount is further demonstrated using

all 15 typhoons, and the origin of this dependency is

explored in section 5. While illustrated throughout this

paper, the important implications of the phenomenon in

model QPF verification/evaluation and to forecasters

are further discussed in section 6, and the conclusions

are given in section 7.

2. The CReSS model, data, and methodology

a. The CReSS model and real-time forecasts

The CReSS model (Tsuboki and Sakakibara 2002,

2007) is a cloud-resolving model suitable for studying

convection, rainfall systems, severe weathers, and TCs

alike (e.g., Liu et al. 2004; Maesaka et al. 2006; Wang

et al. 2011, 2012; Akter and Tsuboki 2012). The model

employs a terrain-following vertical coordinate with

prognostic equations for momentum, pressure, potential

temperature, and mixing ratios of water vapor and other

hydrometeors. To properly simulate clouds, an explicit

bulk cold rain scheme based on Lin et al. (1983), Cotton

et al. (1986), Murakami (1990), Ikawa and Saito (1991),

and Murakami et al. (1994) with a total of six species

(vapor, cloud water, cloud ice, rain, snow, and graupel)
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FIG. 2. (a) Radar reflectivity VMI composite (dBZ, scale at lower left, every 5 dBZ from 210 to 75 dBZ; plots provided by the CWB)

and (b) CReSS forecast (initial time at 0000 UTC 17 Sep) of sea level pressure [hPa, over ocean only, every 1 (2) hPa above (below)

1000 hPa], surface wind (kt, barbs) at 10-m above-ground level (AGL), terrain-height contours at 1 and 2 km (gray lines, over land only),

and 15-min rain (mm, color, scale to the right) valid at 1600UTC 18 Sep 2010. (c),(d)–(q),(r) As in (a),(b), but every 4 h from 2000UTC 18

Sep to 0000 UTC 20 Sep 2010. (left) The center of Fanapi is marked every 2 h (black dots), determined using CWB best track and radar

composites every 30min or (right) CReSS forecasts near 2-km height every 15min (in orange before 1600 UTC 18 Sep 2010). The dotted

red box shows the region of radar plots (19.78–27.28N, 117.38–124.88E).
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FIG. 2. (Continued)
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FIG. 2. (Continued)
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are used with no cumulus parameterization (Tsuboki

and Sakakibara 2002). Subgrid-scale parameterizations

include turbulent mixing in the planetary boundary

layer (Mellor and Yamada 1974; Tsuboki and Sakakibara

2007) and surface radiation andmomentum/energy fluxes

with a substrate model (Kondo 1976; Louis et al. 1981;

Segami et al. 1989). Without nesting grids, the main

features of the model are similar to those used in Wang

et al. (2009, 2013b) and further details can be found in

Tsuboki and Sakakibara (2007) (and are available on-

line at http://www.rain.hyarc.nagoya-u.ac.jp/;tsuboki/

cress_html/index_cress_jpn.html).

The CReSS model has been used by the author to

carry out real-time forecasts for Taiwan since 2006 and,

FIG. 3. Observations of total 24-h daily rainfall distributions (mm, 0000–2400UTC) by rain gauges over Taiwan from (a) 17 Sep to (e) 21

Sep 2010, and corresponding CReSS 24-h QPFs made at 0000 UTC 17 Sep for (f) day 1 (0–24 h), (g) day 2 (24–48 h), and (h) day 3 (48–

72 h), during TY Fanapi. (i)–(k) and (l)–(n) As in (f)–(h), but showing 24-h QPFs for days 1–3 made at 0000 UTC of 18 Sep and 19 Sep

2010, respectively. The classification group (see text for details), observed rainfall maximum, and averaged amounts are listed at lower

right in (a)–(e) and also marked in (c). The color scales are up to 600mm for all panels.
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at 4-km grid spacing, it produced highly valuable fore-

casts prior to TY Morakot (2009), the most devastating

TC to hit the island in five decades (Wang et al. 2013b;

Elsberry et al. 2013). For example, the forecast starting

at 0000 UTC 6 August predicted a peak 48-h rainfall of

.1900mm in southern Taiwan, about two-thirds of the

observed 4-day total. Since 2010, through participation

in the Taiwan Cooperative Precipitation Ensemble

Forecast Experiment [TAPEX; http://www.ttfri.narl.

org.tw/eng/study02A.html, e.g., Lee et al. (2013)] at

the Taiwan Typhoon and Flood Research Institute

(TTFRI), a horizontal grid spacing of 2.5 km has been

achieved with a domain size of 1080km 3 900 km (x 3
y), which has been further enlarged to 1500 km 3
1200km since 2012 (both with 40 levels, cf. Fig. 5). By

using configurations similar to those for research (e.g.,

Bryan et al. 2003; Done et al. 2004; Liu et al. 2006; Clark

et al. 2007, 2009; Roberts and Lean 2008), high-quality

operational forecasts out to 3 days as that shown in Fig. 2

(now to 78 h) are routinely produced every 6 h (at 0000,

0600, 1200, and 1800 UTC, Table 1). In fact, the 2.5-km

CReSS is the only cloud-resolving member in TAPEX,

where all other members use 5 km in their fine domain

(e.g., Lee et al. 2013). Once available, the forecasts are

posted in real time at the author’s website at http://

cressfcst.es.ntnu.edu.tw/ where all past results also re-

side for verification.

For all real-time CReSS forecasts, the National Cen-

ters for Environmental Prediction (NCEP) Global

Forecast System (GFS) analyses and forecasts

(Kanamitsu 1989; Kalnay et al. 1990;Moorthi et al. 2001;

Kleist et al. 2009), every 6h on a 18 3 18 latitude/longitude
grid at 26 levels were used as initial and boundary

conditions (IC/BCs). The GFS forecasts (at 3-h in-

tervals) contain forecast errors, and the track errors in

particular are often a major error source in model QPFs

for TCs (e.g., Marchok et al. 2007; Wang et al. 2013b;

Yamada et al. 2013). At the lower boundary, terrain

data on a (1/120)8 grid and the NCEP analyzed sea surface

temperatures (18 3 18) are provided for each forecast

(Table 1).

b. Data and methodology

Observational data used in this study, mostly provided

by the Central Weather Bureau (CWB) of Taiwan, in-

clude the best-track, synoptic weather maps, radar

reflectivity VMI composites every 30min, and hourly

visible/infrared cloud imageries from the geostationary

Multifunctional Transport Satellite (MTSAT) during

the TC case periods in 2010–12. For QPF verification,

hourly rainfall data from more than 400 automated rain

gauges over Taiwan (Hsu 1998) are used (Fig. 1), and all

categorical measures of model QPFs are computed at

these gauge sites.

To select the TC case periods included for study, the

following methods are employed. First, only 24-h QPFs

(either 0000–2400 or 1200–1200 UTC) are evaluated

since we are mainly concerned about the bulk rainfall

FIG. 4. (a) TS and (b) BS of CReSS 24-hQPFs for day 1 (black), day 2 (red), and day 3 (blue) from the forecastmade at 0000UTC 17 Sep

2010 as a function of threshold (mm). (c),(d) and (e),(f) As in (a),(b), but from the forecasts made at 0000 UTC 18 Sep and 19 Sep 2010,

respectively. The hit rate (a/N) and observed base rate (O/N) in percent (%, rounded to integer) are labeled for selected points inside the

panels for (left) TS and (right) BS, where the base rate at 10% is marked (vertical dashed line). The (left) classification group and (right)

observed maximum 24-h rainfall are also given at the upper-right corner (all using corresponding colors).
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from the TCs rather than in shorter periods (say,#12h).

Using a longer accumulation period (and more toler-

ance in time), the issue of double penalty on higher-

resolution QPFs typical in categorical measures is also

less serious (e.g., Ebert and McBride 2000). Second,

only sea-warning periods issued by the CWB (including

land warnings) are eligible so that the TCs were not too

far away from Taiwan. Third, at least part of the rainfall

in Taiwan during each 24-h period must be linked to the

TC or under its influence such as outer circulation, dis-

tant rainbands, or due to interaction with the monsoon.

This is determined subjectively using weather maps and

radar and satellite loops. Fourth, at least one 24-h seg-

ment must be included from each of the 15 typhoons, so

that none of them is left out. Using the above four cri-

teria, a total of 99 segments are selected in this study and

subsequently classified into four groups (A–D) accord-

ing to the observed 24-h rainfall amount. To better re-

flect rainfall over a sizable area and its hazard potential,

at least 50 sites (roughly one-eighth of total sites in

Taiwan) reaching 100, 50, and 25mm, and otherwise are

used as the criteria for groups A, B, C, and D, re-

spectively. Table 2 lists the 15 TCs, the data periods from

each, and the classification result while Fig. 5 shows their

tracks and the portions included for analysis. The four

groups contain roughly equal number of segments,

which will be referred to as ‘‘group size’’ for clarity.

Thus, to explore the dependency of QPF skill on rain-

fall, the case periods from all TCs are classified, and the

results for different groups will be presented later in

sections 4 and 5.

c. Skill measures of model QPFs

In this study, the model QPFs are evaluated over the

rain gauge sites using several commonly used measures,

including TS and BS. By interpolation of model results

onto these sites and assuming equal weights, the TS and

BS at any given rainfall threshold can be easily obtained

through the entries of the 2 3 2 contingency table (e.g.,

Schaefer 1990; Wilks 1995; Ebert et al. 2003) as

TS5 a/(a1 b1 c), and (1)

BS5 (a1b)/(a1 c) , (2)

where a, b, and c are the counts of points where event

occurs in both observation and forecast (hit), in forecast

but not observed (false alarm), and in observation but

not forecast (miss), respectively, among a total of N

points, while d is the count of points in which the event is

neither observed nor forecast (correct negative). Thus,

N 5 a 1 b 1 c 1 d and the observed and forecast point

counts areO5 a1 c and F5 a1 b, respectively. Other

FIG. 5. CWB best tracks (dotted) of typhoon cases in (a) 2010,

(b) 2011, and (c) 2012. Typhoon center positions are given every 6 h

and marked by solid dots every 12 h (at 0000 and 1200 UTC), and

month/date are labeled (at 0000 UTC) as needed. The segments of

tracks included in this study are solid and thickened (cf. Table 2), with

endpoints enlarged (when applicable), and the forecast domain in

2010–11 (2012) is plotted in cyan (purple) in the corresponding panel.
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scores used include the probability of detection (POD),

false alarm rate (FAR), accuracy (ACC; Mesinger and

Black 1992; Hong 2003), equitable threat score (ETS;

Schaefer 1990), Peirce skill score (PSS; Mason 2003),

and odds ratio (OR; Doswell et al. 1990; Wilks 1995),

defined, respectively, as

POD5 a/(a1 c) , (3)

FAR5 b/(a1 b) , (4)

ACC5 (a1 d)/N , (5)

ETS5 (a2R)/(a1 b1 c2R) , (6)

PSS5 a/(a1 c)2 b/(b1 d)5POD2 b/(b1 d), and

(7)

OR5 (a3 d)/(b3 c) , (8)

where for ETS in Eq. (6), R is the (expected) number of

random hits andR5O3 F/N. The value ranges of these

measures are between 0 and 1 for TS, POD, FAR, and

ACC, 21/3 and 1 for ETS (Schaefer 1990), 21 and 1 for

PSS, and 0 to ‘ for BS and OR. In all of the above

measures, a higher value represents a better skill, except

for FAR, which is the opposite and for BS where unity is

the ideal value as mentioned.

3. Examples of CReSS model forecasts

In this section, several more forecast examples are

used to demonstrate that the dependency of model QPF

skill on rainfall amount for typhoons in Taiwan, as

shown in section 1b, is a common occurrence rather than

an exception. All made at 0000 UTC, these examples

include periods of various rainfall amount. For Fanapi,

Figs. 3i–k and 3l–n depict the total rainfall distributions

for days 1–3 from the forecasts made at 0000 UTC

18 and 19 September 2010 (i.e., 24 and 48 h later than

that shown in Figs. 3f–h), respectively, and their TS and

BS are plotted in Figs. 4c–f. While both forecasts cap-

tured the evolution of daily rainfall over Taiwan quite

well (Figs. 3b–e and 3i–n), the TS values are again much

higher for 19 September (i.e., the day with the most

rain), and tend to be lower for days with less rain

(Figs. 4c,e). The BS curves for 19 September from both

forecasts are quite stable and indicate reasonably good

predictions in rain-area size, with only a slight under-

forecast from the one made on 18 September (Figs. 4d,f).

For other less-rainy days, the BS tends to exhibit much

larger variation (say, BS . 2) even at low thresholds

when the rain areas are relatively small with O/N ,
;10%. With the information on O/N and H/N (where

O/N $ H/N), one can see that the TS values in Fig. 4

over the range of 75–350mm for days other than

19 September are all computed with O/N , 10% and

H/N# 3% and may be unstable whenO/N approaches

0% (e.g., for day 2 at 160mm in Fig. 4a). As described,

the day-3 QPF made on 17 September is particularly

good, where TS 5 0.45, O/N’ 13%, and H/N ’ 7% at

the high threshold of 350mm. Later, the number of

points involved to compute the scores will be referred

to as the ‘‘sample size’’ exclusively in this paper.

Figure 6 presents other score measures in Eqs. (3)–(8)

from the forecast at 0000UTC17 September (for Fanapi),

together with O/N, F/N, and d/N. Characteristics similar

to the TS with clear dependency on rainfall amount also

appear in POD, ETS, and PSS, except toward the lowest

thresholds for PSS (Figs. 6a,d,e).With the random hit rate

(F/N) in R estimated using data from the entire model

domain following Wang (2014), the ETS is almost iden-

tical to the TS (cf. Fig. 4a). The FAR also shows

TABLE 1. Summary of 2.5-km CReSS configurations, initial and boundary conditions (IC/BCs), and major physical options used for

operational 3-day forecasts during the typhoon seasons of 2010–12.

Season 2010 and 2011 2012

Projection Lambert conformal (center at 1208E, secant at 108 and 408N)

Grid spacing (km) 2.5 3 2.5 3 0.2–0.663 (0.5)*

Domain size (km) 1080 3 900 3 20 1500 3 1200 3 20

Grid dimension (x, y, z) 432 3 360 3 40 600 3 480 3 40

Frequency and range Every 6 h (at 0000, 0600, 1200, and 1800 UTC), 72 h

IC/BCs NCEP GFS analyses/forecasts (18 3 18, 26 levels)

Topography and SST Real at (1/120)8 and NCEP analyses at 18 resolution
Cloud microphysics Bulk cold-rain scheme (six species)

PBL parameterization 1.5-order closure with turbulent kinetic energy prediction

Surface processes Energy/momentum fluxes and shortwave/longwave radiation

Soil model 41 levels, every 5 cm to 2m deep

No. of cores 120 240

* The vertical grid spacing (Dz) of CReSS is stretched (smallest at the bottom), and the averaged spacing is given in the parentheses. The

lowest 10 output levels are at z 5 100.0, 323.7, 591.4, 896.4, 1232.4, 1593.8, 1975.6, 2373.3, 2782.9, and 3201.1m, respectively.
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a tendency to be lower (better) when there is more rain,

and becomes unstable asF/N approaches zero (Fig. 6b). In

ACC, both a and d are valued equally [Eq. (5)] and a high

score can be obtained from successful predictions of

events or nonevents, and thus the value of day-3 forecast

cannot be distinguished (Fig. 6c). On the other hand, OR

requires both a and d to be at least not too small (relative

to b and c) to register a high score, a condition met by the

day-3 QPF across the threshold range of 10–350mm

(Fig. 6f). These OR scores (.20) are much higher than

those for days 1–2 (typically # 3), and thus the measure

also shows a strong dependency on rainfall amount.

Figures 7 and 8 show the observed and predicted daily

rainfall and the TS and BS from the forecasts made at

0000UTC of 19–21October for TYMegi (2010). During

19–22October whenMegi was over the South China Sea

(cf. Fig. 5a), heavy rainfall occurred over northeastern

Taiwan four days in a row (Figs. 7a–e). With a total up to

945mm and peak intensity reaching 181mmh21, how-

ever, the rainfall was the heaviest on 21 October (Fig. 7c),

and serious landslides occurred along the coastal road in

the region that killed 38 people, including tourists on

board a bus that was washed off the cliff into the Pacific.

Overall, the model captured the general rainfall pattern

and its day-to-day variations reasonably well since

19 October (Fig. 7), except the serious overprediction

over eastern Taiwan in the forecast made on 20 for

22October (Fig. 7k) owing to large track errors (in theGFS

forecast) where the TC turned northeastward too early and

made landfall (cf. Fig. 5a). In the forecast made one day

later on 21 October, the track error was reduced and the

daily QPF became more accurate again (Figs. 7l–n). In

TABLE 2. List of the 15 typhoons included in this study, their data period, 24-h segments, and the classification of segments based on

rainfall amount. For each typhoon, the segments of 0000–2400 (1200–1200) UTC are listed in the first (second) row, following the order,

and classified into four groups of A, B, C, and D (when at least 50 sites reach 100, 50, 25mm, and less, respectively). The most rainy

segment (based on the amount averaged over all sites) of each typhoon is shown in boldface, while case 1 (Lionrock) shared a period with

case 2 (Namtheun, denoted by italics) and case 6 (Aere) has only one segment included (underlined).

Name (No.) Case period Segment Classification

No. of

segments

Case

No.

Lionrock (TY1006) 0000 UTC 28 Aug–1200 UTC 29 Aug 0000–2400 UTC C 2 1a

1200–1200 UTC C

Namtheun (TY1008) 0000 UTC 29 Aug–1200 UTC 31 Aug 0000–2400 UTC C A 4 2

1200–1200 UTC B B

Lionrock (TY1006) 0000 UTC 31 Aug–1200 UTC 3 Sep 0000–2400 UTC C A D 6 1b

1200–1200 UTC B C D

Meranti (TY1010) 0000UTC 6 Sep–1200 UTC 11 Sep 0000–2400 UTC D D C B D 10 3

1200–1200 UTC D D B C C

Fanapi (TY1011) 0000 UTC 16 Sep–1200 UTC 21 Sep 0000–2400 UTC D D B A C 10 4

1200–1200 UTC D D A A D

Megi (TY1013) 0000 UTC 19 Oct–1200 UTC 24 Oct 0000–2400 UTC B B A B D 10 5

1200–1200 UTC B A A C D

Aere (TY1101) 0000 UTC 9 May–0000 UTC 10 May 0000–2400 UTC D 1 6

1200–1200 UTC

Songda (TY1102) 0000 UTC 26 May–1200 UTC 29 May 0000–2400 UTC C B D 6 7

1200–1200 UTC C C D

Meari (TY1105) 0000 UTC 24 Jun–1200 UTC 26 Jun 0000–2400 UTC B B 4 8

1200–1200 UTC A C

Muifa (TY1109) 0000 UTC 6 Aug–1200 UTC 7 Aug 0000–2400 UTC D 2 9

1200–1200 UTC D

Nanmadol (TY1111) 0000 UTC 27 Aug–1200 UTC 1 Sep 0000–2400 UTC B A A A C 10 10

1200–1200 UTC A A A C C

Talim (TY1205) 0000 UTC 19 Jun–1200 UTC 22 Jun 0000–2400 UTC B A C 6 11

1200–1200 UTC A B C

Doksuri (TY1206) 0000 UTC 28 Jun–1200 UTC 30 Jun 0000–2400 UTC C D 4 12

1200–1200 UTC C D

Saola (TY1209) 0000 UTC 30 Jul–1200 UTC 3 Aug 0000–2400 UTC B A A A 8 13

1200–1200 UTC A A A A

Tembin (TY1214) 0000 UTC 22 Aug–1200 UTC 28 Aug 0000–2400 UTC C B A C D B 12 14

1200–1200 UTC C A B D D B

Jelawat (TY1217) 0000 UTC 27 Sep–1200 UTC 29 Sep 0000–2400 UTC D C 4 15

1200–1200 UTC C D

Total A: 26, B: 21, C: 26, D: 26 99
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these three forecasts for Megi, again the TS is the highest

(typically by at least 0.2) and the BSmore ideal and stable

for the daywith themost rain (21October) with nearly no

exception (Fig. 8), despite that the differences in ob-

served rainfall are smaller and larger variations in fore-

cast quality also exist (compared to Fanapi). For 21

October, the TS remains above 0.5 up to 350mm from the

QPF made on 19 October (Fig. 8a) and up to 500mm

from that made on 21 October (Fig. 8e).

Three examples of other rainy typhoons are chosen

and shown for the day with themost rainfall and the 24-h

QPFmade at an earlier time for that day (Fig. 9) and the

corresponding TS and BS (Fig. 10). For TYs Saola

(2012), Nanmadol (2011), and Tembin (2012), the most-

rainy days in 0000–2400 UTC were 2, 28, and 24 August,

respectively (Figs. 9a–c), and theQPFsmade at 0000UTC

of 1 (day 2), 26 (day 3), and 22 August (day 3) all agree

closely with the observations (Figs. 9d–f). Again, while

the rainfall in successive days can be quite different as

indicated by O/N, the TS tends to be higher for the day

with the most rain, especially over middle to high

thresholds (Figs. 10a,c,e), where the BS is also often

more stable and closer to unity (Figs. 10b,d,f). In fact,

with peak 24-h rainfall near or over 1000mm, Fanapi,

Megi, and Saola were the three most hazardous TCs to

hit Taiwan in 2010–12 (Figs. 3c, 7c, and 9a), causing 2, 38,

and 7 deaths and approximately $150, $43, and $40

million (U.S. dollars) in direct losses, respectively (data

source: CWB). The other 12 TYs together resulted in 1

casualty and a total loss of about $40million (U.S. dollars).

Now, four more examples from cases with moderate

to little rainfall are presented in Figs. 11 and 12 for

comparison. The dates selected include 9 September for

Meranti (2010), 28 September for Jelawat (2012), 28

June for Doksuri (2012), and 6 August for Muifa (2011),

all being the most-rainy day (0000–2400 UTC) of each

typhoon (Figs. 11a–d). The day-3 QPFs made two days

earlier (Figs. 11e–h) are all of reasonable (e.g., for

Meranti) to good quality (e.g., for Jelawat). Overall, the

TS values (Fig. 12) for periods with moderate rainfall

(classified as B or C group) are considerable lower than

those seen earlier in more-rainy cases, and progressively

so when the rain becomes less and less (e.g., for Doksuri

and Muifa) although the model predictions seem fair.

Even so, the TS for the most-rainy day often remains

higher than those for other days (Fig. 12).

From the ample examples above, a clear tendency for

the model to yield higher TS and perform better (out to

3 days) when there is more overall rainfall brought by

the TC in Taiwan (and vice versa) is well demonstrated,

although exceptions do occur at times as expected. Such

a dependency is not limited to TS, but also many cate-

gorical measures including POD, FAR, ETS, PSS, and

OR (Fig. 6). With O/N and H/N given, one also sees in

these examples that although many scores for groups

B–D, which are essentially nonhazardous but account

for three-fourths of all segments (cf. Table 2), can be

computed over the range of 75–500mm, they are often

obtained with small samples (say,O/N# 3% andH/N#

1%) especially toward higher thresholds (Figs. 4, 8, 10,

FIG. 6. As in Fig. 4a, but for (a) POD, (b) FAR, (c)ACC, (d) ETS, (e) PSS, and (f) ORof CReSS 24-hQPFs for days 1–3 (black, red, and

blue, respectively) from the forecast made at 0000 UTC 17 Sep 2010. The observed base rate (O/N, marked at 10%), forecast base rate

(F/N), and rate of correct negatives (d/N) in percent (%, rounded to integer) are labeled for selected points in (a),(b), and (f), respectively,

and the classification group and observed maximum 24-h rainfall are also given in (a) and (d).
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and 12), and thus are of low statistical representative-

ness. While this issue will be discussed later in sections 5

and 6, we further explore the dependency of QPF skill

on rainfall amount below.

4. The dependency of model QPF skills on rainfall

Following the method described in section 2b, the

averaged TSs from CReSS forecasts starting at both

0000 and 1200 UTC for the target periods in groups

A–D, from themost to least rainfall (Table 2), are shown

in Fig. 13. The TS curves for day-1 (0–24 h) QPFs (i.e.,

those starting at the beginning of segments) are shown in

Fig. 13a, and those for day-2 (24–48 h) and day-3

(48–72 h) QPFs that started 24 and 48h earlier are

shown in Figs. 13b and 13c, respectively. It is evident

that the model indeed performs significantly better (as

measured by TS) in forecasting group A when there is

more rain, regardless of whether the forecasts start on

the same day, or one or two days earlier. For day 1, the

FIG. 7. As in Fig. 3, but showing total daily (0000–2400UTC) rainfall observation (mm) from (a) 19Oct to (e) 23Oct 2010, andCReSS 24-h

QPFs for days 1–3 made at 0000 UTC of (f)–(h) 19 Oct, (i)–(k) 20 Oct, and (l)–(n) 21 Oct 2010, respectively, during TY Megi.
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TS decreases from 0.9 to 0.52 at 50mm then gradually to

0.29 at 250mm, and indicates very good performance

(Fig. 13a). The 0–24-h QPFs for group B, however, yield

considerably lower TSs than those for group A across all

thresholds up to 500mm, by 0.12–0.28. For groups C and

D as the rainfall becomes less and less, progressively

lower TSs are yielded, by another 0.07–0.25 up to

130mm (Bminus C), and another 0.05–0.30 up to 50mm

(C minus D). For group D, the TS starts at 0.34 and

drops quickly to below 0.1 above 10mm. The scores

from the QPFs made one and two days earlier exhibit

similar characteristics (Figs. 13b,c) with very different

skills for the four groups, except that themean TS values

tend to be lower to some extent at longer range, and

more visible at middle and high thresholds. Even so, the

TS of day-3 QPFs for group A still reaches 0.31 and 0.14

at the thresholds of 75 and 200mm, respectively, sig-

nificantly higher than the values for group B (Fig. 13c).

Thus, although TS is also affected by forecast range,

given typical track errors mainly dictated by and in ac-

cordance to those of the NCEP GFS (Table 3), its de-

pendency on the overall rainfall amount is by far much

stronger.

From Table 2, five typhoons that affected Taiwan

longer and produced the most overall rainfall—Fanapi,

Megi, Nanmadol, Saola, and Tembin (cases 4, 5, 10, 13,

and 14)—are selected and the averaged TSs of QPFs

made for the most-rainy 24h of each TC (i.e., those

shown in Figs. 3c, 7c, and 9a–c, all from group A, cf.

Table 2) are also plotted in Fig. 13. These curves (la-

beled as ‘‘top 5’’) represent the model’s capability to

predict extreme typhoon rainfall in advance when it

matters the most (recall that Fanapi, Megi, and Saola

were the only three TCs to cause major hazards).

Clearly, the model QPF skill for these top cases (group

size 5 5) is even higher than for group A, by 0.10–0.22

over thresholds of 50–500mm (Fig. 13a). Higher TSs for

the top-5 cases are also found in day-2 and day-3 QPFs

(cf. group A), by 0.09–0.26 over 10–250mm (Fig. 13b)

and .0.15 over 25–350mm (Fig. 13c), respectively. The

dependency of QPF skills on rainfall amount is so

strong, that the day-3 forecast for the top-5 cases at the

threshold of 160mm has a mean TS (0.36) higher than

that of day-1 QPF at the lowest threshold of 0.05mm for

group D (TS 5 0.34, Figs. 13a,c). Thus, the model is

highly skillful in cases with extreme rainfall, but has

much lower and only limited skill to predict weak TC

rainfall, which is obviously not important. This result of

better QPF performance by CReSS in events with larger

magnitude is in sharp contrast to the common percep-

tion that numerical models (particular at a grid spacing

of $10km) in general are less capable to predict ex-

treme rainfall events (e.g., Buizza et al. 1999; McBride

and Ebert 2000; Mullen and Buizza 2001; Grubi�si�c et al.

2005; Zhang et al. 2006; Cuo et al. 2011). The results here

should also clarify some of the confusion in in-

terpretation noted previously (e.g., Walser and Schär
2004; Yuan et al. 2005), as the scores tend to be lower

toward higher thresholds in forecasts for an individual

period but higher for more-rainy periods that can also

reach higher thresholds. As shown, these two seemingly

inconsistent, or even contradictory, behaviors of scores

FIG. 8. As in Fig. 4, but for TS andBS of CReSS 24-hQPFs (0000–2400UTC) from the forecastmade at 0000UTCof (a),(b) 19Oct; (c),(d)

20 Oct; and (e),(f) 21 Oct 2010, respectively.
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are in fact two different facets of the same phenomenon

(i.e., the positive correlation between the scores and

rain-area sizes). As pointed out in section 1a, the first

facet (that the score decreases with threshold) is well

known, but the second one is not.

5. The origin of the dependency

Asmentioned, the simple linkage between the TS and

the rain-area size can give rise to the dependency, since

the chance for hits becomes higher when the observed

and predicted rain areas are larger. But, is the rain-area

size the only factor, or is the model indeed more skillful

in predicting larger events? To answer this question, the

effects from rain-area size using fixed rainfall thresholds

are eliminated by the following method. For each of our

99 total 24-h segments (Table 2), the observed rainfall

amounts at all sites over Taiwan are ranked and a new

set of thresholds are identified to yield a coverage of

99% (at the lowest threshold), 95%, 90%–10% every

10%, 5%, and 1% (at the highest threshold) of the

points. Figure 14 gives an example of the rainfall dis-

tribution as Fig. 3c (on 19 September 2010, for Fanapi)

but plotted using the new thresholds. Thus, for the same

areal coverage, every segment uses its own threshold

that yields the specifiedO/N (say, 30%), and the impact

of rain-area size is removed by standardizing according

to the observed rainfall.

The averaged TS values for A–D and top-5 groups as

in Fig. 13 but using the variable thresholds are plotted in

Fig. 15 as functions of rain-area size (O/N), with the

mean thresholds given at the bottom. Again, the aver-

aged TS shows a relationship of top-5.A.B.C.D

across nearly all thresholds forQPFs at all ranges of days

1–3 when rain areas are fixed in size, with only a few

exceptions at low thresholds or when O/N becomes

small (Fig. 15). However, their differences appear

smaller at middle and high thresholds, especially among

FIG. 9. As in Fig. 3, but showing total daily (0000–2400 UTC) rainfall observation (mm) on (a) 2 Aug 2012, (b) 28 Aug 2011, and (c) 24

Aug 2012, and corresponding CReSS 24-h QPFs made at 0000 UTC of (d) 1 Aug 2012 for day 2 (24–48 h), (e) 26 Aug 2011 for day 3 (48–

72 h), and (f) 22 Aug 2012 for day 3 (48–72 h). Note that the color scales are up to 600mm in (a),(d) but 300mm in (b),(c) and (e),(f).
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top-5, A, and B groups and toward day 3. Still evident in

Fig. 15, the dependency, therefore, does not arise solely

from the effects of rain-area size, but the CReSS model

is indeed more skillful in predicting larger TC rainfall

events. Typically with a significant component over the

windward slopes (e.g., Chang et al. 1993; Cheung et al.

2008), more rain generally results over Taiwan when

a typhoon makes landfall (direct hit), moves slower, and

FIG. 10. As in Fig. 4, but for TS and BS of CReSS 24-h QPFs (0000–2400UTC) from the forecast made at 0000UTC of (a),(b) 1 Aug 2012;

(c),(d) 26 Aug 2011; and (e),(f) 22 Aug 2012, respectively.

FIG. 11. As in Figs. 9b,e, but showing total daily rainfall observation (mm, 0000–2400UTC) on (a) 9 Sep 2010, (b) 28 Sep 2012, (c) 28 Jun

2012, and (d) 6 Aug 2011, and corresponding CReSS 24-h QPFs made at 0000 UTC of (e) 7 Sep 2010, (f) 26 Sep 2012, (g) 26 Jun 2012, and

(h) 4 Aug 2011, all for day 3, respectively. The color scales are up to 300mm for all panels.
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remains close for a longer period, is larger in size and

stronger, and induces or interacts with stronger monsoon

flow to increase the moisture supply (e.g., Chien et al.

2008; Wu et al. 2011; Chien and Kuo 2011; Wang et al.

2012; Hsu et al. 2013; Chang et al. 2013). In addition to

terrain, these factors (especially the track) are mainly

controlled by the structural characteristics of the TC and

its environment at the larger scale, and modern-day

models such as CReSS clearly can handle these pro-

cesses properly given reasonable IC/BCs and track errors

(cf. Table 3), thus yielding overall higher scores for larger,

more hazardous events within a range of 3 days.

6. The implications of the dependency

In earlier sections, a clear dependency of QPF skill, as

measured by TS and other scores alike, on rainfall

amount for typhoons in Taiwan is demonstrated, and the

CReSS model performs better when there is more rain,

both among TC cases and among different days (pe-

riods) in the same TC. Shown to be very strong, this

dependency is a fundamental and vital property of

the verification measures of QPFs and has important

implications in many ways, especially in the use and

verification/evaluation of model QPFs. In this section,

these implications are discussed. Below, let us first ad-

dress what is the model’s true ability to predict hazard-

ous and extreme TC rainfalls in Taiwan, and how we can

evaluate model QPFs for such events more accurately

and effectively.

a. Model performance for hazardous and extreme
events

As mentioned, among 15 TCs affecting Taiwan in

2010–12, only 3–5 brought extreme rainfall and were

hazardous. If we were to understand the model’s capa-

bility to forecast such events, the scores can only be

averaged for target periods of comparable magnitude

(i.e., top cases) as has been done in this study (cf.

Figs. 13 and 15), given their strong dependency on

rainfall. Needless to say, such evaluations are crucially

important as these events are great threats. As listed in

Table 4, the mean TS values from day-1 QPFs by the

2.5-km CReSS for the top-5 cases at the thresholds of

25mm (near 1 in.) and 50, 130, 200, and 350mm (the

CWB heavy-rainfall thresholds) are as high as 0.67,

0.67, 0.58, 0.51, and 0.32, respectively. The day-2 and

day-3 QPFs that started 24 and 48 h earlier register

mean TSs of 0.75, 0.73, 0.57, 0.42, and 0.17, and 0.64,

0.57, 0.37, 0.33, and 0.22 at the same thresholds, re-

spectively (cf. Fig. 13). These values are strikingly high

and indicate that the model not only performs very

well in 0–24-h QPFs but is also already skillful about

2–2.5 days prior to the extreme rainfall. When it mat-

ters the most, such a lead time is undoubtedly precious

and essential for emergency action and hazard re-

duction. For individual, hazardous TCs, such as

Fanapi, Megi, Saola (Figs. 4, 8, and 10a), and Morakot

(which was large in size and exhibited strong monsoon

interaction) in 2009 (by 4-km CReSS forecasts out to

48 h) (Wang et al. 2012, 2013b; Wang 2014), the TS can

be even higher (up to 0.87 at 200mm and 0.69 at

350mm, Figs. 13a,b and Table 4), despite the fact that

traditional measures tend to double panelize high-

resolution models for having the ability to produce

concentrated rainfall at high intensity as in the real

atmosphere (e.g., Ebert and McBride 2000; Grubi�si�c

et al. 2005; Clark et al. 2007, 2009; Roberts and Lean

2008). Such scores are no doubt among the highest in

the world and achievable exactly because of the de-

pendency, since Taiwan is one of the most-rainy places

when hit by a typhoon. For group A ($50 sites reach-

ing 100mm), the corresponding TSs at the same five

thresholds from QPFs for days 1–3 are in the range of

FIG. 12. As in Fig. 4a, but for TS of CReSS 24-h QPFs (0000–2400 UTC) from the forecast made at 0000 UTC (a) 7 Sep 2011, (b) 26 Sep

2012, (c) 26 Jun 2012, and (d) 4 Aug 2011, respectively. The hit rate (a/N, %) are labeled for selected points and observed base rate (O/N)

at 10% is also marked (vertical dashed line). The classification group and observed maximum 24-h rainfall are both given.
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0.49–0.65, 0.38–0.53, 0.22–0.38, 0.14–0.30, and 0.07–

0.21. Although not as high as the top-5 cases, they are

already much higher than typical values and long-

term averages in many places (e.g., Olson et al. 1995;

Mesinger 1996; Ralph et al. 2005; Marchok et al. 2007;

Tuleya et al. 2007; Charba and Samplatsky 2011).

b. Implications in model QPF verification and
evaluation

When evaluating the performance ofmodelQPFs, it is

common to average the scores over a long period

through many events. Likewise, to assess the model’s

FIG. 13. Averaged TS of CReSS 24-hQPFs from forecasts at 0000 and 1200 UTC for (a) day 1

(0–24 h), (b) day 2 (24–48 h), and (c) day 3 (48–72 h) for groups A–D and the top-5 cases (see

legends) as a function of rainfall threshold (mm). Day-1 QPFs are from forecasts starting at the

beginning of the 24-h periods of verification, and day-2 and day-3QPFs are from those starting 24

and 48 h earlier, respectively (i.e., targeting the same periods). The top-5 cases (from group A)

are the most-rainy 24-h period from the five most-rainy TCs (one segment from each, Table 2).

The group sizes (of available segments) are labeled for selected points. The unweighted (arith-

metic) averages (labeled as ‘‘Avg’’) and the TS values obtained by combining all the forecasts

into just one contingency table (labeled as ‘‘All’’) are also plotted, and the purple dots depict the

forecasts for TY Morakot in 2009 (for 0000–2400 UTC 8 Aug, days 1–2 only, see Table 4).

1740 MONTHLY WEATHER REV IEW VOLUME 143



ability for any particular event, often a significant one,

the scores are usually averaged through multiple fore-

casts over several days. Based on this study, the latter

practice is in fact ineffective (and even misleading at

times) and unable to obtain a correct understanding,

since the model has a different ability from one day

(period) to the next. One can imagine how the key in-

formation about the performance of model QPFs would

be lost, even near the highest threshold, if the curves in

Figs. 4a,c,e were averaged for Fanapi, or Figs. 8a,c,e for

Megi, with equal weights.

After examining the nature and characteristics of skill

measures in depth, it is evident that up to three types of

mistakes are committed if the scores are averaged over

multiple forecasts without proper classification. First,

when an arithmetic mean is calculated, we assume that

the scores for different forecast periods are of the same

importance, but this is obviously not true. Taking Fanapi

as an example, the only important day was 19 September

(Fig. 3c), and it was 21 October for Megi (Fig. 7c).

Hence, the forecasts for all other days were not nearly as

important and yet the same weight is assigned. Second,

TABLE 3. Mean track errors (km) in all forecasts for the case periods in this study within a range of 72 h, given every 12 h since the

starting time. The sample counts and the percentages from CReSS and NCEP/GFS (if the TC center is located outside the domain of

CReSS) at each range are also given.

Forecast range (h) 0 12 24 36 48 60 72

Mean track error (km) 42.5 56.4 79.5 109.0 130.8 171.9 200.0

Sample counts 120 120 120 119 118 104 89

Sample from CReSS (%) 69.2 69.2 69.2 69.7 69.5 73.1 76.4

Sample from NCEP GFS (%) 30.8 30.8 30.8 30.3 30.5 26.9 23.6

FIG. 14. As in Fig. 3c, but plotted using 13 rainfall thresholds (mm, scales on right) that yield

rain areas covering 99%, 95%, 90%–10% (every 10%), 5%, and 1% of all rain gauge sites over

Taiwan (as labeled next to the color scale).
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an arithmetic mean also implies the same statistical

significance in all values, and this is problematic as well.

As demonstrated (cf. Figs. 3, 6, 8, 10, and 12), the scores

of smaller events are nearly always computed from

fewer points, especially toward higher thresholds, and

thus are of lower statistical representativeness com-

pared to those of much larger events. Such differences

are also evident in Fig. 16, where a significant decrease in

FIG. 15. As in Fig. 13, but for averaged TS for (a) day 1 to (c) day 3 for groups A–D and the

top-5 cases at rainfall thresholds covering certain percentages of all sites over Taiwan, from

99%, 95%, and 90% (low threshold) to 10%, 5%, and 1% (high threshold). The averaged

rainfall thresholds (mm) for the five groups are also given at the bottom.
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sample sizes exists between groups A and B, and the

averaged O/N is often ,1%–3% at thresholds above

50–130mm in groups B–D. For these two reasons, dif-

ferent weights (perhaps based on sample size) should be

assigned for different periods to reflect the model’s

ability to predict precipitation more accurately, if an

average must be performed. Applied to the TC dataset

here, the unweighted averages as well as the TSs ob-

tained by combining entries from all the forecasts (for

the same range) into just one contingency table, which

are identical to the averages weighted by the number of

points involved (at the given threshold) in each forecast

[a 1 b 1 c in Eq. (1)] for TS, are also plotted in Fig. 13

for comparison. As expected, the unweighted TS

(arithmetic mean) is obscured and cannot reveal the key

information across essentially all thresholds. On the

other hand, the weighted average does a better job since

the smaller events are no longer inflated, but they are

still considerably lower than the scores for top events,

even at high thresholds except for day 2 (Fig. 13). The

third possible mistake is that, the period over which all

the forecasts are averaged is often chosen quite arbi-

trarily, and the rainfall near the two ends may not even

be linked to the TC. Even for the segments in groups B–

D included in this study, they occupy the majority of

case periods but are nonhazardous and not important, so

it does not matter if the model has limited ability to

predict them. Finally, it is worthy to note that for BS,

which can become unstable easily in individual fore-

casts, using just one contingency table provides good

indications for systematic bias, which is quite small for

the 2.5-km CReSS (Fig. 17).

Naturally, the long-term averaged scores (e.g., Junker

et al. 1992; Mesinger 1996; Buizza et al. 1999; Reynolds

2003; Fritsch and Carbone 2004) represent the model’s

ability to predict rainfall from a variety of systems over

a spectrum of scales. Because of the dependency

property, the ability for large (and typically rare) events

should be relatively high, but progressively lower for the

smaller (and more frequent) ones down to local con-

vection, as the predictability also gradually diminishes.

While the model’s ability is much better reflected by

scores from just one contingency table for the whole

period or weighted averages (cf. Fig. 13), proper classi-

fication is recommended if a deeper understanding on

model QPFs is desired.

c. Implications in the use of model QPFs

The dependency of model QPFs on rainfall amount

also has important implications to forecasters and other

users in how the model forecasts should be perceived

when a large event is predicted. The better model per-

formance with higher scores for larger events when the

hazard potential is high is probably one of the best news

that any forecaster can hear. As also demonstrated in

our examples (sections 1b and 3), modern-day high-

resolution models like CReSS can often capture the TC

rainfall scenario reasonably well (within 72h), and the

predicted overall rainfall is positively correlated with

the observed one (Fig. 18 and Table 5). In an operational

setting, this means that the forecasters, if they are aware

of this dependency property, should trust the model QPF

more, not less, when the model predicts a more extreme

event, provided of course that the TC evolution (espe-

cially in track) in the forecast is reasonable. Prior to

Morakot (2009), although an amount of .1900mm was

predicted by CReSS (Wang et al. 2013b, cf. Table 4) and

by several other models up to 1365mm (e.g., Hendricks

et al. 2011; Wu et al. 2010), the CWB however initially

issued a lower amount (cf. Fig. 15 of Wang et al. 2013b),

partly attributable to a lack of confidence in the models.

While real-time verification is always essential to judge

the likelihood of the scenario in each forecast, a deeper

understanding on the dependency will also help resolve

TABLE 4. The averaged TSs from day-1, day-2, and day-3 QPFs by the 2.5-km CReSS model for the top-5 cases (Fanapi, Megi,

Nanmadol, Saola, and Tembin, the most-rainy 24-h from each, cf. Table 2) and group A (at least 50 sites $ 100mm, group size 5 26) in

2010–12, at the threshold of 25mm (’1 in.) and the CWBheavy-rainfall thresholds of 50, 130, 200, and 350mm [(24 h)21]. Day-1QPFs are

from forecasts starting at the beginning of the 24-h periods of verification, and day-2 and day-3 QPFs are from those starting 24 and 48 h

earlier, respectively. Day-1 and day-2 TSs from 4-km CReSS QPFs at real time, verified for (0000–2400 UTC) 8 Aug 2009 (Wang et al.

2013b; Wang 2014), are also given for comparison.

Rainfall threshold 25mm 50mm 130mm 200mm 350mm

Morakot (2009) Day 1 (0–24 h) 0.86 0.81 0.82 0.73 0.48

Day 2 (24–48 h) 0.93 0.83 0.82 0.87 0.69

Top-5 cases (n 5 5) Day 1 (0–24 h) 0.67 0.67 0.58 0.51 0.32

Day 2 (24–48 h) 0.75 0.73 0.57 0.42 0.17

Day 3 (48–72 h) 0.64 0.57 0.37 0.33 0.22

Group A (n 5 26) Day 1 (0–24 h) 0.62 0.52 0.38 0.30 0.21

Day 2 (24–48 h) 0.65 0.53 0.30 0.22 0.11

Day 3 (48–72 h) 0.49 0.38 0.22 0.14 0.07
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some of the issues related to how forecasts of extreme

events should be perceived and used.

In this study, the dependency of model QPFs by the

2.5-km CReSS on rainfall amount arises due both to

the correlation between scores and rain-area size, and

the fact that the model in general can indeed capture the

factors leading to larger events (such as a closer and

slower track, and more favorable TC structure and en-

vironment). As a fundamental property that can arise

from the effects of rain-area size alone, the dependency

is expected to exist in all models such as the Weather

Research and Forecasting Model (Skamarock et al.

2005) with a similar setup. The dependency should also

appear in other rainfall regimes (such as mei-yu) in

Taiwan, and hold true around the world even without

significant terrain (given an adequate data size). Inmany

regions, however, the dependency is likely less strong

than what is shown here, although this remains to be

studied and verified in the future.

7. Summary and conclusions

In this study, a strong dependency in the performance

of QPFs by the CReSS model at a cloud-resolving grid

spacing of 2.5 km on overall rainfall amount (event

magnitude), as measured by scores such as the TS, for

typhoons in Taiwan is demonstrated and explored

through forecasts out to 3 days for all 15 TCs in 2010–12.

With higher scores on average when the target periods

receive more rain in reality, the model QPFs thus per-

form the best in the prediction of extreme rainfall events

(sections 1b, 3, and 4, cf. Fig. 13). The dependency

property arises not only because the ‘‘hit area’’ tends to

be larger in proportion when the (observed) rain area is

FIG. 16. As in Fig. 13, but showing the observed base rate (O/N) in percent (%) for groups

A–D and ‘‘top-5 cases’’ as a function of rainfall threshold (mm). The ordinate is in logarithmic

scale, and the group sizes (numbers of segments available) are labeled.

FIG. 17. As in Fig. 4b, but for BS obtained from a single 23 2 contingency table with entries

combined from all the forecasts for the 99 target segments in this study (one table for each

range of days 1–3, with the sample size N ’ 40 000).
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larger, but also due to the fact that the favorable factors

leading to more TC rainfall in Taiwan can be captured

with reasonable accuracy by the model (within 72h),

including the track, structure, and environment of the

TCs (section 5 and Fig. 15). This phenomenon is thus

expected to exist in other rainfall regimes in Taiwan, in

other models, and in other regions around the world.

While the dependency itself may be in contrast to the

common perception that numerical models are generally

less capable of predicting extreme rainfall events, it has

important implications on how model QPFs should be

evaluated if we wish to understand properly the true

ability of models to forecast hazardous events (section

6), and ultimately, how we could improve heavy-rainfall

QPFs in the future. For such events, the averaging of

scores should only be performed among target periods

with comparable overall rainfall, since the inclusion of

data from less-rainy periods would lower the score,

easily to a level not indicative to the true skill (cf.

Fig. 13). In other words, the dependency property must

be taken into account in the verification and evaluation

of model QPFs, especially for hazardous/extreme

events.With proper classification, the day-1QPFs by the

2.5-kmCReSS, targeted for themost-rainy 24h from the

5 most-rainy TCs (one 24-h period from each) in 2010–

12, have averaged TS at thresholds of 25, 50, 130, 200,

and 350mm of 0.67, 0.67, 0.58, 0.51, and 0.32 (sections 5

and 6a), respectively. Starting two days earlier, the day-3

QPFs for the same 24-h target periods yield mean TS of

0.64, 0.57, 0.37, 0.33, and 0.22 at the same thresholds, not

much lower than day-1 forecasts. For the extreme case

of Morakot (2009), the QPFs from the 4-km CReSS are

even higher, with TS at least 0.81 up to 130mm, 0.73 at

200mm, and 0.48 at 350mm (Figs. 13a,b and Table 4).

These scores indicate superior model performance in

predicting extreme TC rainfall even 2–2.5 days in ad-

vance with appreciable lead time, and they are strikingly

high precisely because of the dependency property since

Taiwan, with its steep topography, can receive extreme

rainfall when hit by a typhoon. The top-5 cases are

a subset of group A ($50 sites reaching 100mm in 24h),

for which the day 1–3 QPFs at the same five thresholds

(25–350mm) have averaged TS in the range of 0.49–0.65,

FIG. 18. Scatterplot of averaged 24-h rainfall (among all sites in

Taiwan) in the observation vs in model QPFs (for days 1–3) for the

99 segments in this study, their linear regression lines, and corre-

lation coefficients (r). Results for days 1–3 are in black, red, and

blue, while data points in groups A–D are plotted as solid dots,

solid triangles, open circles, and crosses, respectively.

TABLE 5. Summary of group classification based onQPFs for days 1–3 vs observation using the same criteria in section 2b (top half). The

model QPFs are first interpolated onto the rain gauge sites before classification, and the results of correct grouping, or incorrect (off by

one, two, or three categories) are also given (bottom half). For day-3QPFs, two forecasts (those from 0000 and 1200UTC 17Oct 2010) are

missing due to data lost in real-time operation, so the total segments for day 3 are 97 instead of 99. Italics indicate that the summed values

are for days 1 and 2.

Model QPFs

Day 1 Day 2 Day 3

Observation A B C D A B C D A B C D Sum

A 21 3 1 1 18 6 2 0 15 5 4 2 26

B 9 8 1 3 8 6 5 2 7 4 3 5 21

C 2 7 9 8 6 5 6 10 5 5 6 10 26

D 0 0 1 25 1 1 1 23 1 5 3 17 26

Sum 32 18 12 37 33 17 14 35 28 19 16 34 99

Correct 63 53 42

Off by 1 29 34 33

Off by 2 6 11 19

Off by 3 1 1 3

Total 99 99 97

MAY 2015 WANG 1745



0.38–0.53, 0.22–0.38, 0.14–0.30, and 0.07–0.21, already

significantly higher than typical long-term averages in

summer. For groups B–D with less and less rainfall, the

mean TS values are lower and lower (Fig. 13) as the rain

areas become smaller and more random in nature (e.g.,

Walser et al. 2004; Zhang et al. 2006). Shown clearly to

concentrate toward the lower-left corner in Fig. 18, all

periods in groups B–D are nonetheless unimportant, as

the threat for hazards is (almost) nonexistent.

Because the ability of model QPFs can be vastly dif-

ferent for successive days with different rainfall, the

common practice to average the scores over a period

(typically several days) through multiple forecasts and

to attempt to evaluate the model for a given event is

inappropriate and not recommended. As demonstrated,

such averages would inevitably mask the crucial in-

formation (i.e., the skill for the most-rainy period) by

lower scores for other periods with less rain (in overall

amount but not necessarily in peak value), which are

unimportant, not statistically representative, and per-

haps not even related to the rainfall system being ex-

amined (section 6b). By giving equal weights for all

periods in averaging as has usually been done, the results

of little importance are artificially blown out of pro-

portion. The outcome under such conditions is basically

dictated by the periods included (e.g., Du et al. 1997),

and an intermodel comparison would not be fair if dif-

ferent periods are used for them.

Finally, a better model performance with higher

scores formore-rainy periods, when the hazard potential

is high, also has vital implications for forecasters and the

users of model QPFs, especially for emergency action

and hazard reduction. If the forecasters/users are aware

of this dependency property, they should raise their

confidence inmodelQPFs when amore extreme event is

predicted in advance, not the other way around. Of

course, in an operational setting, constant real-time

verification is always essential for any model forecast

to be used wisely and effectively.
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