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Rapid increase in the amount of audio data and especially music collections demand
an efficient method to automatically retrieve audio objects based on its content. In this
paper, based on the Gabor wavelet features, we will propose a method for content-based
retrieval of perceptually similar music pieces in audio documents. It allows the user to
select a reference passage within an audio file and retrieve perceptually similar passages
such as repeating phrases within a music piece, similar music clips in a database or one
song sung by different persons or in different languages.

The proposed method will first divide an audio stream into clips, each of which
contains one-second audio information. Then, the frame-based features of each clip are
extracted based on the Gabor wavelet filters. Finally, a similarity measuring technique
is provided to perform pattern matching on the resulting sequences of feature vectors.
Experimental results show that the proposed method can achieve over 96% accuracy
rate for audio retrieval.

Keywords: Spectrogram; audio content-based retrieval; Gabor wavelets; singular value
decomposition.

1. Introduction

The recent emergence of multimedia and the tremendous growth of multimedia
data archives have made the effective management of multimedia databases a very
important and challenging task. Therefore, developing an efficient searching and
indexing technique for multimedia databases becomes very important and have
drawn lots of attention recently. As considerable research work has been done on
the content-based retrieval of image and video data, less attention has been received
for the content-based retrieval of audio data.
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In recent years, techniques for audio information retrieval have started emerging
as research prototypes.2,3,5,6,8,9,13,15,18,20–22,24–29 These systems can be classified
into two major paradigms.11,21 In the first paradigm, the user sings a melody and
similar audio files containing that melody are retrieved. This kind of approach5 is
called “Query by Humming” (QBH). It has the disadvantage of being applicable
only when the audio data is stored in symbolic form such as MIDI files. The conver-
sion of generic audio signals to symbolic form, called polyphonic transcription, is
still an open research problem in its infancy.21 Another problem with QBH is that
it is not applicable to several musical genres such as dance music where there is no
singable melody that can be used as a query. The second paradigm2,18,20,21,24,26,27

is called “Query-by-Example” (QBE), a reference audio file is used as the query
and audio files with similar content are returned and ranked by their similarity. In
order to search and retrieve general audio signals such as the raw audio files (e.g.
mp3, wave, etc.) on the web or databases, only the QBE paradigm is currently
applicable. In this paper, we will develop a QBE system that will work directly on
real world raw audio data without attempting to transcribe the music.

Wold et al.24 proposed an approach to retrieve the audio objects based on their
content in waveform. In this approach, an N-vector for a given sound is constructed
according to the acoustical features including loudness, pitch, brightness, band-
width and harmonicity. The N-vector is then used to classify sounds for similar
searching. This method is only suitable for sounds with a single timbre. Besides,
the method is supervised and not adequate to index general audio content. An
approach based on the histogram model of the zero-crossing features for searching
quickly through broadcast audio data was provided in Ref. 18. In this approach,
a certain reference template is defined and applied on each audio stream to find
whether it contains the desired reference sound. The accuracy of the result using
this method varies considerably for different types of recording. Besides, the audio
segment to be searched should be known a priori in this algorithm.

Foote2 proposed a data driven approach for audio data retrieval by comput-
ing the Mel-frequency cepstral coefficients (MFCCs) of an audio signal first. Then
a learning algorithm is applied on these MFCCs to generate a quantization tree.
Each kind of audio signals is inserted into the corresponding bin in the quanti-
zation tree. Cosine measurement or Euclidean distance can be used to measure
the similarity between two bins. A QBE system called “SoundSpotter”20 provides
a sound classification tool to classify a large database into several categories and
finds the best matches to the selected query sound using state-path histograms.
It is also based on the MFCCs representation. Both of the above-mentioned two
MFCC-based approaches are not suitable for melody retrieval (e.g. music) since the
MFCC-based features do not capture enough information about the pitch content,
rather, they characterize the broad shape of the spectrum. In Ref. 27, local peaks
in spectrogram are identified and a spectral vector is extracted near each peak.
Since the parameters used in the peak identification algorithm are too many and
empirical, they are improper when the source of audio signals is changed.
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In this paper, based on the Gabor wavelet features, we will propose a method for
content-based retrieval of perceptually similar music pieces in audio documents. It is
based on the QBE paradigm and allows the user to select a reference passage within
an audio file and retrieve perceptually similar passages such as repeating phrases
within a music piece, similar music clips in a database or one song sung by different
persons or in different languages. The proposed method consists of four phases:
time-frequency distribution (TFD) generation, initial feature extraction, feature
selection and similarity measurement. First, the input audio stream is transformed
to a spectrogram and divided into clips, each of which contains one-second audio
information and will meet the human auditory system (HAS).30 Second, for each
clip with one-second window, a set of initial frame-based features are extracted
based on the Gabor wavelet filters.4,10 Third, based on the extracted initial features,
the Singular Value Decomposition (SVD)1 is used to perform the feature selection
and to reduce the feature dimension. Finally, a similarity measuring technique is
provided to perform pattern matching on the resulting sequences of feature vectors.

Experimental results show that the proposed method can achieve over 96%
accuracy rate for audio retrieval and the complexity is low enough to allow operation
on today’s personal computers and other cost-effective computing platforms. These
results demonstrate the capability of the proposed audio features for characterizing
the perceptual content of an audio sequence. The paper is organized as follows.
In Sec. 2, the proposed method will be described. Experimental results will be
presented in Sec. 3. Finally, the conclusions will be given in Sec. 4.

2. The Proposed System

The block diagram of the proposed method is shown in Fig. 1. It is based on
the spectrogram and consists of four phases: time-frequency distribution (TFD)
generation, initial feature extraction, feature selection and similarity measurement.
First, the input audio is transformed to a spectrogram, which will meet the human
auditory system (HAS).30 Second, for each clip with one-second window, some
Gabor wavelet filters will be applied to the resulting spectrogram to extract a set
of initial features. Third, based on the extracted initial features, the Singular Value
Decomposition (SVD)1 is used to perform the feature selection and to reduce the
feature dimension. Finally, based on the selected features, a similarity measure is
provided to measure the similarity of audio data. In what follows, we will describe
the details of the proposed method.

2.1. TFD generation

In the first phase, the input audio is first transformed to a spectrogram that is a
commonly used representation of an acoustic signal in a three-dimensional (time,
frequency, intensity) space known as a time-frequency distribution (TFD).16 Con-
ventionally, the Short Time Fourier Transform (STFT) is applied to construct a
spectrogram and the TFD is sampled uniformly in time and frequency. However,
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Fig. 1. Block diagram of the proposed method.

this is not suitable for the auditory model because the frequency resolution within
the human psycho-acoustic system is not constant but varies with frequency.30

In this paper, the TFD is perceptually tuned, mimicking the time-frequency
resolution of the ear. That is, the TFD consists of axes that are nonuniformly
sampled. Frequency resolution is coarse and temporal resolution is fine at high
frequencies while temporal resolution is coarse and frequency resolution is fine at low
frequencies.30 Given the sampling frequency (Fs) of 44100 Hz, the Hamming window
is applied and an audio signal is divided into frames, each of which contains 512
samples (N = 512), with 50% overlap in every two adjacent frames. One example of
the tiling in the time-frequency plane is shown in Fig. 2. Figure 3 shows a schematic
diagram of the TFD generation.
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Fig. 2. An example of tiling in the time-frequency plane.
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There are three parts in the TFD generation. In the first part, the N -point DFT
(Discrete Fourier Transform) is applied to the original audio signal P1(t) to obtain
a spectrogram S1(x, y). In the second part, a low-pass filter is first applied to P1(t)
and then the filtered result is downsampled half-size to obtain signal P2(t) and the
N -point DFT is applied to P2(t) to obtain a spectrogram S2(x, y). In the third part,
a low-pass filter is first applied to P1(t) and then the filtered result is downsampled
quarter size to obtain a signal P3(t) and the N -point DFT is applied to P3(t)
to obtain a spectrogram S3(x, y). Note that the downsampling is conducted after
applying a low-pass filtering to the original signal to prevent the aliasing, and the
window size for DFT is 512 (i.e. N = 512) in this paper. The frequency resolution
∆fj and the analysis time interval Tj in Sj(x, y) can be calculated as follows:

∆fj =
1

2j−1
· FS

N
=

1
Tj

, j = 1, 2 , 3. (1)

Note that the window center at the kth time block in Sj(x, y), tkj , is given by

tkj =
k

2
Tj, j = 1, 2, 3. (2)

Finally, based on S1(x, y), S2(x, y), and S3(x, y), a spectrogram I(x, y) is obtained
according to the following equation:

I(x, y) =




S1(x, y), if y ∈ [FS/4, FS/2],
x = 0, 1, . . . , Nf − 1;

S2(2i, y), if y ∈ [FS/8, FS/4],
x = 2i, 2i + 1, i = 0, 1, . . .Nf/2 − 1;

S3(4i, y), if y ∈ [0, FS/8],
x = 4i, . . . , 4i + 3, i = 0, 1, . . .Nf/4 − 1;

(3)

where Nf is the frame number of P1(t). From Eq. (3), we can see that in I(x, y), fre-
quency resolution is coarse and temporal resolution is fine at high frequencies while
temporal resolution is coarse and frequency resolution is fine at low frequencies.
This means that I(x, y) meets the human psycho-acoustic system.

2.2. Initial feature extraction

Generally speaking, the spectrogram is a good representation for the audio since
it is often visually interpretable. By observing a spectrogram, we can find that the
energy is not uniformly distributed, but tends to cluster to some patterns.17 All
curve-like patterns are called tracks. Figure 4(a) shows that for a musical instru-
ment signal, some line tracks corresponding to tones will exist on its spectrogram.
Figure 4(b) shows some patterns including clicks (broadband, short time), noise
burst (energy spread over both time and frequency), tones, and frequency sweeps
in a song spectrogram. Thus, if we can extract some features from a spectrogram
to represent these patterns, the retrieval should be easy. Smith and Serra19 pro-
posed a method to extract tracks from a STFT spectrogram. Once the tracks are
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extracted, each track is classified. However, tracks are not well suited for describing
some kinds of patterns such as clicks, noise burst and so on. To treat all kinds of
patterns, a richer representation is required. In fact, these patterns contain vari-
ous orientations and spatial scales. For example, each pattern formed by lines [see
Fig. 4(a)] will have a particular line direction (corresponding to orientation) and
width (corresponding to spatial scale) between two adjacent lines; each pattern
formed by curves [see Fig. 4(b)] contains multiple line directions and a particular
width between two neighboring curves. Since Gabor wavelet transform provides an
optimal way to extract those orientations and scales,16 in this paper, we will use the
Gabor wavelet functions to extract some initial features to represent the needed pat-
terns. Note that in this paper, we will only deal with musical audio signal (musical
instrument, song, etc.). The detail will be described in the following section.

2.2.1. Gabor wavelet functions and filters design

Two-dimensional Gabor kernels are sinusoidally modulated Gaussian functions.
Let g(x, y) be the Gabor kernel, its Fourier Transform G(u, v) can be defined as
follows10:

g(x, y) =
(

1
2πσxσy

)
exp

[−1
2

(
x2

σ2
x

+
y2

σ2
y

)
+ 2πjωx

]
, (4)

G(u, v) = exp
(−1

2

[
(u − ω )2

σ2
u

+
v2

σ2
v

])
, (5)

where σu = 1
2πσx

and σv = 1
2πσy

and ω is the center frequency.

Tones 

Frequency Sweeps 

Clicks 

Noise Burst 

Tone

(a) (b)

Fig. 4. Two examples to show some different possible kinds of patterns in a spectrogram. (a) Line
tracks corresponding to tones in a musical instrument spectrogram. (b) Clicks, noise burst, tones
and frequency sweeps in a song spectrogram.
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Gabor wavelets are sets of Gabor kernels which will be applied to different
subbands with different orientations. It can be obtained by appropriate dilations
and rotations of g(x, y) through the following generating functions10:

gmn(x, y) = a−mg(x′, y′), a > 1, m, n = integer,

x′ = a−m(x cos θ + y sin θ), and y′ = a−m(−x sin θ + y cos θ), (6)

a =
(

ωh

ωl

) 1
S−1

, (7)

σu = ((a − 1)ωh)/((a + 1)
√

2 ln 2), (8)

σv = tan
(

π

2k

)[
ωh − 2 ln 2

(
σ2

u

ωh

)][
2 ln 2 − (2 ln 2)2 − σ2

u

ω2
h

]− 1
2

, (9)

where θ = nπ
K , n = 0, 1, . . . , K − 1, m = 0, 1, . . . , S − 1, K is the total number

of orientations, S is the number of scales in the multiresolution decomposition, ωh

and ωl are the lowest and the highest center frequencies, respectively.
In this paper, we will deal with musical audio signal including musical instru-

ment and song. Most of the current works only deal with the monophonic sources,
in this paper we will also consider polyphonic music. Polyphonic music is more
common, but it is also more difficult to represent. The most meaningful feeling
of human perception for the music data is primarily the pitch and timbre. Both
of them are correlated with the tones. For example, the fundamental tone decides
the pitch that we hear, and the harmonics decide the timbre. Based on the above-
observation for the spectrogram [see Figs. 4(a) and 4(b)], we find that some line
tracks corresponding to tones will exist in the spectrogram. Thus, if we can extract
the features about tones, the retrieval should be easy. Note that in our experiments,
we set ωl = 3/64, ωh = 3/4, K = 1 and S = 7.

2.2.2. Feature estimation

Since through our observation, most prominent tracks are near horizontal, in this
paper, we only take one orientation that is horizontal. Thus, each Gabor wavelet
filter, gmn(x, y), can be briefly represented by gm(x, y). To extract the audio fea-
tures, each Gabor wavelet filter, gm(x, y), is first applied to the spectrogram I(x, y)
to get a filtered spectrogram, the spectrum of which is represented by Wm(u, v)
called spectrogram spectrum. In this paper, the above filtering process is executed
in frequency domain through the following equation:

Wm(u, v) = F{gm(x, y)} · F{I(x, y)} , (10)

where F{·} is a fast Fourier Transform. Up to now, there are S spectrogram spec-
trum with scale m, Wm(u, v), to be available. Since, in each audio signal, those
tracks appearing in the corresponding spectrum have a certain scale, not all these
spectrogram spectrum are used to perform the feature estimation, only the one with
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the maximum contrast (which corresponds to the track scale) is used. To reach this
goal, the vertical profile of the spectrum, Pm(u) (m = 1, 2, . . . , S), is constructed
as follows:

Pm(u) =
∑

v

Wm(u, v). (11)

Let MP be the number of local peaks (u1, u2, . . . , uMP .) in Pm(u), Pm(ui)
(i = 1, 2, . . . , MP ) be the magnitudes of these peak points, and

Pmax
m = max

ui

Pm(ui). (12)

Then the contrast is defined as

contrastm = Pmax
m − 1

MP

MP∑
i=1

Pm(ui). (13)

Let

mc = arg
m

contrastm, (14)

then the spectrogram spectrum, Wmc(u, v), and the corresponding spectrogram,
wmc(x, y), are used for initial feature extraction.

Figure 5(a) shows an example of the Gabor-wavelet filtered spectrogram with
the maximum contrast, wmc(x, y). From Fig. 5(a), we can see that the tracks in
the figure are somewhat obscured, to remove this phenomenon, an enhancement
process23 is applied as follows:

wf (x, y) = F−1 {Wmc(u, v) · |Wmc(u, v)|α} , (15)

where α is set as 1.4 and wf (x, y) is the enhanced spectrogram. Figure 5(b) shows
the result of the enhancement process in Fig. 5(a).

An initial feature vector, f , is now constructed using wf (x, y) as feature compo-
nents. Recall that in our experiments, for each clip, one-second window (M frames)
is used for constructing spectrogram. Besides, high frequency components above

(a) (b)

Fig. 5. An example to show the enhancement process performed in a spectrogram. (a) The
Gabor-wavelet filtered spectrogram with the maximum contrast. (b) Enhanced spectrogram.
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Fs/4 are discarded to avoid the influence of noise. These will result in a M × N -
dimensional initial feature vector

f = [x1,x2, . . . ,xM ]t, (16)

where xi = [wf (i, 1), wf (i, 2), . . . , wf (i, N)] (i = 1, 2, . . . , M) is the spectral vector
of each frame in wf (x, y).

2.3. Feature selection and representation

The initial features are not used directly for similarity measurement since some
features give poor separability among different objects and inclusion of these fea-
tures will lower down the system performance. In addition, some features are highly
correlated so that redundancy will be introduced. To remove these disadvantages,
in this paper, the Singular Value Decomposition (SVD)1 is applied to the initial
features to find those uncorrected features with the highest separability.

As for the SVD, it is a well-known technique for reducing the dimensional-
ity of data while retaining maximum information content. It decomposes the data
into a sum of vector outer products with vectors representing both the basis func-
tion (eigenvectors) and the projected features (eigen coefficients). A subset of the
complete basis is selected to reduce data dimensionality. The loss of information
is minimized because the basis functions are ordered by statistical salience; thus,
functions with low information content are discarded.

Based on SVD, the initial feature vector, f , for each one-second audio clip can
be decomposed into the form7:

f = USVt, (17)

where S is a diagonal matrix containing the singular values of f along its diagonal,
and the columns of U and V are the eigenvectors (the basis function) of f f t, and
f tf respectively. Then the basis, V, is reduced by retaining only the first k basis
functions. That is

Vk = [v1,v2, . . . ,vk]. (18)

And the initial feature vector f is projected to the space generated by Vk to get a
new feature vector f ′ with the reduced dimension. f ′ is then used to stand for the
audio clip as follows:

f ′ = [x′
1,x

′
2, . . . ,x

′
M ]t = f Vk, (19)

where x′
i (i = 1, 2, . . . , M) is a k-dimensional vector. Note that we will call Vk as

the basis of f ′.

2.4. Audio retrieval and similarity measurement

In general, audio (multimedia) data searching can be classified into two differ-
ent strategies: “a-whole-object search”, and “in-object search”. “A-whole-object
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search” approach searches for data that is globally similar to the query input; on
the other hand, an “in-object search” approach searches for a large piece of data
containing a fragment that is similar to the query. A method of using the latter
searching strategy can reach the aim of the first searching strategy but not vice
versa. Thus, in this paper, the retrieval is performed based on the latter searching
strategy. Based on the feature vector introduced in the previous section, the sim-
ilar audio clip retrieval will be conducted. Before retrieval, it is important to give
a good similarity measure. Here, a distance measure is first proposed to evaluate
the similarity between two audio clips. In our experiments, the Euclidean distance
worked better than others (e.g. Mahalanobis, covariance, etc.) in the space gener-
ated by Vk.

2.4.1. Similarity measure

For the candidate audio sequence, yc with feature vector f ′j = [x′
j,1,x

′
j,2, . . . ,x

′
j,M ]

(j = 1, 2, . . . , l), where l is the number of one-second clips in the audio sequence.
That is, yc is divided into one-second clips:

yc = [y1, y2, . . . , yl], (20)

where yj has feature vector f ′j .
For every queried one-second clip, yq, before computing the distance between yq

and each of the candidate clip yj , yq should be projected to the basis of yj to get
the corresponding feature f ′q = [x′

q,1,x
′
q,2, . . . ,x

′
q,M ]t. Then the distance between

one-second clips yq and yj is evaluated as follows:

Distq,j =

(
M∑
i=1

∣∣x′
q,i − x′

j,i

∣∣2)
1
2

, (21)

where j = 1, 2, . . . , l and
∣∣x′

q,i − x′
j,i

∣∣ stands for the Euclidean distance between two
vectors: x′

q,i and x′
j,i. Then for all j, sort Distq,j in an increasing order. For the top

g clips, we define their grades, Gdq,j , as g, g − 1, g − 2, . . . , and 1, respectively. The
clip with the least distance will have the highest grade and be considered as the
most similar one. In addition, Gdq,j of all other clips are defined as zero. Note that
in this paper, one-second audio clip is taken as the basic distance measurement unit.

2.4.2. Retrieval

For a query audio sequence, yq, with length p-seconds, it is first divided into p

successive one-second clips. That is

yq = [y1
q , y2

q , . . . , y
p
q ]. (22)

Next, for each clip yi
q (i = 1, 2, . . . , p) and a candidate audio sequence yc,

the similarity measure is first performed and the corresponding grades, Gdi
q,j
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(i = 1, 2, . . . , p and j = 1, 2, . . . , l), are evaluated based on Eq. (21). According
to these grades, the total grade of the clip yi

q, Gd T i
q,di

, is defined to be

Gd T i
q,di

= Gd1
q,di−i+1 + · · · + Gdi−1

q,di−1 + Gdi
q,di

+ Gdi+1
q,di+1

+ · · · + Gdp
q,di+p−i, (23)

where di = argj maxGdi
q,j and is the candidate for matching.

Finally, based on the set of total grades, Gd T i
q,di

(i = 1, 2, . . . , p), the global
similarity is defined as

Sim = 1 − maxDGd T i
q,c∑p−1

i=1 DGd T i
q,c

, (24)

where DGd T i
q,di

= Gd T i
q,di

−Gd T i+1
q,di

(i = 1, 2, . . . , p− 1). If the global similarity,
Sim, is less than a predefined threshold, mark the query sequence as ambiguous
and no query result will be available. Otherwise, the matching clip with the highest
similarity to the query can be retrieved according to the following criterion:

(s, r) = arg
(i,di)

maxGd T i
q,di

, (25)

where i = 1, 2, . . . , p, and the best matched audio sequence, yo, in the candidate
audio sequence will result in the following audio sequence:

yo = [yr−s+1, . . . , yr−1, yr, yr+1, . . . , yr+p−s]. (26)

Besides, based on Eq. (25), if the top n matched audio sequence with total grades,
Gd T i

q,di
, are larger than a predefined threshold, they can be considered as the

repeating audio sequence of the query.

3. Experimental Results

3.1. Audio database

In order to show the efficiency of the proposed method, we have collected a set of
150 musical pieces (50 musical instruments, 100 songs) with total length about ten
hours and more than 10,000 phrases as the testing database. Care was taken to
obtain a wide variation in each type such as varied instruments, different languages
(English, Chinese, Japanese, etc.), different singers (male, female, or children), and
different style (jazz, rock, folk, etc.). These audio clips are stored as 16-bit per
sample with 44.1 kHz sampling rate in the WAV file format and are used to test the
audio retrieval performance. Note that in order to compare, the testing database
includes the dataset described in Refs. 26 and 27, and some of the clips are taken
from MPEG-7 content set.14

3.2. Experiment results

There are two major factors affecting the performance of the proposed approach, i.e.
the number of basis functions used and the length of the query example. In order to
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examine the performance of the proposed method, we present two experiments. In
the first experiment, for each music object in the database, we use its refrain as the
query example to retrieve all repeating phrases similar to this refrain. Therefore, 150
queries are performed. This experiment is presented to examine the quality of the
proposed retrieval approach with two above-mentioned major factors. As for the sec-
ond experiment, for each song, there will be two versions which are sung in different
languages or by different persons in the database. We use its refrain in a certain ver-
sion (e.g. the Chinese version) as the query example to retrieve all repeating phrases
similar to this refrain in another version (e.g. the English version). This experiment
is presented to examine the robustness of the proposed retrieval approach.

In this paper, the performance is evaluated by the precision rates (Pr) and the
recall rates (Re).12 Note that the recall rate, Re, and the precision rate, Pr, are
defined as

Re =
N

T
and Pr =

N

K
, (27)

where N is the number of relevant items retrieved (i.e. correctly retrieved items),
T is the total number of relevant items (i.e. correctly retrieved items and the rel-
evant items that have not been retrieved) and K is the total number of retrieved
items. The recall rate is typically used in conjunction with the precision rate, which
measures the fraction of the retrieved patterns that is relevant. The precision and
recall rate can often be traded-off. That is one can achieve high precision rate and
low recall rate or the other way round.

Tables 1 and 2 show the results of two experiments presented in this paper. In
our experiments, the number of retrieved patterns was adjusted to the number of
relevant patterns, so the precision and recall rates are the same.

From Table 1, we can see that the above-mentioned two factors affect the per-
formance of the proposed approach. The more basis functions are used, the higher
the recall rate will be. And the longer the length of the query sample used, the
higher the recall rate will be. Based on the first experiment, we can see that it is

Table 1. The average recall rates of the first experiment.

Query Sample Length
Basic Function

Numbers One Second Two Seconds Three Seconds

5 29% 71% 74%
10 31% 75% 75%
15 40% 98% 98%

Table 2. The average recall rates of the second experiment.

Query Sample Length
Basic Function

Numbers One Second Two Seconds Three Seconds

5 31% 71% 72%
10 31% 71% 74%
15 38% 94% 94%
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best to perform retrieval using 15 basis functions and two-second length of query
sample. From Table 2, we can also see the same phenomena as Table 1 except for
the lower recall rate.

Besides, by examining those missing in the experiments based on human judge-
ment as the ground truth, we found two major factors. First, for the first experi-
ment, we find that some errors occur in those searched clips containing a transition,
which is made because we simply segment an audio object into several one-second
clips uniformly against predividing the audio object into sequences of audio phrases.
As a matter of fact, these kind of errors can be reduced by increasing the length of
query sequence (i.e. clip number) to get more related information or performing the
predivision for the audio phrases. Secondly, we find that some errors occur since the
refrains of some songs are performed at different tempo. From these tables, we can
see that the proposed retrieval approach for music data can achieve over 96% accu-
racy. The experiments are carried out on a Pentium II 400 PC/Windows 2000. One
hundred and fifty queries can be processed in less than fourteen seconds for 10,000
phrases. In order to make a comparison, we would also like to cite the efficiency of
the existing system described in Refs. 26 and 27, which also uses a similar database
to ours. The authors reported that their accuracy rates are more than 90%.

4. Conclusions

Digital audio signals, especially for music are an important type of media. How-
ever, few works have been focused on the music databases. In this paper, we have
presented a new method for content-based music retrieval to retrieve perceptu-
ally similar music pieces in audio documents. In the proposed method, based on
the Gabor wavelet filters, the extracted perceptual features are general enough to
meet the human auditory system. An accurate retrieval rate higher than 96% was
achieved. Furthermore, the complexity is low due to the easy computing of audio
features, and this makes online processing possible.

There are several related tasks to be conducted in the future. First, we will work
on the other type of audio source such as sound effects and compression domain.
Second, we will work on developing an automatic segmentation technique to divide
the musical objects into sequences of phrase.
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