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Abstract: Lead–acid battery is a storage technology that is widely used in photovoltaic (PV) systems. Battery charging and
discharging profiles have a direct impact on the battery degradation and battery loss of life. This study presents a new 2-
model iterative approach for explicit modelling of battery degradation in the optimal operation of PV systems. The
proposed approach consists of two models: namely, economic model and degradation model which are solved
iteratively to reach the optimal solution. The economic model is a linear programming optimisation problem that
calculates the optimal hourly battery use profile based on an assumed value of the battery degradation cost. The
degradation model, in turn, gives the battery degradation cost based on the battery use profile, temperature and
battery characteristics. The models are solved iteratively to finally reach to the optimal battery use considering battery
degradation. The proposed approach has been applied to a 4 kWp PV system and the performance of the proposed
approach were evaluated. Applicability of the proposed approach in determining the optimal storage size and the
economic battery life were also shown. Advantages and the capability of the proposed approach in considering PV
generation and irradiation variations were also evaluated through seasonality analysis.

1 Introduction

Increased energy consumption has intensified the application of
renewable energy technologies including photovoltaic (PV)
systems and wind turbines. Solar energy is esteemed as the most
important carbon-neutral energy resource that can be used in the
present as well as and in the future to supply the energy need of
the developed societies [1].

The stochastic nature of renewable energy resources is a big
challenge in renewable energy planning and poses various
operational difficulties. Energy storage systems provide a suitable
mean to cope with the mentioned challenge. With a mature
technology and low price, lead–acid battery is now the most
commonly used energy storage technology specifically in PV
application. The benefits and applicability of lead–acid battery for
PV systems were well demonstrated in the literature [2, 3]. On the
other hand, difficulties and, in particular, the environmental issues
associated with lead–acid batteries are well known and other
battery types such as lithium-ion, NaS and NiMH are under
development/improvement. Nevertheless, there are some
researchers as in [4] who believe that the lead–acid battery will
survive in the future.

However, battery life is limited by various degradation failures
such as corrosion, sulphating, shedding of active material and
gassing [5]. Battery degradation highly depends on the battery
utilisation profile as the charge/discharge profiles can directly
accelerate battery degradation mechanisms. Misoperation of battery
in a renewable system can directly increase the battery
maintenance cost and can overshadow the economic feasibility of
the system. Battery management systems have been developed to
control charge/discharge regimes to extend the battery life [6].

More than 100 years of lead–acid battery application has led to
widespread use of lead–acid battery technology. Correctly inclusion
of the battery degradation in the optimal design/operation of the
lead–acid battery-assisted systems, including renewable energy
system, can considerably change the economy of such systems.

However, little researches have been reported on explicit
integration of battery degradation on optimal operation/design of

battery-assisted systems. In [7], an ampere–hour (Ah) throughput
method has been developed to predict the lifetime of lead–acid
batteries in renewable energy systems. The battery model
developed in [7] has also been implemented as a software in [8] to
study the battery life variations. Various battery degradation
models have been discussed and evaluated in [9] for a stand-alone
PV system. In [10], a techno-economic model has been presented
for battery systems to determine the trade-off between the quality
of service and the economic costs. A rule-based control scheme
has been presented in [11] for battery charge management. An
approach has been presented in [12] to determine the battery
capital and operation and maintenance costs for a 4 kWp
grid-connected hybrid energy system.

While battery degradation is a complicated phenomenon [7], just
simplified battery life models have been incorporated in available
researches to optimise battery systems design/operation. This is
mainly due to the fact that battery degradation models are
composed of highly non-linear complicated equations and
constraints. Therefore, it is not easy to integrate such non-linear
equation and constraints in an optimisation framework without
facing fundamental mathematical and numerical problems
regarding the problem solution and, in particular, the optimality of
the results.

On the other hand, existing simplified battery degradation models
cannot be used as the general models in the battery/system
optimisation problems without large errors due to the
approximation made in the existing models. More work is still
needed to integrate full-scale battery degradation models in
optimal operation/design of battery-assisted systems.

A new 2-model iterative approach has been proposed in this paper
to optimise the operation of a PV-battery system in which the battery
degradation was explicitly considered in full details. The proposed
approach consists of two models: namely, the economic model
and the degradation model.

The economic model is a linear optimisation problem that gives
the optimal hourly profile of battery state-of-charge (SoC) for an
assumed set of input data including the battery degradation cost.
The degradation model, on the other hand, determines the battery
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capacity degradation for the obtained hourly SoC profile by solving
the complicated battery degradation model and gives the battery
degradation cost. The models are solved consequently in several
iterations until the battery degradation cost converges. Optimal
battery use considering battery degradation is then obtained.

The main contributions of this paper are:

(i) Integration of detailed battery degradation model in the optimal
operation of battery-PV system.
(ii) The 2-model iterative approach to solve both economic and
degradation models while the linear optimisation guarantees the
optimality of the results.
(iii) Integration of available important degradation models and
piece-wise linear approximation in the battery corrosion modelling.

While the proposed 2-model iterative approach has been used to
study the lead–acid battery, it can be adopted for other battery
types. However, while the degradation/failure mechanisms of the
lead–acid batteries are well known, adoption of the proposed
approach for other battery types requires that the degradation
model for the desired battery type shall be developed to be used in
the degradation model.

The rest of this paper was arranged as follows: Section 2 discusses
the development and validation of the battery degradation model.
Economic model has been presented in Section 3. Application of
the proposed approach has been demonstrated in Section 4 while
the proposed approach has been evaluated in Section
5. Concluding remarks have been presented in Section 6.

2 Battery degradation model

2.1 Concept

Battery ageing mechanisms have been well discussed in [13].
Important mechanisms resulting in battery capacity loss are
generally divided into two main areas: electrodes degradation
modes and electrolyte degradation modes.

Electrodes degradation also branches to manufacturing-based and
operational-based degradation modes. Manufacturing-based modes
are not considered in this paper. Operational degradation modes of
the electrodes include sulphating, corrosion and shedding of active
mass. Electrolyte-related degradation modes in lead–acid batteries
include stratification and gassing [5].

The most detailed battery life model has been presented in [7] in
which the basic mathematical equations for main battery degradation
mechanisms have been presented. However, as the model presented
in [7] is not easy to use as it is not clear in some aspect. On the basis
of [7], the authors have integrated other models associated with
battery degradation in [13–17] to develop a comprehensive battery
degradation model. The rest of this section contains main models
and equations used to evaluate the battery degradation.

The battery voltage during charge and discharge is calculated
through the modified Shepherd equation as follows [7]

U (t) = U0C − gCDoD(t)+ rC(t)
I(t)

CN

+ rC(t)MC
I(t)

CN

SoC(t)

CC − SoC(t)
, ∀I(t) . 0 (1)

U (t) = U0D − gDDoD(t)+ rD(t)
I(t)

CN

+ rD(t)MD
I(t)

CN

DoD(t)

CD(t)− DoD(t)
, ∀I(t) ≤ 0 (2)

In which, U(t) is the battery voltage; I(t) is the battery current; CN is
the battery nominal capacity; DoD(t) is the depth of discharge, where
DoD = 1− SoC; CC and CD(t) are the battery capacity during charge
and discharge, respectively; U0C and U0D are the battery open-circuit
cell voltage during charge and discharge, respectively; gC and gD are

the electrolyte proportionality constant during charge and discharge,
respectively; MC and MD are the charge transfer overvoltage
coefficient during charge and discharge, respectively; and ρC(t)
and ρD(t) are charging and discharging ohmic resistances,
respectively.

During the battery life, the corrosion layer grows, leading to
increase in the charging and discharging ohmic resistances.

Gassing current is calculated via Tafel approximation from the
following equation [7]

IGas =
CN

100 Ah
IGas, 0 exp cU U − UGas, 0

( )+ cT T − TGas, 0
( )( )

(3)

where T is the battery temperature; cU and cT are the voltage and
temperature coefficients; and IGas,0 is the nominal gassing current
at the voltage UGas,0 and temperature TGas,0.

SoC is then calculated as follows

SoC(t) = SoC(0)+
∫t
0

I(t)− IGas(t)

CN
dt (4)

SoC equals to 1 means that all potential lead sulphate crystals have
been completely converted into the lead oxide/lead as the positive or
negative electrode.

During the life of the battery, due to the loss of active material,
battery discharge capacity in (2) reduces as follows [7]

Cd(t) = Cd(0)− Ccorr(t)− Cdeg(t) (5)

where Cd(0) is the initial battery capacity; Ccorr(t) is the corrosion
capacity loss; and Cdeg(t) is the active material degradation
capacity loss.

Battery reaches the end of life when the Cd(t) capacity reaches
80% of Cd(0).

Major issues in the calculation of Ccorr(t) and Cdeg(t) for (5) have
been discussed in Sections 2.1 and 2.2.

2.2 Active material degradation

Degradation of active material occurs due to the discharge cycle of
the battery. The battery equivalent discharge cycle, ZW(t), is
obtained according to the discharge current, Idch(t), SoC factor,
fSoC(t) and acid stratification factor, facid(t), as follows

ZW (t) = 1

CN

∫t
0
Idch(t)
∣∣ ∣∣ fSoC(t) facid(t) dt (6)

SoC and acid stratification factors have been introduced in (6) to
include the impact of adverse discharge cycles.

SoC factor depends on the time passed since the last full charge
and also on the duration in which the battery has been remained at
a low SoC. Mechanical stress takes place in low SoC due to the
sulphate crystals growth in the battery. SoC factor is calculated as
follows

fSoC=1+ (cSoC,0+cSoC,min(1−SoCmin(t)
t
t0

∣∣∣ ))× fI (I , n)DtSoC(t) (7)

SoCmin(t) indicates the minimum SoC since the last full charge at (t0)
and fI(I, n) characterises the impact of current which depends on the
number of bad recharges (n) as completely demonstrated in [7].

The acid stratification factor represents the impact of loss in the
heterogeneity of sulphuric acid in the electrolyte. This factor is
elucidated in the terms of integrating the differences of fplus and fminus

fstratification =
∫
( fplus − fminus) dt, ∀ fstratification ≥ 0 (8)

In which fplus comprises the entire elements which reduce the

IET Gener. Transm. Distrib., 2016, Vol. 10, Iss. 4, pp. 1098–1106
1099& The Institution of Engineering and Technology 2016



homogeneity of electrolyte, including low SoC since the last full
charge and discharge current. On the other hand, fminus represents
the phenomena which lead to increase in the homogeneity of
electrolyte such as gassing effect which agitates the acid and
diffusion during long periods.

The acid factor is calculated as in (9) based on the discharge
current in which Iref represents the normalised reference current

facid = 1+ fstratification

������
Iref
I(t)
∣∣ ∣∣

√
I(t) , 0 (9)

It can be seen in (9) that the smaller discharge current leads to higher
acid factor.

The capacity deficit due to the degradation, Cdeg(t), is finally
calculated as follows [7]

Cdeg(t) = Cdeg , lim exp−cz(1− (ZW (t)/1.6ZIEC)) (10)

where Cdeg , lim is the capacity at the end of battery life and ZIEC is the
number of cycles under standard condition mentioned in the battery
datasheet.

2.3 Corrosion of positive grid

The corrosion model represents the growth in the thickness of the
layer on the positive grid. The layer amplifies the grid resistance
and lowers the contact of the active material to the grid. Increase
in the grid resistance due to the corrosion is modelled as follows [7]

rcorr(t) = rcorr, lim
DW (t)

DWlim
(11)

In which ΔW(t) represents the increase in the layer thickness at the
time (t) and ΔWlim denotes the maximum increase in the layer
thickness at the end of battery life. The parameter ρcorr, lim
represents the layer specific resistance at the end of the battery life.

Corrosion speed parameter at the corrosion voltage Ucorr and
temperature T, KS(Ucorr, T ), is an important factor to determine
ΔW(t) which is obtained according to the Arrhenius law [7]

KS(Ucorr, T ) = K(Ucorr) exp (kS, T(T − Tcorr, 0)) (12)

where K(Ucorr) represents the corrosion speed parameter, Tcorr, 0 is
the nominal corrosion temperature and kS, T indicates corrosion
speed temperature factor.

While no explicit relation for K(Ucorr) was available to the authors,
just an experimental curve in Fig. 1 was found in an old reference
[14] which shows the K(Ucorr) for the different values of Ucorr.

On the basis of Fig. 1, the authors have developed suitable
mathematical representations for K(Ucorr) as follows:

K(Ucorr) = 0.2326Ucorr − 0.0257, Ucorr , 1.74 (13)

K(Ucorr) = 0, 1.74 ≤ Ucorr ≤ 2 (14)

K(Ucorr) = 88.4Ucorr − 183, Ucorr . 2 (15)

Once K(Ucorr) is calculated using (13)–(15), KS(Ucorr, T ) is then
calculated and ΔW(t) is obtained as explained in [14]. Battery
capacity loss due to the corrosion, Ccorr(t), is finally calculated as
in (16)

Ccorr(t) = Ccorr, lim
DW (t)

DWlim
(16)

ρcorr,lim and Ccorr,lim are calculated as fully explained in [15].

2.4 Validation

In [13, 16], a compound current profile has been used for the battery
degradation model validation, as shown in Fig. 2. The same current
profile was used in this paper to validate the battery degradation
model.

It can be seen in Fig. 2 that, at the beginning, there are five 10 A
full charge currents in order to condition the battery initial capacities
which then are followed by a couple of rest days. Then PV block
profiles with interspersed periodic capacity tests followed.

Fig. 3 represents the simulated change in the battery capacity due
to the current profile of Fig. 2. On the basis of the battery degradation
model developed by the authors, the battery life is calculated as 198
days which is close to 180 days life obtained in [7] and also close to
the real battery life of 239 days [15].

Fig. 1 Corrosion speed parameter versus corrosion voltage [14]

Fig. 2 Test input current profile in 200 days
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Weighted number of cycles (ZW) has also been verified for the
developed battery degradation model and was found in good
accordance with the reference results presented in [7].

Results presented in Fig. 3 and weighted number of cycles are in
good accordance with the reference results on battery degradation
modelling, showing that the developed battery degradation model
is successful in determining the battery degradation.

3 Economic model

The system, as presented in Fig. 4, contains four main components
including PV panels, power control system (PCS), battery system
and the electric grid. PCS includes charger, inverter and control
unit to charge and discharge the battery. PV panel generation can
be directly sold to the grid or can be stored in the battery.

The optimising model aims to maximise total profit (TP) of selling
the electricity to the grid during the operation period of operation
time (OT) hours

TP =
∑OT
t=1

EP(t)PS(t)− Pd(t)BDC
( )

(17)

In which EP(t) is the electricity purchase price and PS(t) is the
amount of selling generation back to the grid. The battery
depreciation cost (BDC) represents the battery degradation cost per
the discharge power, Pd(t).

The system power balance constraint is described as follows:

Pp(t) = Pc(t)− Pd(t)+ Ps(t) (18)

In which Pp(t) is the PV power generation and Pc(t) is the battery
charging power.

Any growth in the battery SoC is in connection with the amount of
battery charging and discharging considering charge/discharge
efficiencies, battery self-discharges (δ) and battery nominal power
(PN).

The constraint on the battery SoC is described as follows:

SoC(t + 1)PN = SoC(t)PN + hcPc(t)−
Pd(t)

hd
− dPN (19)

Since optimisation problem is supposed to reiterate, it should be
terminated in a certain period of time. In (20), the difference in
charging and discharging energy summation is equal to
self-discharge summation applied for the operation time

∑OT
t=1

Pc(t)hc −
∑OT
t=1

Pd(t)

hd
= OTdPN (20)

Charging rate significantly affects battery ageing processes and the
battery is supposed not to be fully charged in <3 h as follows

SoC(t + 1)− SoC(t) ≤ 0.33 (21)

The next influential concern about the lead–acid battery is the DoD
for which the high values adversely affects ageing mechanisms.
Therefore, in (22), a limiting value for SoC is executed

SoC(t) ≥ SoClim (22)

Fig. 3 Simulated capacity change

Fig. 4 Schematic design of case study
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Finally, limiting values for the variables are carried out. Charging
and discharging powers are bounded on the nominal energy
capacity while selling the power to the grid is unbounded

Pd(t) ≤ PN (23)

Pc(t) ≥ 0 (24)

Ps(t) ≥ 0 (25)

The objective function in (17) along with the constraints in (18)–(25)
represents the economic model. The economic model is a linear
programming problem that, once solved, gives the optimal results
for the battery operation.

Total power sold (TPS), total power charged (TPC) and total
power discharged (TPD) are obtained as follows

TPS =
∑OT
t=1

PS(t) (26)

TPC =
∑OT
t=1

PC(t) (27)

TPD =
∑OT
t=1

Pd(t) (28)

Average indices for the system are also calculated as the average
daily profit (ADP) and the average daily discharge (ADD)

ADP = 24× TP/OT (29)

ADD = 24× TPD/OT (30)

It should be mentioned that ADD can be used as a measure for
battery usage: higher ADD means larger use of the battery.

The optimal SoC determined in the economic model is put in the
battery degradation model to determine the battery capacity at the
end of operation time, Cd(OT). BDC is then obtained as follows:

BDC = BCL× NB× BUP (31)

In which NB is the number of battery units, BUP is the battery unit
price and BCL represents the amount of available battery capacity
that has been consumed during the operation period, as follows:

BCL = Cd(0)− Cd(OT)

Cd(0)− Cd( lim )
(%) (32)

Once BDC is calculated using (31), it puts again in the economic
model and the optimal SoC is again calculated. BDC is again
obtained using the battery degradation model. Iteration between
the economic model and the degradation model continues until the
variation in BDC during two consecutive iterations is <1%.

4 Method application

4.1 Case study data

The study case is a 4 kWp PV system. Daily generation profile of the
PV panels is presented in Fig. 5 [17], giving the daily energy
generation of 29.77 kWh.

A 3-tariff electricity purchase price is assumed for the low,
medium and peak load periods, as presented in Table 1 [18].

On the basis of the generation profile in Fig. 5 and the electricity
price in Table 1, without battery application, the daily profit of
selling PV generation directly to the grid is obtained as 494.52 cents.

To increase the system profit, 30 units of 12 V, 54 AH lead–acid
battery are used, giving a total storage capacity of 19.44 kWh. The
parameters of the battery have been presented in Table 2 [7, 10].

4.2 Basic results

Both the economic model and the battery degradation model have
been implemented in MATLAB R2013a platform on a Lenovo
Z510 laptop with 2.5 GHz Intel central processing unit and 6 GB
random access memory.

The proposed approach has been applied to the study case to
determine the optimal battery use for the operation period of 250
days. Optimal results have been determined following four
iterations between the economic model and the degradation model.
Table 3 shows variation in BDC and ADP during the iterations.

It can be seen in Table 3 that BDC has reached from zero in the
iteration 1 to 6 ¢/kWh in the iteration 2 which is then reduced and
settled at 5.946 ¢/kWh. ADP, on the other hand, reduced in the
iteration 2 and settled at the iteration 4.

It should be noted that the results obtained for the iteration 1 are
associated with the BDC equals to zero. Therefore, the results
obtained for iteration 1 can be considered as the results that one
can obtain without considering BDC in determining optimal
system operation.

Detailed results for the iteration 1 and the iteration 4 as well as
those obtained for the system without battery application have
been presented in Table 4.

It can be seen in Table 4 that the battery application has led to
increase in TP, compared with the case in which no battery is

Table 2 Battery parameters

Parameter Value Unit

Uoc 2.18 volts
gc 0.124 volts
T 300 °K
CN 0.65 kWh
NB 30 units
BUP 70 $
ηc 76 %
ηd 98 %
SoClim 20 %
Cd(0) 1.75 pu
Cc 1.001 pu
Cd(lim) 1.4 pu
δ 0.00694 %/h
ZIEC 600 units

Table 3 BCD and ADP variations during iterations

Variable Iteration 1 Iteration 2 Iteration 3 Iteration 4

BDC, ¢/kWh 0 6.008 5.9799 5.9469
ADP, ¢ 647 555 556.08 556.12

Fig. 5 Daily PV generation profile

Table 1 Electricity purchase price

Price Price period Value, ¢/kWh

EP1 0–5 A.M. 10
EP2 6 A.M. to 4 P.M. 15
EP3 4 P.M. to 12 P.M. 30
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used. Inclusion of BDC in the iteration 4 has led to decrease in TP in
the iteration 4 compared with the iteration 1. However, Cd calculated
in the iteration 4 is greater than that obtained for the iteration 1. This
shows that optimal operation obtained using the proposed approach
has led to improvement in battery life while maximising the system
profit.

More investigation in the results obtained for the iterations 1 and 4
has shown that Cdeg is greater in the iteration 1 than in the iteration
4. As Cdeg represents the capacity loss due to the active material
degradation (Section 2.2), it implies that the active material
degradation is smaller in the iteration 4 compared with the
iteration 1. Remembering that the active material degradation is
affected by the battery discharge rate, it can be concluded that
battery discharge in the optimal solution (iteration 4) is smaller
than that happening in the iteration 1.

Fig. 6 shows the SoC obtained for the iterations 1 and 4.

It can be seen in Fig. 6 that the SoC decline rate in the iteration 4 is
smaller than that obtained for the iteration 1, confirming that the
proposed approach, once fully applied, alters the battery usage to
enhance the battery life.

4.3 Minimum SoC impact

Battery minimum SoC in (22) is the other factor that directly affects
the ADP as well as the battery degradation. Battery minimum SoC
determines the amount of available battery capacity that can be
used to store PV generation during the day for being sold during
the afternoon. Increase of the minimum SoC leads to the decrease
in the available battery capacity, resulting to decrease in ADP.

Impact of the minimum SoC has been evaluated by the proposed
approach and the variations in BDC and BCL due to the changes in
the minimum SoC has been presented in Fig. 7.

It can be seen in Fig. 7 that the increase in the minimum SoC has
led to decrease in BCL. This shows that reducing the available
battery capacity for energy storage has led to the decrease in the
battery degradation. The value of numerator in BDC calculation in
(31), so, decreases once minimum SoC increased. While one
might expect reduction in BDC with increase in minimum SoC, it
is interesting to observe in Fig. 7 that BDC has increased with
minimum SoC. The reason is that, though BCL decreases with
increase in the minimum SoC, the battery use by the system has
been reduced as well and ADD has also been reduced.

While it is practical to imposing a limit on minimum SoC to
extend the battery life [19], results obtained by the proposed
approach indicate that this increases the unit cost of the battery
degradation for the system. The proposed approach can be used to
evaluate the impact of minimum SoC on the battery economy.

4.4 Battery capacity impact

The impact of the batteries storage size has been evaluated by
changing the number of battery units. Results have been presented
in Table 5.

It can be seen in Table 5 that both ADP and BDC vary with NB. It
can also be seen that maximum ADP was obtained for 45 battery
units and the optimal number of battery units for the system under
study is 45 units. This is due to the fact that, once NB has
increased from 30 to 45 units, less portion of the battery capacity
has been used for energy storage and the battery degradation
reduces as a consequence. TPD was also greater for 45 battery
units than 30 battery units, resulting in maximum ADP for 45
battery units. Deploying more than 45 battery units, however, does
not have influential impact on TPD while increases the battery
cost, resulting to increase in BDC and decrease in ADP.

Therefore, the proposed approach can also be used to determine
the optimal number of battery units to maximise the system
operation profit.

4.5 Operation duration impact

Variations in ADP and BDC with the operation duration have been
analysed using the proposed method. The results have been
presented in Fig. 8.

It can be seen in Fig. 8 that ADP increases from 515 cents for the
operation duration of 60 days, reaches the maximum value of 560
cents for the duration of 180 days and then declines to 505 cents
for 450 days. BDC, on the other hand, has the minimum value for
the operation duration of 180 days and increases for other values
of the operation duration.

Table 4 Solution results

Variable Iteration 1 Iteration 4 No battery

TP, $ 161, 890 139, 020 123, 630
TPC, kWh 5099 5099 —
TPD, kWh 3825 3825 —
TPS, kWh 6167 6167 7442
BDC, ¢/kWh 0 5.94 —
ADD, kWh/day 15.22 15.22 —
ADP, ¢/day 647.5 556 494.52
Ccorr 0.0028 0.0028 —
Cdeg 0.035 0.0347 —
Cd 1.7122 1.7124 —
BCL, % 10.8 10.7 —

Fig. 6 SoC for the iteration 1 and the iteration 4

Fig. 7 BCL and BDC variations against minimum SoC

Table 5 ADP and BDC variations with NB

Number of batteries 5 15 25 35 40 45 50 55

BDC, ¢/kWh 5.43 5.37 5.38 6.21 6.5 4.79 4.9 5.04
ADP, ¢ 506.16 529.96 554.16 561 565.24 598.52 596.72 594.36
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It should be noted that no optimal battery use was found for the
operation duration smaller than 60 days nor for the duration >450
days. This means that it is not economic to use the battery for the
operation duration smaller than 60 days or >450 days. On the other
hand, BDC increases considerably for the operation duration
smaller than 60 days or >450 days. This is why the proposed
approach does not give the solution for the mentioned operation
days and the economic model prefers not using the battery for
energy storage.

The upper limit of economic operation day in Fig. 8, i.e. 450 days,
is important as it shows the end of economic life of the battery. To
study the economic life of the battery, the proposed approach has
been applied to determine the economic life of the battery for the
different values of EP3 and minimum SoC. Results have been
presented in Fig. 9.

It can be seen in Fig. 9 that the battery economic life highly
depends on both EP3 and minimum SoC. Higher economic life is
obtained by increasing either EP3 or minimum SoC. In particular,
minimum SoC has stronger impact on the economic life than EP3.
However, it should be remembered that, as presented in Fig. 7,
higher value for minimum SoC reduces the battery application
profit to the system and increases BDC.

5 Analysis and discussion

5.1 Method comparison

The performance of the proposed approach in determining the BDC
and inclusion of BDC in the system operation have been evaluated in
the previous section. However, two main methods are also available
to determine the BDC as follows:

† Method 1: Similar to the method presented in [10], BDC is
determined based on the consumed battery life cycle energy

throughput as follows

BDC = BUP× TPChC

400CN(1− SoClim)TPD
(¢/kWh) (33)

† Method 2: Constant maintenance cost for the battery life cycle is
considered, as in [6], disregarding to the charge/discharge profile of
the battery, as follows

BDC = 28× CN × NB

30× ADD
(¢/kWh) (34)

TPC, TPD and ADD obtained by the proposed approach have been
applied in Method 1 and Method 2 to calculate BDC. Results have
been presented in Table 6.

It can be seen in Table 6 that BDC obtained for the Method 1 is
well higher than the one calculated by the proposed approach. On
the other hand, BDC calculated for the Method 2 is so small. In
particular, BDC obtained for Method 1 is so large that it does not
justify the use of battery storage for PV system. This means that if
the BDC obtained for Method 1 in Table 6 has been considered as
the input value for an economic model, similar to the one
developed in Section 3, the economic model shall opt not using
the battery system and ADD will be zero.

In absence of the proposed approach, if one selects Method 1, she/
he will decide not to use the battery system. On the other hand,
selections of Method 2 will result in underestimation of BDC and
failure in real operation of the system.

The difference between the BDCs obtained for Method 1 and
Method 2 shows that the assumptions laid behind the Method 1
and Method 2 are not consistent with each other. More important,
the assumptions used for Method 1 and Method 2 are neither clear

Fig. 8 Variation in BDC and ADP with operation duration

Fig. 9 Battery economic life variation
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nor available and, in absence of the proposed approach, there is no
clear basis to choose either of the results obtained by the methods.

On the other hand, as the results presented in the previous section
has shown the battery depreciation highly depend on various
technical parameters (such as operation period, minimum SoC etc.)
while Method 1 and Method 2 does not consider such parameters.
Therefore, while existing methods fail to precisely determine BDC
on a technically sound and justifiable basis, the proposed approach
can be used easily to calculate BDC in the different operating
conditions.

5.2 Seasonality analysis

The uncertainties in both solar irradiance and ambient temperature
have direct impact on the optimal operation of the system. This is
due to the fact that PV generation depends highly on the solar
irradiance and the battery degradation depends on the ambient
temperature.

To investigate the impact of irradiance and temperature
uncertainty, four seasonal scenarios have been defined which
include seasonal PV generation and average ambient temperature
[20]. The PV generations for the four seasons have been presented
in Fig. 10.

The proposed approach has been used to study the impact of the
variation in the PV generation and the ambient temperature for the
battery storage system. For this analysis, 45 battery units have
been considered as it was shown in Section 4.4 that the optimal
battery number for the system under study is 45 units.

Table 7 presents the results obtained by the proposed approach for
ADD, BDC and ADP for the four seasons. Average ambient
temperature and daily PV generation associated with each season
have also been mentioned in Table 7.

It can be seen in Table 7 that the values obtained for ADD, BDC
and ADP varies for the four seasons of the year. In particular, it can
be seen that the most profit, ADP, has been obtained for the summer
which is much higher than ADP presented in Table 5 for 45 battery
units. This is due the fact that daily PV generation in summer is
much higher than the one associated with Fig. 5, i.e. 29.77 kWh,
which was used to obtain the results presented in Table 5.

High ADD and high ambient temperature for the summer have led
to smallest Cd for the summer. This is due to the fact that both battery
use and high ambient temperature contribute to more degradation in
the battery, leading to small Cd and large BCL. However, summer
BDC is still the smallest among other seasons’ and it shows that
more degradation in the battery is still economic due to high PV
generation.

While daily PV generations in spring and fall are so close, it can
be seen in Table 7 that ADD in fall is about 4% smaller than that
obtained for the spring. The reason is that low ambient
temperature in fall accelerates the battery degradation and forces
the proposed approach to restrict the battery use.

The largest BDC and smallest ADD were obtained for the winter
as the cold ambient temperature has led to extra loss of the battery
capacity. It can be seen in Table 7 that, while ADD associated
with the winter is about half of the one associated with the fall,
BCL associated with the winter is about 75% of the one obtained
for the fall, showing that battery has degraded faster in the winter
than in the fall. The largest BDC was obtained for the winter as a
result.

The seasonality analysis results have shown the importance of
correct modelling of PV generation and ambient temperature
variation in optimal operation of battery-assisted PV system. While
the existing methods, as Method 1 and Method 2, do consider
neither the ambient temperature nor PV generation profile, the
capability of the proposed approach in considering the variation in
PV generation and ambient temperature has also been shown.

Therefore, though the proposed approach poses more computation
burden to calculate BDC than existing methods such as Method 1
and Method 2 it offers more capability, more precision and more
flexibility in BDC calculation. As the battery has important role in
PV systems planning and operation, the application of the
proposed approach in such systems is justified to clearly and
precisely calculate BDC.

6 Conclusion

A 2-model iterative approach has been presented in this paper to
calculate the BDC in the optimal operation of battery
storage-assisted PV system. The proposed approach explicitly
considers various parameters contributing to the battery
degradation such as the temperature, charge/discharge profiles and
battery characteristics. The proposed approach has been applied to
a study case and the performance was evaluated. Applicability
of the proposed approach in determining the optimal number of
batteries in the system has been demonstrated. The impact of
battery minimum SoC on the economy of battery storage
application was evaluated using the proposed approach. The
proposed approach can also be used to estimate economic life of
the battery system according to the battery minimum SoC and
electricity tariffs. A comparison between the results obtained using
the proposed approach with those obtained using two other
existing methods has shown that the existing methods fail to
determine the BDC on a technically sound and justifiable
approach. The importance of correct modelling of PV generation
and ambient temperature uncertainty has also been demonstrated
and the capability of the proposed approach in correctly
considering the variation in PV generation and ambient
temperature was also shown.
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Table 6 BDC calculation comparison

Technique BDC, ¢/kWh

proposed approach 5.94
method 1 31
method 2 1.3

Fig. 10 Seasonal PV generation profiles

Table 7 Seasonal analysis results

Season (ambient
temperature)

Spring
(25°C)

Summer
(35°C)

Fall
(15°C)

Winter
(5°C)

daily PV generation,
kWh

16.2 33.35 16.1 7.15

ADD, kWh 11.36 20.63 10.93 5.35
Cd 1.7324 1.7205 1.7338 1.7373
BCL, % 5 8.4 4.6 3.6
BDC, ¢/kWh 5.61 5.25 5.35 8.58
ADP, ¢ 313 685 300 119
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