
september 2013 | vol. 56 | no. 9 | commUnications of thE acm 59

nOn-UniFOrM MeMOry aCCess (NUMA) is the phenomenon
that memory at various points in the address space of a
processor have different performance characteristics. At
current processor speeds, the signal path length from the
processor to memory plays a significant role. increased
signal path length not only increases latency to memory

but also quickly becomes a through-
put bottleneck if the signal path is
shared by multiple processors. The
performance differences to memory
were noticeable first on large-scale
systems where data paths were span-
ning across motherboards or chas-
sis. These systems required modified
operating-system kernels with NUMA
support that explicitly understood the
topological properties of the system’s
memory (such as the chassis in which
a region of memory was located) in
order to avoid excessively long sig-
nal path lengths. (Altix and UV, SGI’s
large address space systems, are ex-
amples. These products had to modify
the Linux kernel to support NUMA; in

these machines, processors in multi-
ple chassis are linked via a proprietary
interconnect called NUMALINK).

Today, processors are so fast they
usually require memory to be directly
attached to the socket they are on. A
memory access from one socket to
memory from another has additional
latency overhead to accessing local
memory—it requires the traversal of
the memory interconnect first. On the
other hand, accesses from a single
processor to local memory not only
have lower latency compared to re-
mote memory accesses but also do not
cause contention on the interconnect
and the remote memory controllers.
It is good to avoid remote memory ac-

an overview
of non-Uniform
memory
access

Doi:10.1145/2500468.2500477

 Article development led by
 queue.acm.org

NUMA becomes more common because
memory controllers get close to execution
units on microprocessors.

BY chRistoPh LamEtER

60 commUnications of thE acm | september 2013 | vol. 56 | no. 9

practice

facilities and is widely used in perfor-
mance-critical environments today.
The author was involved with the cre-
ation of the NUMA facilities in Linux
and is most familiar with those.

Solaris also has somewhat compa-
rable features,a but the number of sys-
tems deployed is orders of magnitude
less. Work is under way to add support
to other Unix-like operating systems,
but that support so far has been most-
ly confined to operating-system tun-
ing parameters for placing memory
accesses. Microsoft Windows also has
a developed NUMA subsystem that
allows placing memory structures
effectively, but the software is used
mostly for enterprise applications
rather than high-performance com-
puting. Requirements on memory-
access speeds for enterprise-class ap-
plications are frequently more relaxed
than in high-performance computing,
meaning that less effort is spent on
NUMA memory handling in Windows
compared with Linux.

how operating systems
handle nUma memory
There are several broad categories in
which modern production operating
systems allow for the management
of NUMA: accepting the performance
mismatch, hardware memory strip-
ing, heuristic memory placement,
a static NUMA configurations, and
application-controlled NUMA place-
ment.

Ignore the difference. Since NUMA
placement is a best-effort approach,
one option is simply to ignore the pos-
sible performance benefit and just
treat all memory as if no performance
differences exist. This means the op-
erating system is not aware of memory
nodes. The system is functional, but
performance varies depending on
how memory happens to be allocated.
The smaller the differences between
local and remote accesses, the more
viable this option becomes.

This approach allows software and
the operating system to run unmodi-
fied. Frequently, this is the initial ap-

a For details, see http://docs.oracle.com/
cd/E19963-01/html/820-1691/gevog.html;
http://docs.oracle.com/cd/E19082-
01/819-2239/6n4hsf6rf/index.html;
http://docs.oracle.com/cd/E19082-01/819-
2239/madv.so.1-1/index.html/.

cesses. Proper placement of data will
increase the overall bandwidth and
the latency to memory.

As the trend toward improving sys-
tem performance by bringing memory
even nearer to processor cores con-
tinues, NUMA will play an increas-
ingly important role in system per-
formance. Modern processors have
multiple memory ports, and the la-
tency of access to memory varies even
only depending on the position of the
core on the die relative to the control-
ler. Future generations of processors
will have increasing differences in
performance as more cores on chip
necessitate more sophisticated cach-
ing. As the access properties of these
different kinds of memory continue
to diverge, new functionality may be
needed in operating systems to allow
for good performance.

NUMA systems today are mostly
encountered on multisocket systems.
A typical high-end business-class serv-
er today comes with two sockets and
will therefore have two NUMA nodes.
Latency for a memory access (ran-
dom access) is about 100ns. Access to
memory on a remote node adds an-
other 50% to that number.

Performance-sensitive applica-
tions can require complex logic to
handle memory with diverging perfor-
mance characteristics. If a developer
requires explicit control of the place-
ment of memory for performance rea-
sons, some operating systems provide
APIs for this (for example, Linux, So-
laris, and Microsoft Windows provide
system calls for NUMA). However, var-

ious heuristics have been developed
in the operating systems that manage
memory access to allow applications
to transparently utilize the NUMA
characteristics of the underlying hard-
ware.

A NUMA system classifies memory
into NUMA nodes (what Solaris calls
locality groups). All memory available
in one node has the same access char-
acteristics for a particular processor.
Nodes have an affinity to processors
and to devices. These are the devices
that can use memory on a NUMA node
with the best performance since they
are locally attached. Memory is called
node local if it was allocated from the
NUMA node that is best for the pro-
cessor. For the example, the NUMA
system exhibited in Figure 1 has one
node belonging to one socket with
four cores each.

The process of assigning memory
from the NUMA nodes available in
the system is called NUMA placement.
As placement influences only perfor-
mance and not the correctness of the
code, heuristics approaches can yield
acceptable performance. In the spe-
cial case of noncache-coherent NUMA
systems, this may not be true since
writes may not arrive in the proper
sequence in memory. However, non-
cache-coherent NUMA systems have
multiple challenges when attempting
to code for them. We restrict ourselves
here to the common cache-coherent
NUMA systems.

The focus in these discussions
will be mostly on Linux since it is an
operating system with refined NUMA

figure 1. a system with two nUma nodes and eight processors.

interconnect

Core

Core

Core

Core

n
od

e
0

m

em
or

y

nUMA node 0

Core

Core

Core

Core

n
od

e
1

m
em

or
y

nUMA node 1

practice

september 2013 | vol. 56 | no. 9 | commUnications of thE acm 61

proach for system software when sys-
tems with NUMA characteristics are
first used. The performance will not
be optimal and will likely be different
each time the machine and/or appli-
cation runs, because the allocation of
memory to performance-critical seg-
ments varies depending on the system
configuration and timing effects on
boot-up.

Memory striping in hardware.
Some machines can set up the map-
ping from memory addresses to the
cache lines in the nodes in such a way
that consecutive cache lines in an ad-
dress space are taken from different
memory controllers (interleaving at
the cache-line level). As a result, the
NUMA effects are averaged out (since
structures larger than a cache line
will then use cache lines on multiple
NUMA nodes). Overall system perfor-
mance is more deterministic com-
pared with the approach of just ignor-
ing the difference, and the operating
system still does not need to know
about the difference in memory per-
formance, meaning no NUMA support
is needed in the operating system.
The danger of overloading a node is
reduced since the accesses are spread
out among all available NUMA nodes.

The drawback is the interconnect
is in constant use. Performance will
never be optimal since the striping
means that cache lines are frequently
accessed from remote NUMA nodes.

Heuristic memory placement for
applications. If the operating system
is NUMA-aware (under Linux, NUMA
must be enabled at compile time and
the BIOS or firmware must provide
NUMA memory information for the
NUMA capabilities to become active;
NUMA can be disabled and controlled
at runtime with a kernel parameter),
then it is useful to have measures that
allow applications to allocate memory
that minimizes signal path length
so that performance is increased.
The operating system has to adopt a
policy that maximizes performance
for as many applications as possible.
Most applications run with improved
performance using the heuristic ap-
proach, especially compared with the
approaches discussed earlier.

A NUMA-aware operating system
determines memory characteristics
from the firmware and can therefore

tune its own internal operations to
the memory configuration. Such tun-
ing requires coding effort, however,
so only performance-critical portions
of the operating system tend to get op-
timized for NUMA affinities, whereas
less-performance-critical compo-
nents tend to continue to operate on
the assumption that all memory is
equal.

The most common assumptions
made by the operating system are that
the application will run on the local
node and that memory from the local
node is to be preferred. If possible, all
memory requested by a process will be
allocated from the local node, thereby
avoiding the use of the cross-connect.
The approach does not work, though,
if the number of required processors
is higher than the number of hardware
contexts available on a socket (then
processors on both NUMA nodes must
be used); if the application uses more
memory than available on a node; or
if the application programmer or the
scheduler decides to move applica-
tion threads to processors on a dif-
ferent socket after memory allocation
has occurred.

In general, small Unix tools and
small applications work very well with
this approach. Large applications that
make use of a significant percentage
of total system memory and of a ma-
jority of the processors on the system
will often benefit from explicit tuning
or software modifications that take
advantage of NUMA.

Most Unix-style operating systems
support this mode of operation. No-
tably, FreeBSD and Solaris have opti-
mizations to place memory structures
to avoid bottlenecks. FreeBSD can
place memory round-robin on mul-
tiple nodes so the latencies average
out. This allows FreeBSD to work bet-
ter on systems that cannot do cache-
line interleaving on the BIOS or hard-
ware level (Additional NUMA support
is planned for FreeBSD 10). Solaris
also replicates important kernel data
structures per locality group.

Special NUMA configuration for ap-
plications. The operating system pro-
vides configuration options that allow
the operator to tell the operating sys-
tem that an application should not be
run with the default assumptions re-
garding memory placement. It is pos-

a nUma-aware
operating system
determines memory
characteristics
from the firmware
and can therefore
tune its own
internal operations
to the memory
configuration.

62 commUnications of thE acm | september 2013 | vol. 56 | no. 9

practice

the memory of each node.
There are other memory policies

that are used in special situations that
are not mentioned here for brevity’s
sake. The two policies just mentioned
are generally the most useful and are
used by default by the operating sys-
tem. NODE LOCAL is the default al-
location policy if the system is up and
running.

The Linux kernel will use the IN-
TERLEAVE policy by default on boot-
up. Kernel structures created during
bootstrap are distributed over all the
nodes available in order to avoid put-
ting excessive load on a single memo-
ry node later when processes require
access to the operating-system struc-
tures. The system default policy is
changed to NODE LOCAL when the
first userspace process (init dae-
mon) is started.

The active memory allocation poli-
cies for all memory segments of a pro-
cess (and information that shows how
much memory was actually allocated
from which node) can be seen by deter-
mining the process id and then look-
ing at the contents of /proc/<pid>/
numa_maps.

Basic operations on process start-
up. Processes inherit the memory pol-
icy from their parent. Most of the time
the policy is left at the default, which
means NODE LOCAL. When a process
is started on a processor, then mem-
ory is allocated for that process from
the local NUMA node. All other alloca-
tions of the process (through growing
the heap, page faults, mmap, and so
on) will also be satisfied from the local
NUMA node.

The Linux scheduler will attempt
to keep the process cache hot during
load balancing. This means the pref-
erence of the scheduler is to leave the
process on processors that share the
L1-processor cache, then on proces-
sors that share L2, and then on pro-
cessors that share L3 with the proces-
sor the process ran on last. If there is
an imbalance beyond that, then the
scheduler will move the process to any
other processor on the same NUMA
node.

As a last resort the scheduler will
move the process to another NUMA
node. At that point the code will be ex-
ecuting on the processor of one node,
while the memory allocated before the

sible to establish memory-allocation
policies for an application without
modifying code.

Command-line tools exist un-
der Linux that can set up policies
to determine memory affinities
(taskset, numactl). Solaris has tun-
able parameters for how the operating
system allocates memory from locality
groups as well. These are roughly com-
parable to Linux’s process memory-al-
location policies.

Application control of NUMA al-
locations. The application may want
fine-grained control of how the oper-
ating system handles allocation for
each of its memory segments. For that
purpose, system calls exist that allow
the application to specify which mem-
ory region should use which policies
for memory allocations.

The main performance issues typi-
cally involve large structures that are
accessed frequently by the threads
of the application from all memory
nodes and that often contain informa-
tion that needs to be shared among all
threads. These are best placed using
interleaving so the objects are distrib-
uted over all available nodes.

how Does Linux handle nUma?
Linux manages memory in zones. In
a non-NUMA Linux system, zones are
used to describe memory ranges re-
quired to support devices that are not
able to perform DMA (direct mem-
ory access) to all memory locations.
Zones are also used to mark memory
for other special needs such as mov-
able memory or memory that requires
explicit mappings for access by the
kernel (HIGHMEM), but that is not
relevant to the discussion here. When
NUMA is enabled, then more memory
zones are created and they are also as-
sociated with NUMA nodes. A NUMA
node can have multiple zones since
it may be able to serve multiple DMA
areas. How Linux has arranged mem-
ory can be determined by looking at
/proc/zoneinfo. The NUMA node
association of the zones allows the
kernel to make decisions involving
the memory latency relative to cores.

On boot-up Linux will detect the
organization of memory via the ACPI
(Advanced Configuration and Power
Interface) tables provided by the firm-
ware and then create zones that map

to the NUMA nodes and DMA areas as
needed. Memory allocation then oc-
curs from the zones. Should memory
in one zone become exhausted, then
memory reclaim occurs where Linux
will scan through the least recently
used pages trying to free a certain
number of pages. Counters that show
the current status of memory in vari-
ous nodes/zones can also be seen in
/proc/zoneinfo. Figure 2 shows
types of memory in a zone/node.

Memory policies. How memory is
allocated under NUMA is determined
by a memory policy. Policies can be
specified for memory ranges in a pro-
cess’s address space, or for a process
or the system as a whole. Policies for
a process override the system policy,
and policies for a specific memory
range override a process’s policy.

The most important memory poli-
cies are:

NODE LOCAL. The allocation occurs
from the memory node local to where
the code of the process is currently ex-
ecuting.

INTERLEAVE. Allocation occurs
round-robin. First a page will be al-
located from node 0, then from node
1, then again from node 0, and so
on. Interleaving is used to distribute
memory accesses for structures that
may be accessed from multiple pro-
cessors in the system in order to have
an even load on the interconnect and

figure 2. types of memory in a zone/node.

Free memory

unmapped page cache
(f.e. cached disk contents)

page mapped to processes
(f.e. text segments, mmapped files)

Anonymous pages
(f.e. stack, heap)

dirty or Writeback pages (disk i/o f.e.)
unevictable pages (mlock f.e.)

Kernel, driver and unreclaimable
slab memory

practice

september 2013 | vol. 56 | no. 9 | commUnications of thE acm 63

move will have been allocated on the
old node. Most memory accesses from
the process will then be remote, which
will cause the performance of the pro-
cess to degrade.

There has been some recent work
in making the scheduler NUMA-aware
to ensure the pages of a process can be
moved back to the local node, but that
work is available only in Linux 3.8 and
later, and is not considered mature
yet. Further information on the state
of affairs may be found on the Linux
kernel mailing lists and in articles on
http://lwn.net.

Reclaim. Linux typically allocates
all available memory in order to cache
data that may be used again later.
When memory begins to be low, re-
claim will be used to find pages that
are either not in use or unlikely to
be used soon. The effort required to
evict a page from memory and to get
the page back if the need arises varies
by type of page. Linux prefers to evict
pages from disk that are not mapped
into any process space because it is
easy to drop all references to the page.
The page can be reread from disk if
required later. Pages that are mapped
into a process’s address space require
the page first be removed from that
address space before the page can be
reused. A page that is not a copy of a
page from disk (anonymous pages)
can be evicted only if the page is first
written out to swap space (an expen-
sive operation). There are also pages
that cannot be evicted at all, such as
mlocked() memory or pages in use
for kernel data.

The impact of reclaim on the sys-
tem can therefore vary. In a NUMA
system there will be multiple types of
memory allocated on each node. The
amount of currently free space on
each node will vary. So if there is a re-
quest for memory and the local node
would require reclaim but another
node has enough memory to satisfy
the request without reclaim, then the
kernel has two choices:

 ˲ Run a reclaim pass on the local
node (causing kernel processing over-
head) and then allocate node-local
memory to the process.

 ˲ Just allocate from another node
that does not need a reclaim pass.
Memory will not be node local, but
we avoid frequent reclaim passes.

Reclaim will be performed when all
zones are low on free memory. This
approach reduces the frequency of re-
claim and allows more of the reclaim
work to be done in a single pass.

For small NUMA systems (such as
the typical two-node servers) the ker-
nel defaults to the second approach.
For larger NUMA systems (four nodes
and higher) the kernel will perform
a reclaim in order to get node-local
memory whenever possible because
the latencies have higher impacts on
process performance.

There is a knob in the kernel that
determines how the situation is to be
treated in /proc/sys/vm/zone_
reclaim. A value of 0 means that no
local reclaim should take place. A val-
ue of 1 tells the kernel that a reclaim
pass should be run in order to avoid
allocations from the other node. On
boot-up a mode is chosen based on
the largest NUMA distance in the sys-
tem.

If zone reclaim is switched on, then
the kernel still attempts to keep the re-
claim pass as lightweight as possible.
By default, reclaim will be restricted
to unmapped page-cache pages. The
frequency of reclaim passes can be
further reduced by setting /proc/
sys/vm/min_unmapped_ratio to
the percentage of memory that must
contain unmapped pages in order to
run a reclaim pass. The default is 1%.

Zone reclaim can be made more
aggressive by enabling write-back of
dirty pages or the swapping of anony-
mous pages, but in practice doing so
has often resulted in significant per-
formance issues with reclaim.

Basic NUMA command-line tools.
The main tool used to set up the
NUMA execution environment for a

process is numactl, which also al-
lows the display of the system NUMA
configuration, as well as the control
of shared memory segments. It is pos-
sible to restrict processes to a set of
processors, as well as to a set of mem-
ory nodes. Numactl can be used, for
example, to avoid task migration be-
tween nodes or restrict the memory
allocation to a certain node. Note that
additional reclaim passes may be re-
quired by the kernel if the allocation
is restricted. Those cases are not influ-
enced by zone-reclaim mode because
the allocation is restricted by a memo-
ry policy to a specific set of nodes, and
therefore the kernel does not have a
choice simply to pick memory from
another NUMA node.

Another tool that is frequently used
for NUMA is taskset. It basically al-
lows only binding of a task to proces-
sors and therefore has only a subset
of numactl’s capability. Taskset is
heavily used in non-NUMA environ-
ments, and therefore the familiar-
ity results in developers preferring to
use taskset instead of numactl on
NUMA systems.

NUMA information. There are
numerous ways to view information
about the NUMA characteristics of
the system and of various processes
currently running. The hardware
NUMA configuration of a system
can be viewed through the use of
numactl --hardware. This includes
a dump of the SLIT (system local-
ity information table) that shows the
cost of accesses to different nodes in
a NUMA system. The example in Fig-
ure 3 shows a NUMA system with two
nodes. The distance for a local access
is 10. A remote access costs twice as
much on this system (20). This is the

figure 3. Displaying nUma characteristics of a system.

$ numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
node 0 size: 131026MB
node 0 free: 588MB
node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
node 1 size: 131072MB
node 1 free: 169MB
node distances:
node 0 1
 0: 10 20
 1: 20 10

64 commUnications of thE acm | september 2013 | vol. 56 | no. 9

practice

cess first uses a page in some fashion.
The effective memory policy on a

page depends on memory policies
assigned to a memory range or on
a memory policy associated with a
task. If a page is only in use by a single
thread, then there is no ambiguity as
to which policy will be followed. How-
ever, pages are often used by multiple
threads. Any one of them may cause
the page to be allocated. If the threads
have different memory policies, then
the page may as a result seem to be
allocated in surprising ways for a pro-
cess that also sees the same page later.

For example, it is fairly common
that text segments are shared by all
processes that use the same execut-
able. The kernel will use the page
from the text segment if it is already
in memory regardless of the memory
policy set on a range. The first user of
a page in a text segment will therefore
determine its location. Libraries are
frequently shared among binaries,
and especially the C library will be
used by almost all processes on the
system. Many of the most-used pages
are therefore allocated during boot-up
when the first binaries run that use the
C library. The pages will at that point
become established on a particular
NUMA node and will stay there for the
time the system is running.

First-touch phenomena limit the
placement control that a process has
over its data. If the distance to a text
segment has a significant impact on
process performance, then dislo-
cated pages will have to be moved in
memory. Memory could look like it
was allocated on NUMA nodes not
permitted by the memory policy of the
current task because an earlier task al-
ready brought the data into memory.

Moving memory. Linux has the ca-
pability to move memory. This means
the virtual address of the memory
in the process space stays the same.
Only the physical location of the data
is moved to a different node. The ef-
fect can be observed by looking at /
proc/<pid>/numa_maps before
and after a move.

Migrating all of a process’s memo-
ry to a node can optimize performance
of an application by avoiding cross-
connect accesses should the system
have placed pages on other NUMA
nodes. However, a regular user can

convention, but the practice of some
vendors (especially for two-node sys-
tems) is simply to provide 10 and 20
without regard to the actual latency
differences to memory.

Numastat is another tool that is
used to show how many allocations
were satisfied from the local node. Of
particular interest is the numa_miss
counter, which indicates the system
assigned memory from a different
node in order to avoid reclaim. These
allocations also contribute to other
node. The remainder of the count
are intentional off-node allocations.
The amount of off-node memory can
be used as a guide to figure out how
effectively memory was assigned to
processes running on the system (see
Figure 4).

How memory is allocated to a pro-
cess can be seen via a status file in
/pro/<pid>/numa_maps (illustrat-
ed in Figure 5).

The output shows the virtual ad-
dress of the policy and then some in-
formation about what the NUMA char-
acteristics are of the memory range.
Anon means the pages do not have an
associated file on disk. Nx shows the
number of pages on the respective
node.

The information about how mem-
ory is used in the system as a whole
is available in /proc/meminfo. The

same information is also available for
each NUMA node in /sys/devices/
system/node/node<X>/meminfo.
Numerous other bits of information
are available from the directory where
meminfo is located. It is possible to
compact memory, get distance tables,
and manage huge pages and mlocked
pages by inspecting and writing values
to key files in that directory.

First-touch policy. Specifying mem-
ory policies for a process or an address
range does not cause any allocation of
memory, which is often confusing to
newcomers. Memory policies specify
what should happen when the system
needs to allocate memory for a virtual
address. Pages in a process’s memory
space that have not been touched or
that are zero do not have memory as-
signed to them. The processor will
generate a hardware fault when a pro-
cess touches or writes to an address
(page fault) that is not populated yet.
During page-fault handling by the
kernel, the page is allocated. The in-
struction that caused the fault is then
restarted and will be able to access the
memory as needed.

What matters, therefore, is the
memory policy in effect when the al-
location occurs. This is called the first
touch. The first-touch policy refers to
the fact that a page is allocated based
on the effective policy when some pro-

figure 5. Displaying nUma settings and statistics of the system.

cat /proc/1/numa_maps
7f830c175000 default anon=1 dirty=1 active=0 N1=1
7f830c177000 default file=/lib/x86_64-linux-gnu/ld-2.15.so anon=1 dirty=1
active=0 N1=1
7f830c178000 default file=/lib/x86_64-linux-gnu/ld-2.15.so anon=2 dirty=2
active=0 N1=2
7f830c17a000 default file=/sbin/init mapped=18 N1=18
7f830c39f000 default file=/sbin/init anon=2 dirty=2 active=0 N1=2
7f830c3a1000 default file=/sbin/init anon=1 dirty=1 active=0 N1=1
7f830dc56000 default heap anon=223 dirty=223 active=0 N0=52 N1=171
7fffb6395000 default stack anon=5 dirty=5 active=1 N1=5

figure 4. Displaying nUma statistics of the system.

$ numastat
 node0 node1
numa_hit 13273229839 4595119371
numa_miss 2104327350 6833844068
numa_foreign 6833844068 2104327350
interleave_hit 52991 52864
local_node 13273229554 4595091108
other_node 2104327635 6833872331

practice

september 2013 | vol. 56 | no. 9 | commUnications of thE acm 65

move only pages of a process that are
referenced by only that process alone
(otherwise, the user could interfere
with performance optimization of
processes owned by other users). Only
Root has the capability to move all
pages of a process.

It can be difficult to ensure all pag-
es are local to a process since some
text segments are heavily shared and
there can be only one page backing an
address of a text segment. This is par-
ticularly an issue with the C library or
other heavily shared libraries.

Linux has a migratepages com-
mand-line tool to manually move pag-
es around by specifying a pid, as well
as the source and destination nodes.
The memory of the process will be
scanned for pages currently allocat-
ed on the source node. Those will be
moved to the destination node.

NUMA scheduling. The Linux
scheduler had no notion of the page
placement of memory in a process
until Linux 3.8. Decisions about mi-
grating processes were made on an
estimate of the cache hotness of a
process’s memory. If the Linux sched-
uler moved the execution of a process
to a different NUMA node, then the
performance of that process could
be significantly impacted because its
memory now would require access
via the cross-connect. Once that move
was complete the scheduler would es-
timate the process memory is cache
hot on the remote node and leave the
process there as long as possible. As
a result, administrators who wanted
the best performance felt it best not to
let the Linux scheduler interfere with
memory placement. Processes were
often pinned to a specific set of pro-
cessors using taskset, or the system
was partitioned using the cpusets
feature to isolate applications to stay
within the NUMA node boundaries.

In Linux 3.8 the first steps were
made to address this situation by
merging a framework that will enable
the scheduler at some point to con-
sider the page placement and perhaps
automatically migrate pages from re-
mote nodes to the local node. Howev-
er, there is a significant development
effort still needed, and the existing
approaches do not always enhance
the performance of a given computing
load. This was the state of affairs ear-

lier this year; for more recent informa-
tion on the Linux kernel mailing list,
see http://vger.kernel.org or articles
from Linux Weekly News (http://lwn.
net; for example, http://lwn.net/Arti-
cles/486858/).

conclusion
NUMA support has been around for
a while in various operating systems.
NUMA support in Linux has been
available since early 2000 and is being
continually refined. Frequently kernel
NUMA support will optimize process
execution without the need for user
intervention, and in most use cases an
operating system can simply be run
on a NUMA system, providing decent
performance for typical applications.

Special NUMA configuration
through tools and kernel configura-
tion comes into play when the heuris-
tics provided by the operating system
do not provide satisfactory application
performance to the end user. This is
typically the case in high-performance
computing, high-frequency trading,
and for real-time applications, but re-
cently these issues have become more
significant for regular enterprise-class
applications. Traditionally, NUMA
support required special knowledge
about the application and hardware
for proper tuning using the knobs
provided by the operating systems.
Recent developments point (especial-
ly around the Linux NUMA scheduler)
to developments that will result in the
ability of the operating systems to au-
tomatically balance a NUMA applica-
tion load properly over time.

The use of NUMA needs to be guid-
ed by the increase in performance that
is possible. The larger the difference
between local and remote memory
access, the greater the benefits that
arise from NUMA placement. NUMA
latency differences are due to memory
accesses. If the application does not
rely on frequent memory accesses
(because, for example, the processor
caches absorb most of the memory op-
erations), then NUMA optimizations
will have no effect. Also for I/O-bound
applications the bottleneck is typical-
ly the device and not memory access.
An understanding of the characteris-
tics of the hardware and software is
required in order to optimize applica-
tions using NUMA.

 Related articles
 on queue.acm.org

Photoshop Scalability: Keeping It Simple

Clem Cole and Russell Williams
http://queue.acm.org/detail.cfm?id=1858330

The Cost of Virtualization

Ulrich Drepper
http://queue.acm.org/detail.cfm?id=1348591

Performance Anti-Patterns
Bart Smaalders
http://queue.acm.org/detail.cfm?id=1117403

Additional Reading

Braithwaite, R., McCormick, P., Feng, W.
Empirical memory-access cost models in
multicore nUMA architectures. Virginia Tech
Department of Computer Science, 2011.

Hacker, G.
Using nUMA on RhEL 6; http://www.redhat.
com/summit/2012/pdf/2012-DevDay-Lab-
nUMA-hacker.pdf.

Kleen, A.
A NUMA API for Linux. novell, 2005;
http://developer.amd.com/wordpress/
media/2012/10/LibnUMA-WP-fv1.pdf.

Lameter, C.
Effective synchronization on Linux/nUMA
systems. Gelato Conference, 2005. Effective
synchronization on Linux/nUMA systems.
Gelato Conference, 2005.

Lameter, C.
2006. Remote and local memory: Memory in
a Linux/nUMA system. Gelato Conference,
2006.

Li, Y., Pandis, I., Mueller, R.,
Raman, V., Lohman, G.
nUMA-aware algorithms: The case of data
shuffling. University of Wisconsin-Madison /
IBM Almaden Research Center, 2013.

Love, R.
2004. Linux Kernel Development.
Indianapolis: Sams Publishing.

Oracle.
Memory and Thread Placement
Optimization Developer’s Guide, 2010;
http://docs.oracle.com/cd/E19963-01/
html/820-1691/.

Schimmel, K.
Unix Systems for Modern Architectures:
Symmetric Multiprocessing and Caching
for Kernel Programmers. Addison-Wesley,
1994.

Christoph Lameter specializes in high-performance
computing and high-frequency trading technologies.
as an operating-system designer and developer, he has
been developing memory management technologies for
linux to enhance performance and reduce latencies. he
is fond of new technologies and new ways of thinking that
disrupt existing industries and cause new development
communities to emerge.

© 2013 aCm 0001-0782/13/09 $15.00

Copyright of Communications of the ACM is the property of Association for Computing
Machinery and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

