
International Journal on Digital Libraries (2006) 6(1): 70–81
DOI 10.1007/s00799-005-0120-5

REGULAR PAPER

Hadi Harb · Liming Chen

Audio-based description and structuring of videos

Published online: 23 February 2006
c© Springer-Verlag 2006

Abstract Enabling a rapid on-the-fly view of the content
of a movie requires segmenting the movie and describing
the segments in a user-compatible manner. The difficulty re-
sides in extracting relevant semantic information from the
audiovisual signal, both for the segmentation and the de-
scription. We introduce in this paper audio scenes and chap-
ters in movies and present an algorithm for automatically
segmenting a video based on the audio stream only. Audio
scenes and chapters are defined as the equivalent of shots
and scenes in the visual domain. A tree-like audio-based
structure of a video is proposed. A chapter is then classified
into different chapter categories. The automatic solution to
audio scene and chapter segmentation and classification is
evaluated on manually segmented and classified videos

Keywords Video segmentation · Audio classification ·
Audio scenes · Piecewise Gaussian Model

1 Introduction

Structuring a video based on its semantic content is of
increased relevance to allow intelligent video navigators,
skimmers and search engines with the increase in the use
of digital video archives. Video structuring is the problem
of video segmentation into semantic units, also called story
units, and the creation of a storyboard similar to the table of
contents in a book. Automatically generating a storyboard
of a video will probably enhance the experience of video re-
trieval both for consumer and professional applications. The
objective of video structuring and description is to permit a
user to have an on-the-fly idea of the content of a video or a
scene.

In this paper, the term semantics is defined as a mid or
high level interpretation of low-level signal features. Exam-
ples of mid-level interpretation include for instance, speech,
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music, cars, trees. . . . Higher level understanding of these
mid-level features, such as the classification of video con-
tent into “calm dialog”, “battle”, “car pursuit”, etc. is a real
challenge for the content-based multimedia indexing com-
munity. This paper tries to use low- and mid-level audio fea-
tures for content-based video structuring and description.

Starting from basic units such as shots, video structur-
ing consists of grouping these units into scenes that are se-
mantically homogenous and grouping scenes into chapters
and iteratively continuing the grouping till covering the en-
tire document. For example, several shots of one telephone
conversation are considered as one scene. The underlying
action is the telephone conversation. Several scenes telling
one underlying story may be grouped together in one chap-
ter. This kind of grouping is a semantic grouping based on a
high level of understanding of the content. Although video
segmentation into shots or the grouping of similar shots
into scenes can be considered as a mature domain, seman-
tic scene and chapter segmentation seems a harder prob-
lem. The main reason for the difficulty of scene, or story
unit, determination is the high level of semantics engaged in
the process, making even a manual segmentation of a video
into scenes and chapters subjective and difficult to some
extent.

In this paper, we consider structuring a video based on
the audio stream only. We restrict our analysis to movies
since they offer a major component in the entertainment
market especially with future applications such as interac-
tive TV or Video On Demand services.

The main motivation behind our analysis of the audio
stream for video structuring is a preliminary experiment that
we have conducted on the ability of human subjects to de-
tect scene changes when listening to a movie with no in-
formation on the visual stream. We have observed that hu-
man subjects were able to structure a movie into semantic
units even when they do not understand the language of
the movie. Human subjects generally base their judgments
on the combination of the acoustical environment and the
changes in the mood, described by the mood of speech and
music. This ability of understanding the semantic structure
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of a movie based on the audio stream only is probably due
to the extensive use of the music and audio effects by the
movie makers in order to convey semantic information to
the spectators.

Moreover, the use of audio information for video seg-
mentation offers the advantage of being computationally less
demanding and having fewer dimensions than the visual
information.

As a movie is classically structured into frames, shots,
scenes, and chapters, we introduce in this paper an audio-
only structure into audio scenes, and audio chapters at dif-
ferent levels of abstraction. An audio scene is defined as the
time instants of a video containing a homogenous acoustical
environment and a homogenous semantic environment, such
as calm speech or loud music. The same criterion is used to
group several consecutive audio scenes into audio chapters.

A table of contents of a movie is therefore created.
The algorithm presented in this paper for the segmentation
of the audio stream is based on a combination of spec-
tral and semantic dissimilarities. We also present a group-
ing algorithm for merging consecutive audio scenes into
scenes, or chapters, having a higher level of abstraction.
Each chapter is moreover classified into different chapter
categories.

2 Related work

Video scene segmentation has gained an important effort
from the research community. In the majority of cases, the
segmentation is based on an analysis of the visual stream of
a video. Generally the video is first segmented into shots, a
domain that can be considered as mature at present with high
accuracy algorithms and standard methodologies for evalu-
ation [1, 2]. Several shots are then grouped together on the
basis of similarities in their color histograms, objects, mo-
tion, rhythm, and so on [3–6].

The audio stream has been considered in some cases as
a complement to the visual stream. Simple algorithms for
audio analysis and segmentation were generally used.

Another family of algorithms for video segmentation is
the one considering an audio-only segmentation. Few papers
in the literature fall in this category, to which the work pre-
sented here belongs.

The basic approach generally used for audio-based video
segmentation can be considered as a blind segmentation. It
consists of defining a similarity measure between neighbor-
ing time windows based on signal features such as spectral
or cepstral ones. Peaks in the similarity measure correspond
to potential scene boundaries.

Sundaram presents in [7] an audio scene segmentation
technique based on low-level audio signal features, such as
cepstral and energy features. The technique is based on a
correlation measure between the envelope of the audio fea-
tures in an attention time window (16 s) and the envelope
of the features in a memory time window (17 s). This tech-
nique can actually be considered as a technique based on

a measure of similarity between consecutive time windows,
attention and memory windows. Cao et al. [8] demonstrate
experimentally that a distance between spectral distributions
in two consecutive time windows is more convenient than
the correlation measure presented by Sundaram.

Minami et al. in [9] try to use a simple speech/music
classification in videos in order to enable novel video
browsers. The authors use information about the peaks
in the spectrogram for speech and music classification. A
comprehensive description of the significance of the au-
dio stream in a video is presented in the paper; the au-
thors base their analysis on video production rules. A video
browser application is developed based on the speech/music
classification.

Pfeiffer in [10] presents an algorithm for video segmen-
tation based on audio analysis. The author uses spectral vec-
tors as audio signal features. The Euclidian distance between
vectors from present and a mean of an exponential prevision
of the vectors from the past is used as a measure of similarity
to detect scene boundaries.

In Ref. [11], shots are merged together using an audio-
based similarity measure. The audio similarity measure is
based on a Euclidian distance of the means and variances of
low-level audio features such as Energy, Spectral centroid,
and Spectral flux.

Atalan in [12] combines basic speech/music/silence de-
tection with face detection in order to detect dialog scenes
using a Hidden Markov Model. The speech/music/silence
detection uses energy thresholding and frequency analysis.

A simple speech/music/silence detection algorithm is
used in [13] in order to improve shot and scene detection
in videos.

From this brief review of the state-of-the art in audio-
assisted video scene segmentation, we can conclude that the
proposed algorithms are more likely to be compared to shot
segmentation in the visual domain. The segmentation pro-
cess is generally based on low level acoustic features and
sliding time windows. Whereas the process of generating
scenes from shots requires a higher level of understanding
of the video content, such as objects, rhythm and other se-
mantic information. The audio segmentation presented in
the literature, since it is based on low-level acoustic features
and generally with little or no knowledge about the semantic
content, can be considered as a blind segmentation. We ar-
gue that including semantic information to the segmentation
process of the audio stream will permit a segmentation level
more similar to that of scenes than to shots. Moreover, this
semantic information may be used to describe the content of
a scene.

Consider for instance a dialog scene between two per-
sons, one from indoor and the other from outdoor. The
acoustical environment of the two persons will be probably
different. The mismatch in the acoustical environment will
be translated by different characteristics if analysed in the
low-level feature space, such as the cepstral or spectral fea-
ture space. Figure 1 illustrates an example from an English
movie “Bridget Jones Diary”; it consists of a dialog scene
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Fig. 1 Spectral similarity does not always convey a semantic similar-
ity. An example where a dialog scene can be segmented into three dif-
ferent scenes if a spectral similarity (e.g. Euclidian distance between
the means of spectral vectors in consecutive time windows of n sec-
onds) is used to segment the signal

Fig. 2 The continuity of the content, speech, provides a means to elim-
inate false scene boundaries provided by a spectral analysis

where the two persons have each a different environment, an
office and a hall for instance. As we can see on the spectro-
gram, the different environments are translated into differ-
ent spectral characteristics. If we apply a similarity measure
on the low-level spectral features, a peak will be obtained
suggesting a false scene boundary.1 Conversely, the content,
speech for instance, has a continuity which does not lead to
a scene boundary. The continuity of the content is illustrated
in Fig. 2 which shows the output of a speech/music/noise
classifier.

Consider another example where music is included at a
given time instant. If the energy of the musical content is
relatively weak, a similarity measure based on the low-level
features cannot detect a scene boundary. Knowing that the
inclusion of music is generally used by movie makers to
translate an important change in the underlying story im-
plies a missed detection of a semantic scene boundary in the
case of a blind segmentation.

1 An example of a similarity measure that can be used is an Euclid-
ian distance applied to the mean of the spectral vectors in two over-
lapped time windows of 1 s.

The content continuity constitutes a complementary
source of information, which, if combined to the acoustical
continuity, may improve the segmentation process.

To conclude, few works studied the problem of video
scene segmentation based on the audio stream. Furthermore,
these works consider the segmentation of the audio stream
based on low-level signal features with no or little knowl-
edge about the content. In this paper, we propose to combine
acoustic and content information for audio scene segmenta-
tion and description.

3 Audio scenes

An audio scene is defined as the time instants of a video
containing a homogenous acoustical environment and a ho-
mogenous semantic environment, such as calm speech or
loud music. By following this definition, the acoustical ho-
mogeneity leads to a blind segmentation while the content
or semantic homogeneity leads to a content-aware segmen-
tation. The acoustical segmentation is equivalent to a raw
segmentation applied directly to low-level features; while
the semantic segmentation is obtained after an interpretation
of the low-level features. Their combination defines audio
scenes. The mean duration of an audio scene in a typical
movie is about 20 s. An audio scene boundary is not always
confirmed by a visual scene boundary; a speech in a dialog
can continue after a shot boundary for example. It is impor-
tant to notice that a change in the semantic content is not
always transcribed by a change in the visual features usu-
ally used by researchers, such as colour or objects. On the
other hand, when the movie-maker intends to signal an im-
portant semantic action where no change in the decoration
or place is observed, the music is generally used as the ba-
sic tool to translate the intention. Consequently, the audio
stream conveys important semantic information needed for
the understanding of the movie.

Several consecutive audio scenes grouped together
on the basis of the similarity between their audio content
constitute an audio chapter. Based on this definition, several
indoor-audio scenes are grouped together while outdoor
scenes will constitute a different audio chapter since the
audio characteristics of indoor-audio scenes will probably
be similar while being dissimilar from that of outdoor-audio
scenes. A typical duration of an audio chapter is about 100 s,
[7, 8].Therefore, a full-length movie will contain about 70
chapters.

3.1 Scene description

The video documents we are considering in this work are
those containing a variety of sound classes, movies for in-
stance. That is, we do not consider documents containing
speech-only audio content, such as meetings.

The audio content of a movie conveys several semantic
classes. These classes include, calm dialog, active dialog,
neutral dialog, natural action, special effects action, emotion
(happiness, sadness) and fear. The extraction of semantics
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Table 1 Audio scene categories in terms of speech, music, and noise

Music Speech Noise

Neutral dialog + +++++ +
Active dialog + +++ ++
Calm dialog ++ +++ +
Emotion (happiness, +++++ + +

sadness, etc.)
Fear ++++ + ++
Action + + +++++
Special effects action ++ + +++

from the audio signal can be based on a general audio classi-
fier trained on the selected classes. Unfortunately, sufficient
training data for the selected semantic classes or concepts
is difficult to obtain due to the great variety of audio signal
in each class. Nevertheless, intuitively, each of the audio se-
mantic classes can be partially described by a combination
of speech, music, and noise. To verify this hypothesis, the
first author manually segmented and classified the scenes of
two movies, Gladiator and Taxi2, into music, speech, noise,
music+speech, music+noise, and speech+noise. For each
scene, the percentage of speech, music and noise is obtained.
In this case, the percentages do not sum to 100 since in
the cases of coexistence of two classes, the time duration
is counted two times.

A synthesis of the manually-obtained descriptions in
terms of music, speech, noise classes is presented in Table 1.
In this table a “neutral dialog” corresponds to a dialog or
monolog where only the information is presented such as the
case of a news program presenter. An “active dialog” corre-
sponds to scenes containing shouting dialogs or monologs,
such as before-fight aggressive dialog. A “calm dialog” is a
scene where the dialog or monolog is slow, such as a roman-
tic dialog. “No voice emotion” means scenes where no voice
exists but an emotion is conveyed, such as a death scene.
“Fear” relates to scenes conveying a disturbance without be-
ing sadness or happiness. “Natural action” corresponds to
scenes where the action is natural without the intervention of
a human artistic creation. “Special effects action” relates to
scenes where the music or other special effects are added to
convey the intention, such as a battle scene. We distinguish
between natural action and special effects actions since each
category may convey a different level of action. Generally
special effects action is more intensive than the natural ac-
tion due to the musical component.

3.2 Towards automatic scene description

The preliminary study presented previously encourages a
rule-based approach applied on speech, music and noise per-
centages in order to describe the semantic content of an au-
dio scene. Once the percentages of speech, music and noise
components are obtained, a set of rules can be applied de-
scribing therefore the content of a scene.

In this work, the percentages of speech/music/noise
components are obtained using a Piecewise Gaussian
Model–Multi Layer Perceptron (PGM–MLP) audio
classifier.

3.2.1 An overview of the PGM–MLP audio classifier

The PGM–MLP audio classifier is inspired by some aspects
of the human perception of audio classes [14]. It is fair to
suppose that the perception of a stimulus is strongly related
to its correlation with the past memory. The context effect
is a known effect in the human speech recognition domain.
We model the context effect by an auditory memory and
we suppose that the classification of a stimulus at time in-
stant t is based on the status of the memory at time instant
t. The auditory memory is supposed to be a Gaussian dis-
tribution of the spectrum in the past time window, called
the Integration Time Window (ITW). The auditory memory
is therefore modelled by one Gaussian distribution for each
frequency band. The frequency bands are chosen according
to the MEL psychoacoustic scale in order to model the fre-
quency resolution of the human ear. The auditory memory
model is updated continuously by a new acoustic observa-
tion and hence, by new spectral features. For the sake of sim-
plicity, we suppose that the duration of the memory model
is constant, which means that the ITW is constant. Also, the
Gaussian distributions are described by their mean and diag-
onal covariance.

�µ(t+1) = (1 − ε) �µ(t) + ε �X (t+1) (1)

�σ (t+1) = (1 − ε)�σ (t) + ε( �µ(t+1)

− �X (t+1))( �µ(t+1) − �X (t+1))T (2)
�X (t) is the spectral vector, the Mel Frequency Spectral Co-

efficient (MFSC) vector for instance [15], ⇀
σ

(t)
and �µ(t) are

the variance and the mean, respectively, of the short-term
spectral vectors at the time (t). ε is a decay parameter that
governs the speed of forgetting the past. A simple value of ε
is a constant over time that equals 1/T, where T is the number
of short term spectral vectors contained in the ITW window.

On the basis of this interpretation, the Piecewise
Gaussian Modelling consists of the Gaussian parameters of
the short-term memory model. The PGM features are there-
fore the normalised mean and variance of the Gaussian dis-
tributions for each ITW window.

We can summarize the PGM feature extraction by the
following [16]:

1. The computation of the MFSC features with 30 ms
Hamming window and 20 ms overlap. 20 Mel scaled fil-
ters are used and hence one vector containing 20 ele-
ments is obtained each 10 ms.

2. Grouping MFSC vectors in ITW windows, estimating
the Gaussian parameters of each ITW window. The
Gaussian parameters are the mean and variance vectors
and constitute 2 vectors of 20 elements each.

3. Normalising the mean values by their respective max-
imum and normalising the variance values by their re-
spective maximum.

The duration of the ITW windows is a function of the
audio classes. Typically we use 4 s as a standard duration in
the case of Audio Scene Segmentation.
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Fig. 3 The PGM–MLP audio classifier’s architecture. Each column in the middle section corresponds to one feature vector (the Gaussian
parameters in each frequency band)

The PGM features are then coupled to a Multi Layer
Perceptron (MLP) trained using the error back-propagation
algorithm. The MLP has 40 input neurons correspond-
ing to the 20 mean values and the 20 variance values
obtained from each ITW window. The MLP has 1 hid-
den layer with 100 hidden nodes, 3 output neurons in the
case of speech/music/noise classification, and is fully con-
nected. The MLP estimates, after a training phase using
the gradient-descent algorithm, the probability of the audio
classes given the PGM features of the ITW window. The ar-
chitecture of a PGM–MLP classifier is shown in Fig. 3.

3.2.2 Rule-based audio scene description

The rules, obtained from Table 1, that have been used in
order to describe the content of a scene/chapter are the
following:

S>>N>M Active dialog (AD)
S>>M = N Neutral dialog (ND)
N∼>S>M Natural action (NA)
M>N∼>S Emotion no voice (E)
M>S∼>N Emotion no voice (E)
N>M>>S Special effects action (SA)
N>M>S Special effects action (SA)
S∼>M>N Calm dialog (CD)
S>M>N Calm dialog (CD)
M>N>>S Fear (F)
M>N>S Fear (F)

where x>>y means x>2y, x∼>y means y<x< 1.05y, and
x>y means x>1.05y.

These rules are basic and heuristic rules. It is also pos-
sible to obtain similar rules by using a Decision Tree algo-
rithm or other types of classifiers which may provide better
results.

The presented rules were self-validated using a
speech/music/noise classifier on the same data used for their
manual elaboration. That is, a speech/music/noise classifier,
the same as the one described in Sect. 3.2.1., was used to
classify the audio stream of the first 1600 s of the movie
“Gladiator”. The classifier was trained on 240 s of training
data (80 s for each of the audio classes). The training data
was obtained from the “Gladiator” movie excluding the test
data. The ITW duration was set to 4 s. Therefore, the MLP
was trained on 60 training samples. The rules were generated
and the automatically obtained audio classes were compared
to the manually obtained ones for the manually segmented
chapters. In this experiment “Neutral dialog” and “Fear”
were not included due to insufficient data in the test seg-
ment. Table 2 shows the confusion matrix between the auto-
matically obtained labels and the manually obtained ones of
the chapters. Globally 67% of chapters were correctly clas-
sified. Notice that the errors of the audio classifier combined
with the over-simplification of rules affect the results. Nev-
ertheless, these results suggest that a mapping can be done
from basic audio classes to semantic ones via simple rules.
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Table 2 Confusion matrix between the automatically obtained scene
categories and the manually obtained ones

Real

System A.D. C.D. E. S.A. N.A.

A.D 2
C.D 1 2
E 1 2 1
S.A 2
N.A 2 2

Total 4 2 2 4 3

4 Audio scene segmentation

Audio-scene segmentation is the first step required to delimit
scene boundaries.

In this work, we make use of a combination of two
dissimilarity measures: the Acoustic Dissimilarity Measure
(ADM) and the Semantic Dissimilarity Measure (SDM).

4.1 Acoustic Dissimilarity Measure (ADM)

The change in the place or the change in the sources is acous-
tically transcribed by changes in the spectral environment.
That is, the frequency spectra of office noise have generally
different characteristics than that of a street noise since the
characteristics of the acoustical sources are different. This
can be observed while observing the spectrogram of the au-
dio stream of a movie.

We use the Kullback-Leibler distance between consec-
utive time windows to translate the changes in the acousti-
cal environment in a movie since it has been demonstrated
suitable for the estimation of spectral audio similarity [17].
Other approaches may be used for this task of acous-
tic segmentation such as the Bayesian Information Cri-
terion (BIC) approach [18]. The Kullback-Leibler dis-
tance is however more convenient when using the PGM–
MLP classifier due to the fact that they use the same
features.

The Kullback-Leibler (KL) distance originates from the
information theory. It is a distance between two random vari-
ables. The original KL distance does not have the properties
of a distance, but the symmetric KL is a distance [19]. In
the case of Gaussian distribution of the random variables the
symmetric KL distance is computed by:

K L2(t) = σ 2
t

σ 2
t+1

+ σ 2
t+1

σ 2
t

+ (µt − µt+1)
2
(

1

σ 2
t

+ 1

σ 2
t+1

)
(3)

µt and σ 2
t are respectively the mean and the variance of the

spectral variables in the t time window. In the case of mean
and variance vectors the Acoustic Dissimilarity Measure is

Fig. 4 The Acoustic Dissimilarity Measure values and the real scene
boundaries (vertical lines)

computed as:

ADM(t) = K L2(t) = �σt �σ T
t

�σt+1 �σ T
t+1

+ �σt+1 �σ T
t+1

�σt �σ T
t

+ ( �µt − �µt+1)( �µt − �µt+1)
T

(
1

�σt �σ T
t

+ 1

�σt+1 �σ T
t+1

)
(4)

where �µT and �σ T are respectively the transpositions of
�µ and �σ .

Since very short-term changes in the spectrum, such as
the silence between two words, are not relevant for scene
changes, we consider relatively long-term time windows,
that we call Integration Time Window ITW, for the estima-
tion of the KL2 distance. The typical duration of the ITW
window is 4 s. Figure 4 shows an example of the ADM val-
ues for a segment of 200 s from Italian movie “Malena”. As
we can see on the figure, the ADM measure can predict a
portion of the scene boundaries although it can be consid-
ered as an optimal predictor.

4.2 Semantic Dissimilarity Measure (SDM)

The time instant of a change in the content is probably
a scene boundary. For instance, a transition from a calm
dialog to a violent one is generally a semantic scene
boundary. Therefore, estimating the novelty of the audio
content at each time instant is one important feature for
scene segmentation.

Let P(t)
i = p(Ci |o(t) ) be the probability of the audio

class Ci , given the acoustic observation, or feature vector
o(t), at the time instant t, i = 1, . . . , N , N represents the
number of classes.

The SDM measure is computed as follows:

SDM(t) =
√ ∑

i=1..N

(
P(t)

i − P(t−1)
i

)2 (5)
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Fig. 5 The Semantic Dissimilarity Measure values and the real scene
boundaries (vertical lines)

In this work we consider three basic audio classes,
speech, music and noise due to the availability of the train-
ing data for these audio classes. We make use of the PGM–
MLP general audio classifier for the estimation of the prob-
abilities of each of the three classes, given the acoustic
observation. Figure 5 shows the same example of Fig. 4
and the corresponding SMD measure. As we can see, false
and/or missed scene detection from one similarity mea-
sure can be corrected by the other similarity measure. We
state that combining the acoustic and the semantic informa-
tion and hence combining ADM and SDM is advantageous;
none of the measures is sufficient alone for an effective
segmentation.

4.3 Audio Scene Segmentation based on the ADM
and the SDM

The ADM values for a given video document are in a dif-
ferent interval than that of the SDM. Therefore, we nor-
malise the ADM values in order to have the same mean
as that of the SDM values for a given document. The nov-
elty in the audio content at each time instant is given as a
weighted sum of the normalised ADM values with the SDM
values.

The novelty in the audio content can be obtained as
follows:

K(t) = α.SDM(t) + β.ADM(t) (6)

α and β are two suitable weights.
A correlation analysis between the values of the SDM

and ADM on the first 1600 s from six movies was carried
out. The correlation is 0.0022, suggesting that no direct re-
lation exists between SDM and ADM, and hence the combi-
nation of the two measures provides a combination of rela-
tively independent sources of information.

4.3.1 Choosing weights

The respective weights used in order to combine the
ADM and the SDM measures need to be set in accor-

dance to the relative importance of each of the mea-
sures for the scene segmentation task. In this work, the
weights are chosen after a training phase on the two movies
used to train the audio classifier. Given a manual seg-
mentation into scenes, the correlation between the true
scene boundaries and the values of the dissimilarity mea-
sures gives a fair estimate of relative importance for each
measure.

The training data corresponds to the first 1600 s from the
two movies “Gladiator” and “Taxi2”. The scene boundaries
are used to provide the TB(t) function. The values of the
function are obtained as follows:

T B(t) =




1 if t = sceneBoundary
1 if t − 1 = sceneBoundary
1 if t + 1 = sceneBoundary
0 Otherwise

The time t is quantized with a step equals to ITW/2.
α and β are obtained as follows

α =

2M∑
t=0

T B(t).SDM(t)

2M∑
t=0

SDM(t)

(7)

β =

2M∑
t=0

T B(t).ADM(t)

2M∑
t=0

ADM(t)

(8)

where M corresponds to the number of ITW windows in the
training data.

4.3.2 Choosing threshold

If a static threshold is used to detect the scene boundaries
we risk obtaining very short scenes and very long scenes if
higher values are concentrated in one portion of the doc-
ument (Fig. 6). As a consequence, we detect the scene
boundaries as local maxima in a sliding window having the
same duration of the desired scene duration (Fig. 7). There-
fore, no threshold is needed to be set for each video doc-
ument. Instead, the duration of a scene is to be set as a
parameter. We use 20 s as a standard value for the scene
duration.

5 From audio scenes to audio chapters

The content of an audio scene is mainly described by the
semantic and the acoustical contents. The semantic con-
tent indicates whether a scene is mainly a dialog, violent,
calm, sensitive, or an action, or music. On the other hand,
the acoustical content describes the scene in a blind manner
where only information about the power of the signal in each
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Fig. 6 Local maxima are selected as scene boundaries. When two local
maxima are to close (less than 10 s between them) the next maximum
is chosen as the scene boundary

Fig. 7 Static thresholds will probably provide very short scenes and
very long scenes depending on the nature of the document

frequency band is gathered. A suitable measure of similar-
ity between two audio scenes will combine the two sources
of information, the semantic and the acoustical one. That is,
two scenes containing a violent dialog are “similar” if the
semantic content is used, while two scenes shot in the street
are “similar” if the acoustical content is used.

The semantic content of a scene is described by a vector
containing the mean and the standard deviation of the proba-
bilities of each of the audio classes, speech, music and noise
for instance:

�V s =




mean PN
mean PM
mean PS
stdvPN
stdvPM
stdvPS




where meanPi and stdvPi are the mean and the standard de-
viation of the probabilities of audio class i in the scene.

We use the Euclidian distance between the global seman-
tic vectors of two scenes in order to estimate the semantic
similarity.

The acoustical content of a scene is described by the
mean and the standard deviation of the acoustic vectors con-
tained in a scene.

�V a =




meanX1
meanX2
.
.
stdvX1
.
.




Where meanXi and stdvXi are the mean and the standard
deviation of the spectral components of frequency band i of
the audio signal in the scene.

The Kullback-Leibler distance is used to estimate the
acoustic similarity between two scenes on the basis of the
mean and the variance of the acoustic vectors.

The similarity measure between two consecutive scenes,
i and j, is a linear combination of the semantic similarity and
the acoustic similarity.

M(i, j) = α.d
( �V i

S, �V j
S

) + β.d
( �V i

a , �V j
a
)

(9)

The local maxima in a sliding window are picked as
chapter candidates. The duration of the sliding window is
a parameter fixed by the user which affects the mean dura-
tion of a chapter. We use 80 s as a standard duration in our
experiments.

The process of chapter generation can be iterated given
scenes from a lower level of abstraction. Therefore, we can
create a tree representing a movie where we can start the
navigation from higher levels of abstraction to lower lev-
els. Each unit, scene or chapter, is further described by the
percentages of the speech, music and noise classes (Fig. 8).
The user can have an on-the-fly idea of the content of a
scene when looking at these percentages. This tree consti-
tutes the table of contents, or the storyboard of a movie. A
representative image can be included for the description of a
unit in the tree. The audio stream is further classified using
the speech/music/noise percentages and the rules from Sect.
3.2.2 into different categories, Natural Action, Special Ef-
fects Action, Dialog, Active Dialog, Calm Dialog, Emotion

Fig. 8 Examples of the speech/music/noise probabilities of different
types of video documents
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Fig. 9 The interface of the system, chapter boundaries at a specific level of abstraction and the description of the content (in terms of the different
scene categories) are shown to the user in order to enable easy navigation and visualization of the document

and Fear. The scene categories and the scene boundaries at
a given level of abstraction can be visualised via a graphical
interface such as the one shown in Fig. 9.

6 Evaluation

The proposed audio scene segmentation algorithm and the
rule-based classification algorithm were evaluated on a
dataset constituted by the first 1600 s of four movies.

6.1 Segmentation

The manual segmentation of a movie into chapters, and se-
mantically homogenous scenes includes an important part of
subjectivity making the results no more than a partial estima-
tion of the performance. However, we performed a manual
segmentation into chapters of four movies and we evaluated
the system in terms of precision and recall ratios. The recall
and precision ratios are computed as follows:

recall = manual boundaries detected by the system

total manual boundaries
(10)

precision = manual boundaries detected by the system

total boundaries detected by the system
(11)

The first 1600 s from the “casino”, “Artificial intelli-
gence”, “Training day” and “Life is beautiful” movies were
considered for the experiment. The PGM–MLP audio clas-
sifier was trained on 80 s of speech, 80 s of music and 80 s of
noise from “gladiator” and “Taxi 2” movies. The ITW dura-
tion was set to 4 s and therefore the MLP was trained on 60
training samples. The MLP has 40 input neurons, 1 hidden
layer with 100 neurons, and 3 output neurons. The MLP is
fully connected. The performance was measured as the op-
timal performance in three runs. The mean audio scene and
chapter durations were set to 20 s and 80 s, respectively.

The manually obtained chapters were based on the com-
bination of the visual and auditory modalities. It is important
to compare the automatically obtained audio chapters to the

Table 3 The precision (P %) and recall (R %) ratios of the automati-
cally obtained chapters in comparison to manually obtained ones

Mean boundary
deviation

P % R % error (s) Chapters

Casino (1600 s) 77 70 3.5 24
Life is Beautiful 61 59 4.2 27

(1600 s)
Training Day (1600 s) 70 64 4.3 22
Artificial Intelligence 53 47 8.5 19

(1600 s)

manually obtained audiovisual chapters in order to assess
the effectiveness of the segmentation algorithm and to con-
firm our supposition that the audio stream conveys sufficient
semantic information for a reliable segmentation.

A deviation of 8 s between true chapter boundaries and
automatic ones was considered as acceptable in this exper-
iment. In a video navigation application, this deviation is
not problematic. The results are shown in Table 3. As we
can see from the table, an average of 65 % of precision
and 60 % of recall are obtained for the hard problem of
chapter segmentation. The deviation between the automati-
cally obtained chapter boundaries and the manually obtained
ones is 5 s on average. Since, the basic attempts of the lit-
erature to segment a video into audio scenes include only
some preliminary experimental results [7, 8, 10, 9], it is
quite difficult to compare the proposed technique to those
of the literature. Given the fuzzy definition of the chapters
in movies due to the subjectivity engaged in a segmentation
process, we can state that the obtained accuracies are accept-
able and that the audio stream conveys indeed the semantic
content of a video needed for the determination of the story
units.

6.2 Classification

Speech/music/noise PGM–MLP classifier from the Sect.
3.2.1., was used for the classification of the automatically
obtained chapters into the audio classes defined previously.
A chapter is treated as a scene and the classification was
done accordingly. The automatically obtained chapters, al-
though not perfectly obtained were classified manually into



Audio-based description and structuring of videos 79

Table 4 The number correctly classified chapters and the number of
chapters for each scene category (correctly classified chapters/total
number of chapters)

AD CD E F NA SA Total

Casino 1/1 6/7 1/3 0/0 0/0 2/4 10/15
Life is beautiful 8/9 2/3 0/1 0/0 2/2 0/0 12/15
Training day 3/4 6/7 1/1 1/2 1/1 0/0 13/15
A.I. 1/1 6/7 2/3 2/2 0/1 0/1 11/15

six classes, Active Dialog (AD), Calm Dialog (CD), Emo-
tion (E), Fear (F), Natural Action (NA) and Special effects
Action (SA). The Neutral dialog category was eliminated
since it created confusion to the human subjects. In this ex-
periment, Neutral dialog was fused with the Calm Dialog
category. Table 4 shows the number of automatically given
true labels and the manually given classes for the first 15
chapters of each movie corresponding to 1000 s of data per
movie.

As we can see on the table, the mean classification ac-
curacy is 78.7%. This accuracy seems acceptable for this
hard problem of audio scene classification. However, it is
important to notice that the classification results are based
on relatively long audio segments, 60 s per segment. That is,
the effect of local errors of the audio classifier is probably
minimised when considering long audio segments. Never-
theless, the fact that the classification results are based on
long audio segments, audio chapters, does not affect the us-
ability of such classification from an application viewpoint.

A PGM–MLP audio classifier was also trained on the
six audio classes directly and used on the same test data.
That is the audio classifier was trained on the AD, CD, E, F,
NA and SA audio classes. Surprisingly enough, the classifi-
cation accuracy was considerably worse than that obtained
using a basic Speech/music/noise classifier and rules. This is
probably due to the non-suitability of the PGM features for
modelling such audio classes.

7 Conclusion

We introduced in this paper the structuring of a video, a
movie for instance, based on the audio-stream only. We
showed how combining content information and acoustical
information can provide a solution to the hard problem of
semantic scene and chapter segmentation. A tree-like audio-
based structure is obtained automatically where the content
of each unit, a chapter for instance, is described. The pro-
posed algorithm for chapter segmentation and the descrip-
tion of chapters into different scene categories were evalu-
ated on four different movies. We can conclude that the au-
dio analysis in movies can provide a solution for visualising
the content. A user can hence have an on-the-fly idea about
the content of a movie or a scene.

The combination with image analysis seems a natural
future investigation. However, the information fusion needs
further research especially that, as shown in this work, the

audio structuring provides a different view on a video. That
is, the currently used master(visual)–slave(audio) architec-
ture needs to be studied.
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Appendix

The references of the movies used in the evaluation section and the
manually and automatically obtained scenes are presented in this ap-
pendix (Tables A.1 and A.2 and Figs. 10–13).

Table A.1 The references of the movies used in our experiments

Film Année Actors Genre

Casino 1995 Robert De Niro, Drama/
Joe Pesci crime

Training Day 2001 Denzel Washington, Action
Ethan Hawke

Life is Beautiful 1998 Roberto Benigni, Drama
Nicoletta Braschi,

Artificial Intelligence 2001 Haley Joel Science
Osment, Jude Law fiction

Table A.2 The chapter boundaries (in seconds) for the movies used in
our experiments

Casino Training Day Artificial Intelligence Life is beautiful

45 61 70 37
70 120 123 52
200 200 230 85
300 234 360 110
403 260 430 150
500 450 530 200
580 480 583 250
624 528 617 344
664 555 682 385
720 655 753 450
855 723 785 493
900 753 847 557
965 830 924 625
1035 850 1110 663
1078 940 1190 680
1140 1003 1237 810
1200 1080 1310 914
1260 1160 1450 965
1310 1250 1480 1005
1340 1295 1549 1060
1390 1460 1103
1430 1500 1180
1488 1245
1560 1290

1380
1465
1522
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Fig. 10 Automatic and manual chapter boundaries “Casino”
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Fig. 11 Automatic and manual chapter boundaries “Training Day”
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Fig. 12 Automatic and manual chapter boundaries “Artificial Intelligence”
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Fig. 13 Automatic and manual chapter boundaries “Life is Beautiful”
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