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Abstract: In this study, the authors explore a generalised scheme for the synchronous code division multiple access (CDMA). In
this scheme, unlike the standard CDMA systems, each user has different codewords for communicating different messages. Two
main problems are investigated. The first problem concerns whether uniquely detectable overloaded matrices (an injective matrix,
i.e. the inputs and outputs are in one-to-one correspondence depending on the input alphabets) exist in the absence of additive
noise, and if so, whether there are any practical optimum detectors for such input codewords. The second problem is about
finding tight bounds for the sum channel capacity. In response to the first problem, the authors have constructed uniquely
detectable matrices for the generalised scheme and the authors have developed practical maximum likelihood detection
algorithms for such codes. In response to the second problem, lower bounds and conjectured upper bounds are derived. The
results of this study are superior to other standard overloaded CDMA codes since the generalisation can support more users
than the previous schemes.

1 Introduction

Multiple access communication systems were first studied by
Shannon. Moreover, different schemes of multiple access
systems such as code division multiple access (CDMA)
systems were introduced and explored in [1].
In general, users for CDMA systems send either binary or

non-binary data. In our present paper, we use a more
generalised concept of user data. Each user has a set of
codewords which do not necessarily construct a linear code.
We intend to study two main issues related to such
generalised CDMA (GCDMA) systems. The first problem
is to find uniquely detectable overloaded GCDMA matrices
and the second issue is related to the development of tight
lower and upper bounds for the sum channel capacity of
such a GCDMA system. We, as well as other authors [2,
3], have already studied these two issues for the standard
binary and non-binary CDMA systems:
In [2, 4, 5], a class of overloaded uniquely detectable

matrices for binary multiuser and binary/ternary signatures
for wireless and optical applications were developed. Mow
[4] presented a unifying approach to find one-to-one binary
and ternary matrices for binary inputs for multiuser

applications. He also applied constructive theorems
developed by the previous authors [6, 7] to enlarge such
matrices; this paper also discusses asymptotic behaviour of
such matrices. In [2], the authors have also developed
uniquely detectable overloaded matrices for binary inputs
independently. In the continuation of [2], the authors
extended these matrices in [2] to non-binary finite real and
complex signature codes [8].
The theoretical developments in CDMA sum capacity have

been limited to users with Gaussian inputs where Welch
Bound Equality (WBE) codes achieve the theoretical
capacity [9, 10]. For binary CDMA, only asymptotic results
were known [11, 12] prior to our recent papers [2, 8, 13].
For non-binary finite input and signature alphabets,
asymptotic sum capacity results were developed in [3].
The GCDMA scheme consists of a family of codes (S1, S2,

…, Sn). Each Si is a set of m × 1 vectors, which are called

codewords, namely Si = A i1( ), A i2( ), ..., A ili( ){ }
, where A(ij)

is an m × 1 vector. At synchronous time slots, the ith user
transmits one of the vectors from the set Si. A code family
(S1, S2,…, Sn) is said to be ‘uniquely decodable’ if all the
sums of n vectors A(ij) (1≤ j≤ li), each from a different
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code, are distinct. In the absence of noise, the transmitted user
vectors can be detected uniquely from the received vector.
Binary version of this scheme is also known as T-user and
is studied by the authors in [14, 15]. In [14], a class of
uniquely decodable codes is introduced for the binary case
using iterative methods and the proposed decoder was only
for the noiseless case which is not computationally
practical. Also, the lower and upper bounds for the sum
capacity of such a scheme are derived for the binary
signature. In [15], the authors introduced a tighter upper
bound for the T-user binary case. Ferguson [16] introduced
a generalised code construction method for binary T-user.
In our present paper, we will construct a class of uniquely

decodable overloaded codes with practical maximum
likelihood (ML) decoders. Unlike the previous authors on
the T-user schemes that only considered binary and
noiseless cases, we will also propose tighter lower bounds
for the sum capacity of our generalised systems that include
non-binary and noisy cases. We will also demonstrate that
higher sum capacities can be achieved using our proposed
scheme as opposed to the standard CDMA systems.
The rest of the paper is organised as follows: in Section 2,

the main characteristics of a GCDMA system are defined. In
Section 3, the uniquely decodable codes and their ML
decoding schemes are introduced and compared with the
previous methods. In Section 4, we will develop tight lower
and upper bounds for a GCDMA system with some
numerical results. In Section 5, the conclusion and future
works will be presented.

2 Preliminaries

In a CDMA system, each of the n users multiplies its data by
an m-chip vector, namely the signature vector, in order to
transmit the user data. The signature vectors belong to the
set Sm, where S is the set of signature alphabets. Since the
baseband information spreads over the frequency spectrum
by a factor of m in CDMA systems, m is also called the
spreading factor or the gain. The channel model, under the
assumption of user synchronisation, is

Y = 1��
m

√ CW + N (1)

where C is the signature matrix whose columns are the
signature vectors of the users, W is the input vector, Y is
the observed vector at the receiver end and N = [N1, N2, ...,
Nm]

T, where Ni’s are independent and identically distributed
(i.i.d) random variables of variance s2

f with pdf f (.), is the
noise vector. Since the total user powers and the noise in
the above model are, respectively, equal to
tr E 1

mCWW ∗C∗( )( )
and E N∗N

( )
(the symbol * stands for

the Hermitian transpose), the multiuser signal-to-noise ratio
(SNR) is defined as

SNR = tr E (1/m)CWW ∗C∗( )( )
E N∗N( ) (2)

Since E N∗N
( ) = ms2

f , the SNR definition can be written as

SNR = 1

ms2
f

tr E
1

m
CWW ∗C∗

( )( )
(3)

Now, we define the normalised SNR as

h = m

n
SNR (4)

The sum capacity for a CDMA system is defined as

C m, n, I , S, h( ) = max
C[Mm×n S( )

max
p w1( ),p w2( ),...,p wn( ) I W ; Y( ) (5)

where I is the set of input alphabets,Mm×n(S) is the set of all
m × n matrices with entries from S, and
W = [w1, w2, . . . , wn]

T [ I n.
If t = |I|, where |.| stands for the cardinality of the set, we

define a GCDMA system to be a system with n users in which
the ith user has a set of t signature vectors, namely

Si = A(i1), A(i2), ..., A(it){ }
such that A ij( ) [ Sm for 1≤ j≤ t

and 1≤ i≤ n. In order to transmit the jth symbol, the ith
user sends A(ij). Our channel model for this system,
assuming synchronisation, is

Y = 1��
m

√ AX + N (6)

where N = [N1, N2, ..., Nm]
T, and Ni’s are i.i.d random

variables with pdf f (.). Also, Y is the observed vector at the
receiver and A is an m × nt signature matrix in which
the column numbers from (i− 1)t + 1 to it for 1≤ i≤ n are
the elements of Si, respectively. The input vector X is an
nt × 1 vector. The ith block in the input vector is defined to
be the entries with indices (i− 1)t + 1 to it for 1≤ i≤ n. The
entries in each block are all zero except in one position,
which is equal to one. The index of the non-zero entry in
the ith block represents the transmitted signature vector of
the ith user. Hence, the output is the sum of n signature
vectors.
In the noiseless case, a signature matrix A is called

‘uniquely detectable’, if all the tn observed vectors are
distinct. The sum capacity of GCDMA systems is defined as

GC m, n, S, |I |, h( ) = max
A[Mm × nt S( )

max
p X( )

I X ; Y( ) (7)

where the normalised SNR (η) is defined as shown in (4). In
the noiseless case, η in the above channel capacity function is
omitted.

3 Codes for GCDMA systems

In this section, we extend the class of generalised codes for
overloaded CDMA systems (GCO) defined in [8] to
GCDMA systems; these uniquely decodable codes for
GCDMA scheme are called the generalised user CDMA
(GUC) codes. An m × n matrix C, with entries in S is called
a GCO(m, n, I , S) matrix if the mapping of Y =CW is
injective when it is restricted to the input vectors with
entries in I . The proposed codes are uniquely decodable in
the absence of noise. We will discuss the construction of
GUC codes with the ML decoding and demonstrate some
numerical results.

3.1 Construction of GUC codes

Suppose we have n users, where each user has t vectors with
entries from the signature S with a chip rate of m. Each user
uses one of the t vectors in order to send one of the t
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messages. If such uniquely decodable codes exist, it is called
GUC(n, m, t, S). In this section, we will provide theorems for
constructing GUC’s for GCDMA systems.
The following theorem completely relates the case t = 2 in

GUC codes to the previous GCO codes discussed in [8].

Theorem 1: A GCO(m, n, +1{ }, S − S) matrix exists if and
only if a GUC(m, n, 2, S) code exists, where
S − S = x− y|x, y [ S{ }

.

Proof: Let C [ Mm×n(S − S) be a GCO matrix with
I = +1{ }. Hence the ith column of C can be written as vi
− ui, where vi and ui belong to Sm. If we construct
A [ Mm×2n(S) such that vi and ui are the vectors of the ith
user, then A will be a GUC matrix. We simply note that the
ith user vectors are equal to (vi + ui)/2 +wi(vi− ui)/2, where
wi can be ±1. Then we can model the channel as

Y = CW + Y0 (8)

where Y0 =
∑n

i=1

vi + ui
2

. Since C is injective on ±1n, the

transmission is uniquely decodable. Thus, vi and ui form a
GUC matrix. Inversely, a GCO matrix with I = +1{ } can
be obtained from a GUC code by putting the ith column
equal to vi− ui. □

Example 1: Assume S = +1{ } and m = 64. Applying
Theorem 1 on a GCO(64, 256, {±1}, {0, ±1}) matrix, we
can obtain a GUC(64, 256, 2, S). By comparing with the
GCO 64, 193, +1{ }, S( ), for a fixed chip rate and signature
set, the total number of users is increased as expected.
In the next theorem, a recursive method is proposed for
constructing large GUC codes from smaller ones. With this
theorem, it is easy to show that the overloading factor n/m
tends to infinity for large values of m for a fixed value of t
and alphabets of S.

Theorem 2: Assume a GUC(m, n, t, S) exists. Then, we can
obtain a GUC(2m, 2n+ l, t, S) if l × log2t≤m.

Proof: We first present a simpler case as a lemma:

Lemma 1: Let C be a GUC(m, n, t, {±1}) and let D =Hw⊗C
for w = 2k. Then, D is a GUC(mw, nw, t, {±1}) matrix.

Proof of lemma 1: The lemma can be proved by induction on

k. If k = 1, then D = C C
C −C

[ ]
. Suppose DX1 =DX2 where

X 1 = X11
X12

[ ]T
and X 2 = X21

X22

[ ]T
are input vectors,

according to definition, such that X ij
is an nt × 1 vector.

Hence

C X11
+ X12

( )
= C X21

+ X22

( )
C X11

− X12

( )
= C X21

− X22

( )

By adding and subtracting the two equations and using the
fact that C is a GUC matrix, results in X1 =X2. This proves
the case for k = 1.
Now by induction and according to the fact

H2k = H2 ⊗ H2 ⊗ H2 ⊗ ...⊗ H2, it arises that D is a GUC
(2m, 2n, t, ±1) matrix. □

From this lemma we conclude the following. Consider the
new l users and suppose Vi, j is the jth signature of the ith new

user (i≤ l, j≤ t). Let Vi,j = V T
i,j,1, V

T
i,j,2, . . . , V

T
i,j,w

[ ]T
such that

Vi,j,p is anm × 1 vector and Vi,j,sum =∑
t Vi,j,t. Now suppose

that Vi = [Vi,1, Vi,2, Vi,3, …, Vi, t], satisfies the following
conditions for each i:

(1) The (i− 1) × ⌈logwt⌉ + 1 to i × ⌈logwt⌉ elements of Vi jsumare from set B for different values of j.

B = −w+ 2, − w+ 4, . . . , 0, . . . , w− 2, w{ }

(2) For different values of j, the subvectors consisting of (i−
1) × ⌈logwt⌉ + 1 to i × ⌈logwt⌉ entries of Vi,j,sum are all
different.
(3) Vi, j,sum is zero in other elements for every j.

Note that according to Lemma 1 such Vij
’s exist.

To prove Theorem 2, it is sufficient to show that if D = [Hw

⊗C|Z], where Z = [V1, V2, V3,…, Vl] and C is a GUC(m, n, t,
{±1}) matrix, then D is GUC(wm, wn + l, t, {±1}).
Suppose that there are two different input vectors X1 and X2

such that

DX1 = DX 2

Note that

DX 1 =

C C . . . C Z1
C C . . . C Z2
C C . . . C Z3

..

. ..
. ..

. ..
. ..

.

C C . . . C Zw

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

X1

X2
X3

..

.

Xw

Y

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

such that Zi contains (i− 1) ×mth row to i ×mth row of Z and
Xi is nt × 1 vectors for each i (1≤ i≤w) and Y is a lt × 1
vector. It results in

DX 1 =

X1,1 + X1,2 + . . . + X1,w + Y1,1
X1,1 − X1,2 + . . . − X1,w + Y1,2
X1,1 + X1,2 − . . . − X1,w + Y1,3

..

. ..
. ..

. ..
. ..

.

X1,1 − X1,2 + . . . + X1,w + Y1,w

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

Such that X1,i =C ×Xi and Y1,i = Zi × Y. Then if DX1 =DX2

A1 + A2 + . . . + Aw + B1 = 0
A1 − A2 + . . . − Aw + B2 = 0
A1 + A2 − . . . − Aw + B3 = 0

..

. ..
. ..

. ..
. ..

. ..
.

A1 − A2 + . . . + Aw + Bw = 0

Such that Ai = X1,i− X2,i and Bi = Y1,i− Y2,i. Note that

A1 A2 A3 . . . Aw

[ ]× H ′
w = B1 B2 B3 . . . Bw

[ ]
⇒ A1 A2 A3 . . . Aw

[ ]× wIn
= B1 B2 B3 . . . Bw

[ ]× Hw
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Hence, we obtain that term
∑

i (−1)aBi for α∈ {0, 1} is
divisible by 2w. However, according to the construction of
Bi’s each element of them is less than 2w. Thus, the
summation must be zero. However, we know that Hw⊗C
is GUC(wm, wn, t, {±1}) as mentioned in theorem. □

Example 2: Applying Theorem 2, we deduce that a GUC(2m,
2n + ⌈m/log23⌉, 3, {±1}) can be obtained from GUC(m, n, 3,
{±1}). By starting from n = 1 and m = 2, we achieve a GUC
(64, 112, 3, {±1}). Comparing GCO codes with m = 64 and
n = 103, we conclude that GCDMA systems codes can
support more users than traditional CDMA systems.

In the next section, we provide an ML decoding of the
proposed codes for GCDMA systems.

3.2 ML decoding scheme for a subclass of GUC
codes

In this section, we propose an ML decoding algorithm for the
cases t = 2 and t = 3, which correspond to the binary and
ternary inputs, respectively.

(1) Case 1. t = 2: As stated in Theorem 1, a GCDMA system
using a GCO matrix can be modelled as

Y = CW + Y0 + N (9)

where C is an m × n matrix with (vi− ui)/2 as its ith
column, Y0 =

∑
(vi + ui)/2 and N is the noise vector

which has a Gaussian distribution with zero mean and
auto-covariance matrix σ2I (I denotes the identity
matrix). If the codes are made according to Theorem 1,
then C is a ternary GCO (GCO(n, m, {±1}, {0, ±1}))
matrix and can be obtained from smaller ternary
GCO matrices. To implement ML decoding, the
term Y − CŴ

∥∥ −Y0
∥∥
2 must be minimised, where

Ŵ [ +1{ }n.

In the first step, we reduce the problem into a set of
decoding problems with smaller code matrices. Consider a
GCO matrix Cwl × wk =Hw⊗Dl × k generated by the
Kronecker product of a Hadamard matrix H with a smaller
ternary GCO matrix D. The received vector is

Y = CW + Y0 + N = (Hw ⊗ D)W + Y0 + N (10)

Then we multiply both sides by

H−1
w ⊗ I

( )
Y = (I ⊗ D)W + H−1

w ⊗ I
( )

Y0 + N
( )

(11)

depends only on the first k elements of W and the first l
elements of H−1

w ⊗ I
( )

(Y0 + N); the second l elements of
H−1

w ⊗ I
( )

Ydepends only on the second k elements of W
and the second l elements of H−1

w ⊗ I
( )

(Y0 + N) and so on.
Hence, we have divided the problem of decoding a GUC
system with m = rl and n = rk to decoding r GUC systems
with m = l and n = k. If the decoding of smaller systems is
ML, then the decoding of larger matrix is also ML.
In the second step, we will further reduce the complexity of

the decoding. By permutation of D, we can assume that
D = A B

[ ]
, where A is an l × l unitary matrix and B is

an l × (k− l ) matrix. We have

Y = DW + Y0 + N = A B
[ ]

W 1 W 2

[ ]T
+ Y0 + N = AW 1 + BW 2 + Y0 + N

(12)

where W1 and W2 are column vectors of length l and k − l,
respectively. Multiplying both sides by A−1, we obtain

A−1 Y − Y0
( ) = W 1 + A−1BW 2 + A−1N (13)

Thus, the decoding algorithm leads to solving the following
optimisation problem

minŴ1,Ŵ2
A−1 Y − Y0

( )− A−1BŴ2 − Ŵ1

∥∥ ∥∥
2

(14)

Instead of looking through all possibilities for W = [W1W2]
T,

we can search among 2k − l possibilities of Ŵ2 and obtain

Ŵ1 = sign A−1 Y − Y0
( )− A−1BŴ2

( )
(15)

where sign(z) is obtained by substituting the positive entries
of z by 1 and the negatives by −1. Since A is unitary, this
decoding algorithm is ML.

Example 3: The direct implementation of the ML decoding of
a GUC matrix C64 × 160 =H8⊗D8 × 20 requires about 2160

comparisons of vectors, which is an NP-hard problem.
However, using the stated scheme, the complexity of
decoding is 8 × 212 = 215.

(2) Case 2. t = 3: In this case, each user has three signature
vectors, namely vi, ui, and wi. Thus, each user vector
can be written as (vi +wi)/2 + xi(vi− ui)/2 + yi(wi− ui)/2,

where xi yi
[ ]T

can be 1 −1[ ]T
, −1 −1[ ]T

or

−1 1
[ ]T

to form vi, ui, and wi, respectively.

Hence, we model the channel as Y =CW + Y0 +N, which is
similar to the previous case except that C is an m × 2n
matrix with columns of (vi− ui)/2 and (wi− ui)/2; W is in

the form of [z1, …, zn]
T, where each zi = xi yi

[ ]T
can be

1 −1[ ]T
, −1 −1
[ ]T

or −1 1
[ ]T

. The first step in Case
1 can be also implemented here, but the second step must
be modified to suit this case.
A and B are m ×m and m × (2n−m) matrices; also W1 and

W2 are m × 1 and (2n−m) × 1 vectors, respectively. Instead of
obtaining W1 from (15), we have to find the nearest vector of
the form [z1, …, zm/2]

T from E =A−1(Y− Y0)−A−1BW2. To
find such a vector we have to decompose E into [e1,…, em/2]

T,
where ei consists of the (2i− 1)th and (2i)th elements of E.
Thus, zi can be obtained from

zi =
−1 1[ ]T, if 0 ≤ yi and xi , yi

−1 −1[ ]T, if xi ≤ 0 and yi ≤ 0
1 −1[ ]T, if 0 ≤ xi and yi , xi

⎧⎨
⎩

The rest of the algorithm is the same as the one in Case
1. Hence, we can decode a GUC(wm, wn, 3, {±1}) (which
is formed by Kronecker product of a Hadamard matrix of
size w with a GUC(m, n, 3, {±1})) with the complexity of
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3n−m/2. However, the implementation of the direct ML
decoding scheme has the complexity of 3n.

Example 4: Using Theorem 2, we can obtain a GUC(16, 20,
3, {±1}) from a small GUC with m = 2 and n = 1. Then, we
can achieve a system with m = 64 and n = 80 by the
Kronecker product of this system with a Hadamard matrix
of size 4. The decoder of this system with an exhaustive
search is an NP-hard problem (about 380 computations).
However, using the above decoder, only 4 × 312

computations are required, which is nearly 368 times
simpler than the direct approach of decoding.

3.3 Numerical results

To evaluate the performance of the GUC codes in noisy
environments, we compare it to WBE and Hadamard codes
assuming additive Gaussian noise. Fig. 1 confirms that
GUC, similar to GCO, are superior to WBE codes. To
compare GUC with GCO with the same number of chips
and users (m = 64, n = 120), we first add eight random
vectors to GCO(8, 12, {±1}, {±1}), and then derive a GCO
(64, 160, {±1}, {±1}) matrix from the Kronecker product
of this matrix with a Hadamard matrix of size 8. Simulation
results confirm that a GUC code performs better that GCO
as we expected since GCO matrices are special cases of
GUC matrices.

4 Bounds for the sum capacity of GCDMA
systems

In this section, we shall derive some lower and upper bounds
for the sum capacity of GCDMA systems and compare them
to the capacity bounds for CDMA systems. The following
theorem relates the GCDMA capacity for the case t = 2 to
the CDMA capacity.

Theorem 3: For the noiseless case, the GCDMA sum capacity
can be derived from the following equality

GC m, n, S, t = 2( ) = C m, n, +1{ }, S − S( ) (16)

The proof is given in Appendix 1.

Corollary 1:

GC m, n, S = +1{ }, t = 2( ) = C m, n, +1{ }, 0, +1{ }( ) ≥ sup
p0,p1

− log
∑n
k=0

n

k

( )
1

2n
∑k
a=0

k

a, a, k − 2a

( )
pk−2a
0 p2a

1

( )m( )}{

(17)

where π(.) is the distribution function on {0, ± 1}, such that π
(0) = π0 and π(+1) = π(−1) = π1.
In [8], the lower and upper bounds for
C m, n, 0, +1{ }, +1{ }( ) are derived, which can also be
used for GC(m, n, +1{ }, t = 2). With comparison to the
lower bound of C m, n, +1{ }, +1{ }( ), it is seen that the
generalised binary CDMA systems have tighter lower
bounds as those of the binary CDMA cases.
For the noisy case, the following theorem gives a lower

bound for the sum capacity of GCDMA codes for the case
of t = 2.

Theorem 4: For the noisy case, we have

The proof is given in Appendix 2. Also note that when η =∞,
the above inequality reduces to the bound represented in (17).
In a GCDMA code with t = 2, the parameter ρ is introduced

to represent the correlation between signature vectors of any
user. That is, ρ =− 1 corresponds to a CDMA system, and
ρ = 1 is the trivial case in which the two signature vectors
are equal. Moreover, ρ = 0 represents the case in which the
signatures of a user are uncorrelated. To find the maximum
capacity, different values of ρ should be examined. The
numerical results show that the optimum ρ is not always
equal to −1, which represents a classical binary CDMA
system.

Fig. 2 shows the bounds of the sum capacity against the
number of users for the noiseless case with m = 32 and 64.

Fig. 1 Bit error rate against normalised SNR (η) for a GCDMA
system with m = 64, S = {±1} and t = 2

GC m, n, +1{ }, 2, h( ) ≥ sup
r

sup
g

−m g log e− log 1+ g
( )( ){

− log
∑n
k=0

1

2n
n

k

( ) ∑k
i=0

k

i

( )
1

2k
∑i

a=0

i

a

( )
1− r

2

( )a 1+ r

2

( )i−a
{{

∑k−i

b=0

k − i

b

( )
1− r

2

( )b 1+ r

2

( )k−i−b

e −gh/ 1+g( )m( )( )|2a−2b|2
( )( )}m}}

(18)
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The plots with ρ =− 1 can be interpreted as the lower bound
of a CDMA system whereas the plots which are the
maximisation over all the values of ρ represent lower bound
for a GCDMA system. It can be seen that in a GCDMA
system, tighter bounds can be achieved. This figure

suggests that the number of users in GCDMA systems
maybe higher than that of CDMA systems. This figure also
shows the upper bound of a GCDMA system according to
(7) for both m = 32 and m = 64. Fig. 3 shows the same
results for the noisy case when η = 10. This figure also
shows that the bounds become less tight when the channel
becomes noisy.
Fig. 4 shows the numerical results for the bounds of the

sum capacity against SNR when n = 400 and m = 64. The
lower bounds are plotted for various values of ρ. It can be
seen that the bounds are linear with respect to SNR values
in decibel up to a point and then saturates at high SNR
values when interference because of the number of users
become significant.
For the general case when S = +1{ }, the sum capacity

lower bounds can be derived from the following theorem.

Theorem 5: For arbitrary t and η, the following inequality
holds (see (19))

The proof is given in Appendix 3.

Fig. 5 shows the numerical results for the normalised sum
capacity lower bounds of a binary noiseless GCDMA system
with m = 64, against the number of users for different values
of t. The plots correspond to cases t = 2, 4, 8. The capacity per
user is almost equals to logt when the number of users is less
than a threshold value, and it decreases exponentially
afterwards.
For the general noiseless case when

S = 0, +1, . . . , +p
{ }

, the lower bound is shown in the
theorem given below.

Fig. 2 Sum capacity bounds against the number of users for the
noiseless case in which m = 32, 64, S = {±1} and t = 2

Fig. 3 Sum capacity bounds against the number of users for the
noisy case when m = 32, 64, η= 10, S = {±1} and t = 2

Fig. 4 Sum capacity bounds against SNR for n = 400 users, m =
64, S = {±1} and t = 2

GC m, n, S = +1{ }, t, h( ) ≥ sup
g

−m g log e− log 1+ g
( )( ){

−log
∑n
k=0

n

k

( )
t − 1( )k
tn

∑2k
i=0

2k

i

( )
1

22k
e −gh/( 1+g( )m)( )|2k−2i|2
( )( )m( )} (19)
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Theorem 6: In the absence of noise for
S = 0, +1, . . . , +p

{ }
, the following inequality holds

GC m, n, 0, + 1, ..., + p
{ }

, t
( )

≥ − log
∑n
k=0

n

k

( )
t − 1( )k
tn

Ap 2k( )
( )m (20)

where Ap(2k) is the probability of the event when∑2k
i=1 ai = 0 such that ai’s belong to the set {0, ±1,..., ±p}

with uniform distribution.
The proof is given in Appendix 4.
The numerical results for the normalised sum capacity

lower bound for GCDMA systems with m = 64 and various
values of t for p = 1 and p = 2 are shown in Figs. 6 and 7,
respectively. As expected, the numerical results show that
when p = 2, the system is saturated at a larger number of
users than the case where p = 1.
Incidentally, from Theorem 3, the upper bounds of a

GCDMA system are exactly the same as the CDMA system
for the case when t = 2 and S = +1{ }.

Theorem 7 (conjectured upper bound): Let f be a symmetric
probability distribution function, that is, f (x) = f (−x). Define

the function f̃ by f̃ (x) =∑n
j=0

n
j

( )
2n f x− 2j−n��

m
√

( )
; we have

GC m, n, S = +1{ }, t = 2, f
( )

≤ min n, m h f̃
( )− h f̃

( )( )( ) (21)

where h(.) is the differential entropy.

Proof: From Theorem 3 and the upper bounds of
corresponding CDMA in [8], the above inequality can be
derived trivially. □

Below we shall give two examples for the upper bounds of
specific GCDMA systems.

Example 5 (Noisy Case): For a Gaussian distribution, we have

f̃ x( ) = 1

s
����
2p

√
∑n
j=0

n
j

( )
2n

exp − x− (2j − n)/(
��
m

√
)

( )
2s2

( )

(22)

Fig. 5 Normalised sum capacity lower bounds against the number
of users for m = 64 and various values of t for the noisy case and
S = {±1}

Fig. 6 Normalised sum capacity lower bounds against the number
of users for m = 64, p = 1, S = {0, ±1} and several values of t

Fig. 7 Normalised sum capacity lower bounds against the number
of users for m = 64, p = 2, S = {0, ±1 ±2} different values of t
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Thus

GC m, n, S = +1{ }, t = 2, s2( )
≤ min n, m h f̃

( )− log
�����
2pe

√
s

( )( )( ) (23)

Example 6 (Noiseless Case): For the noiseless case, we
assume that the pdf of the noise is an impulse, therefore

f̃ (x) =
∑n
j=0

n
j

( )
2n

d x− 2j − n��
m

√
( )

(24)

This is a discrete probability distribution. Hence, we use the
usual entropy instead of the differential entropy, and the
upper bound becomes

GC m, n, S = +1{ }, t = 2, s2( ) ≤ min n, m H f̃
( )( )( )

(25)

5 Conclusion and future work

In this paper, we introduced a new framework for GCDMA
systems in which each user uses a set of signature vectors
for sending its data. In this new framework, we have
addressed two main problems. The first concern was related
to the development of uniquely detectable matrices (GUC
matrices), which were constructed for finite users and
signature matrices. Also, practical ML detection algorithms
were suggested. The constructions showed that with the
suggested GCDMA system, one may support more users in
comparison with the classical CDMA systems. Numerical
results for special cases showed that GUC matrices
outperformed the codes proposed in previous works for
overloaded CDMA systems. Our second concern was on
the evaluation of the bounds for the sum capacity. We
explored the problem by deriving general theorems and
examples for special cases.
As for future work, we suggest to study the effects of

fading because of multipath and near far effects on
injectivity of GUC matrices and the evaluation of the sum
capacity bounds. Also the generalisation of the new scheme
to an asynchronous system is another interesting problem.
In addition, the consideration of sparse active users in a
GCDMA system is a good topic for future work.
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8 Appendix

8.1 Appendix 1: Proof of Theorem 3

Each of these capacity functions is the maximum of I(X;Y )
over all possible matrices and input distributions. In the
absence of noise, I(X;Y ) =H(Y ).
First, suppose that GC m, n, S, 2( ) = H AX( ) for an m × 2n

fixed matrix A [ Mm×2n S( ) and a probability distribution p
on inputs {(1, 0), (0, 1)}n. We construct a new m × 2n
matrix B from matrix A by substituting columns A2k−1, A2k

with A2k−1 + A2k, A2k−1− A2k, respectively. By substituting
the input pairs (1, 0), (0, 1) with pairs (1, 1), (1, −1),
respectively, we obtain new input vectors which can
transfer the same data when multiplied by B. Note that
input entries with odd indices are always 1. By removing
the columns of matrix B with odd indices and the
corresponding entries in the new input vectors, we obtain
matrix C [ Mm×n S − S( ) and the new input vectors X∈
{±1}n with the same input probability distribution, which
are appropriate for the CDMA case and yield the same
entropy. Thus, we have

C m, n, +1{ }, S − S( ) ≥ GC m, n, S, 2( ) (26)

Conversely, if C m, n, +1{ }, S − S( ) = H AX( ) for a fixed
m × n matrix C and a probability distribution p’ on the set
{±1}, we follow the reverse steps mentioned in the
previous paragraph to obtain the same entropy for GCDMA
case and conclude that

GC m, n, S, 2( ) ≥ C m, n, +1{ }, S − S( ) (27)

Considering (26), (27), we can derive (17). □
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8.2 Appendix 2: Proof of Theorem 4

In [8], the authors proved that for a given I and S, the
following equation holds

C m, n, I , S, h( ) ≥ sup
p,p

sup
g

−m g log e− log 1+ g
( )( ){

− log EX̃ Eb e −gr2
( )

/(2 1+g( )m)
( )

bTX̃
∣∣ ∣∣2( )( )m( )} (28)

where r =
��������������������������������
2h/ s2

p + nm2
p

( )
s2
p + m2

p

( )( )√
, b and X̃ are,

respectively, vectors of length n with i.i.d. entries of
distributions π(·) and p̃(·).
In our theorem, we consider a special case of this theorem,

where b is a vector of length 2n representing an arbitrary row
of the signature matrix in GCDMA. Therefore, b2k−1 and b2k
are the entries of signature vectors of user number k in that
specific row. We consider b2k, b2k−1 to be correlated by a
factor of ρ. In other words (b2k−1, b2k) = +1 +1( ) or
−1 −1( ) with probability (1 + ρ)/4 and
(b2k−1, b2k ) = +1 −1( ) or −1 +1( ) with probability (1
− ρ)/4.
Hence, p̃ and π in (28) are replaced by ρ and r2 in

exponential function is replaced by 2η. In our case, X̃ is a
vector of length 2n defined as follows

X̃ = X − Y |X , Y are input vectors
{ }

(29)

As we previously mentioned, each pair X2k−1, X2k in the input
vector X belongs to a user and is either 0 1

( )
or 1 0
( )

.
Hence, each pair in X̃ is either (0 0) with probability 0.5
or one of the pairs 1 −1( )

and −1 1
( )

, each with
probability 0.25. The total number of x̃ [ X̃ with k

non-zero pairs is
n
k

( )
. Note that

EX̃ Eb e −gr2
( )

/(2 1+g( )m)
( )

bTX̃
∣∣ ∣∣2( )( )m( )

=
∑

every possible x̃

p X̃ = x̃
( )

Eb e −gr2
( )

/(2 1+g( )m)
( )

bTX̃
∣∣ ∣∣2 ∣∣∣∣X̃ = x̃

( )m

=
∑n
k=0

n

k

( )
1

2

( )n

Eb e −gr2
( )

/(2 1+g( )m)
( )

bTX̃
∣∣ ∣∣2 ∣∣∣∣X̃ = Zk

( )m

(30)

where Zk for 0≤ k≤ n is a vector of length 2n, which begins
with k pairs of 1 −1( )

and ends with n− k pairs of zero.
The last part in this equation is derived from the fact that

replacing a −1 1
( )

pair with a 1 −1( )
pair in X̃ or

changing the order of pairs does not change the value of Eb.
Fixing X̃ to Zk, we have

bTX̃
∣∣ ∣∣ =∑k

i=1

b2i−1 − b2i (31)

As we mentioned before, there are four pairs of b2i−1, b2i for

1≤ i≤ k, and the value in exponential function in (28) is
independent of the order of pairs in b.
Thus, we can choose 0≤ i≤ k pairs of k non-zero pairs to

begin with 1, so that the other k− i pairs begin with −1.
0≤ α≤ i pairs of these i pairs are 1 −1

( )
, while 0≤ β≤ k

− i pairs of the k− i pairs beginning with −1 are −1 1
( )

.
Hence, in this case bTX̃

∣∣ ∣∣ is equal to |2α− 2β| which yields

Eb e −gr2
( )

/(2 1+g( )m)
( )

bTX̃
∣∣ ∣∣2 ∣∣∣∣X̃ = x̃

( )

=
∑k
i=0

k

i

( )
1

2k
∑i

a=0

i

a

( )
1− r

2

( )a 1+ r

2

( )i−a

∑k−i

b=0

k − i

b

( )
1− r

2

( )b 1+ r

2

( )k−i−b

e gr2
( )

/(2(1+g)m)
( )

2a−2b| |2
( )

(32)

From (28), (30) and (32) the proof is complete. □

8.3 Appendix 3: Proof of Theorem 5

Again, we take the advantage of (28). However, we consider
b and X̃ to be of length nt. The probability distributions on X̃
and b are specified in our case. Hence, the following
inequality can be derived from (28)

GC m, n, +1{ }, t( ) ≥ sup
g

−m g log e− log 1+ g
( )( ){

− logEX̃ Eb e −gr2
( )

/(2 1+g( )m)
( )

bTX̃
∣∣ ∣∣2( )( )m( )} (33)

It is easy to see that each user block of length t in X̃ is either
completely zero or has exactly one entry equal to 1 and one
entry equal to −1. Without loss of generality, we assume
that all non-zero blocks are in the beginning of the vector
and the first two entries of a non-zero block are (1, −1),
respectively. To simplify (33), we suppose that exactly 0≤
k≤ n blocks in X̃ are non-zero and the other blocks are
zero. Therefore we have

EX̃ Eb e −gr2
( )

/(2 1+g( )m)
( )

bTX̃
∣∣ ∣∣2( )( )m( )

=
∑n
k=0

n

k

( )
1

t

( )n−k

× t − 1

t

( )k

Eb(e
−gr2
( )

/(2 1+g( )m)
( )

bTX̃
∣∣ ∣∣2

X̃ = Zk

∣∣ )m

(34)

where Zk is defined as in proof of Theorem 4. As each entry in
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b is either 1 or −1 with probability 0.5, we have

Eb e −gr2
( )

/(2 1+g( )m)
( )

bTX̃
∣∣ ∣∣2 ∣∣∣∣X̃ = Zk

( )

=
∑2k
i=0

2 k

i

( )
1

22k
e −gr2
( )

/( 1+g( )m)
( )

2k−2i| |2
( ) (35)

By considering (33), (34) and (36), the proof is complete. □

8.4 Appendix 4: Proof of Theorem 6

Using (33) and (34) from the previous proof, we can prove
Theorem 6. The only step left to complete the proof is to

show that

Pr
∑k−1

i=0

bik+1 − bik+2

( ) = 0

( )
= Ap 2 k( ) (36)

According to the symmetry in ?

Pr
∑k−1

i=0

bik+1 − bik+2

( ) = 0

( )
= Pr

∑k−1

i=0

bik+1 + bik+2

( ) = 0

( )

(37)

The right-hand side of the upper equality is exactly the
definition of Ap(2k). □
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