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Abstract: In this study, the authors establish achievable rate and capacity regions for three kinds of Gaussian multiple access
channels (MACs) with side information (SI) partially (estimated or sensed version) and non-causally known at the
transmitters. Actually, the authors show that the lattice strategy is optimal for Gaussian MACs with partial SI, the same as it
is for Gaussian MACs with full SI studied by Philosof–Zamir. The rate and capacity regions, while showing that partiality in
SI reduces the achievable rates, subsumes directly the Philosof–Zamir rate regions and also the Gueguen–Sayrac work and the
Costa theorem indirectly as special cases.

1 Introduction

The study of communication channels with interference
known at the transmitters as side information (SI) is of
particular interest. In these channels, transmitters can make
use of such knowledge to encode their information in order
to mitigate negative effect of the interference, and hence, to
achieve reliable communication with high data rates, often
with rates equal to the rates of interference free channels,
although the interference is not known to the receiver. SI is
not necessarily an interference; it might be channel state or
other information available in a way for the transmitter and
or receiver. The SI known at the transmitter (SIT) generally
helps the transmitter optimise its transmission.
Shannon [1] studied encoding for a single-user with causal

SIT. Capacity of a discrete (i.e. finite input and output
alphabets) and memoryless channel (DMC) with non-causal
SIT was characterised by Gel’fand and Pinsker [2]. Costa
[3] studied the Gaussian channel with interference
non-causally known only at the transmitter (Fig. 1). He
derived the capacity by extending the discrete alphabet
Gel’fand–Pinsker (GP) capacity theorem to continuous
alphabet Gaussian channel with input average power
constraint E X 2[ ] ≤ PX , additive interference S1 with
average power Ps and additive white Gaussian noise
(AWGN) Z with zero mean and average power N and
independent of both S1 and X. Costa named his coding
strategy as dirty paper coding (DPC) and found the capacity
C = (1/2)log(1 + ((PX)/N )). Surprisingly, his result shows
that the capacity is independent of the interference S1.
Cover and Chiang [4] unified the results for discrete
alphabet and memoryless channels and generalised the GP
theorem to two-sided state information channels.
Gueguen–Sayrac [5] derived capacity of the Costa channel

with partial SI knowledge (S̃) (Fig. 2) as C = (1/2)log(1 +

((PX)/(D +N))), where E (S − S̃)2
[ ] = D and E S̃

2
[ ]

=

E SS̃
[ ] = PS . Compared with the DPC with exact SI [3], it is

observed that partiality in SI reduces the capacity.
In the multi-user setting, state dependent discrete (i.e. finite

input, output and state alphabets) and memoryless channels
have been studied. Das and Narayan [6] determined
capacity region of time-varying multiple access channels
(MACs) with various situations of SIT and SIR (SI at
receiver). Jafar [7], presented a general framework for the
capacity region of DM-MACs with causal and non-causal
independent SI. Philosof–Zamir [8, 9] extended Jafar’s
work and provided achievable rate regions for the
DM-MAC with correlated SI known non-causally at the
encoders by using a random binning technique.
They also considered the Gaussian MAC with SI at both

transmitters (doubly dirty MAC) in the high-SNR and
strong interference regime [8–13]. They proved that positive
rates are not achieved by using the Costa Gaussian binning
for the doubly dirty MAC suffering from strong
interferences [13]. In contrast, Philosof–Zamir [13]
investigated the doubly dirty MAC by extended exploiting
of Willems interference concentration idea [14] and showed
that lattice-strategies can achieve positive rates independent
of the interference power. Furthermore, Philosof–Zamir [13]
showed that in some cases, depending on the noise variance
and power constraints, high dimensional lattice strategies
are in fact optimal. The DM-MAC with partial SI (e.g. [15,
16]) and the GP channel (e.g. [17]) have been studied more.
In this paper, the effect of partiality in SI at the transmitters

in achieving the rate regions of (i) Gaussian doubly dirty
MAC, (ii) Gaussian dirty MAC with a single dirty user and
(iii) Gaussian dirty MAC with common interference are
studied. It is shown that the achievable rate and capacity
regions are reduced because of the partiality in SI just the
same as in the Costa theorem for point to point SI channel
[5]. It is readily seen that our rate regions include the
regions of the MACs with full SI as special cases.

www.ietdl.org

IET Commun., 2013, Vol. 7, Iss. 11, pp. 1099–1108 1099
doi: 10.1049/iet-com.2012.0523 & The Institution of Engineering and Technology 2013



The rest of the paper is organised as follows. At the end of
this section, notations are stated and some basic terminologies
for lattices are reviewed. Section 2 includes the system
models and our results based on lattice strategies. In
particular, Section 2.1 is devoted to the Gaussian doubly
dirty MAC with partial SIT. The Gaussian dirty MAC with
a single dirty user and the helper problem with partial SIT
and the Gaussian dirty MAC with common partial SIT are
investigated in Sections 2.2 and 2.3, respectively. We have
conclusion in Section 3.

1.1 Notations and lattice coding

Throughout this paper, boldface letters and capital letters
denote vectors, for example, X, Y and discrete random
variables, for example, X, Y, respectively. A random variable
X takes values in a set X . ‖·‖ denotes the Euclidean norm of
vectors, and E .[ ] is used to denote the expectation. The
Gaussian distribution with mean μ and square deviation σ2 is
denoted by N(μ; σ2). u.c.e{.} and [x] + stands for the upper
convex envelope and max(0, x), respectively.
Now, we review briefly some basic terminology from

lattice theory that we will use in subsequent sections. An
n-dimensional lattice Λ which is specified by the generator
matrix G [ Rn×n, is the set of all integer linear
combinations of the basis (columns) vectors of the G. A
point l [ Rn belongs to the lattice if and only if it can be
written as l =G.i, where i [ Zn and
Z = 0, +1, +2, . . .{ }. The nearest neighbour quantiser
of a lattice Λ is defined by QL(x) W argminl[L x− l. The
set of all points in Rn which are closer to the lattice point l
than to any other lattice point is called the Voronoi region
of l. The fundamental Voronoi region V is the Voronoi
region of l = 0. The volumes of all Voronoi regions of
lattice Λ are the same as the volume of the fundamental
Voronoi region, that is, V = Vol V(L)( ) = �V dx. The
modulo-Λ operation is defined as the quantisation error of x
with respect to lattice Λ, that is

x mod L = x− QL(x) (1)

The modulo-code operation satisfies

x mod L+ y
[ ]

mod L = x+ y
[ ]

mod L (2)

The second moment per dimension of a uniform distribution
over V is given by s2

L = (((1/n) �V x2 dx)/V ). The
normalised second moment of the lattice Λ is defined
as G(L) = s2

L

( )
/ V (2/n)( )( )

, which is always greater than

(1/(2πe)). It is known [18] that when dimension n goes to
infinity, there exist good lattice quantisers Λn with
(approximately) sphere Voronoi regions such that G(Λn)→
(1/(2πe)). This means that we can model the quantisation
noise of a good lattice with a white Gaussian noise. The
Crypto lemma [19] states that for any x distributed over V
and independent of U, which is uniformly distributed over
V, (x +U )modΛ is independent of x and uniformly
distributed over V. Also, assume that D�Unif (V), that is, D
is an n-dimensional random vector distributed uniformly
over V. The differential entropy of D is as follows [13]

h(D) = log2 (V ) = log2
s2
L

G(L)

( )(n/2)

= n

2
log2

s2
L

G(L)

( )
(3)

Consequently, for good lattice quantisers, we have
h(D) ≃ (n/2) log2 2pes2

L

( )
. An extensive study of lattices

and lattice quantisation can be found in [20].

2 Main results

In this section, Gaussian doubly dirty MAC with partial SIT
(Section 2.1), Gaussian MAC with a single dirty user and the
helper problem with partial SIT (Section 2.2) and the
Gaussian dirty MAC with common partial SIT (Section 2.3)
are investigated. Actually, the effect of partial SI known
non-causally at the transmitters is examined. We show that
the achievable rate and capacity regions for cases with partial
SIT are reduced. It is readily seen that our results include the
regions of the MACs with full SI [13] as special cases.

2.1 Doubly dirty MAC with partial SI

In this part, the Gaussian doubly dirty MAC with partial SIT
(Fig. 3) is studied. Xi, i = 1, 2, is the channel input transmitted
by user i which is subjected to the power constraint Pi and the
channel output is given by

Y = X1 + X2 + S1 + S2 + Z

= X1 + X2 + S̃1 + S̃2 + A1 + A2 + Z (4)

where Z is an AWGN with zero mean and variance N
Z � N (0, N )
( )

. The interference signal Si, i = 1, 2, is i.i.d.
Gaussian with variance Qi(Si � N(0, Qi)). S̃i is the best
compressed representation of interference (Si) which is
non-causally known at the ith transmitter and satisfies (i)

E Si − S̃i
( )2[ ]

= E Ai

( )2[ ]
= Ei, (ii) Ai � N 0, Ei

( )
and (iii)

E S̃
2
i

[ ]
= E SiS̃i
[ ] = Ps̃i

, i = 1, 2. In the following

theorems, after obtaining an outer bound on the capacity
region of the Gaussian doubly dirty MAC with partial SI,

Fig. 1 Gaussian channel with additive interference known at the
transmitter

Fig. 2 Costa channel with partial SIT [5]

Fig. 3 Doubly dirty MAC with partial SIT
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achievable rate regions based on the lattice strategies are
derived.

2.1.1 Outer bound for the capacity of the doubly dirty
MAC with partial SIT

Theorem 1: Capacity region of the doubly dirty MAC with
two independent estimated interference sequences
S̃1 and S̃2 non-causally known at encoder 1 and encoder 2,
respectively, is contained in the following region as long as
Si and S̃i i = 1, 2( ) are strong (i.e. Qi, Ps̃i

� +1)

R1 + R2 ≤
1

2
log 1+ min P1, P2

( )
E1 + E2 + N

( )
(5)

Corollary 1: Theorem 1 is reduced to [13, Corollary 2] by
E1 = E2 = 0.

Proof: The proof is given in Appendix 1.

2.1.2 Inner bounds for the capacity of the doubly
dirty MAC with partial SIT: In the Gaussian doubly
dirty MAC with partial SI based on the lattice transmission
scheme (Fig. 4), encoder i, i = 1, 2, uses the lattice Λi = kiΛ
(where ki is a real number) with second moment s2

i = Pi
and fundamental Voronoi region Vi. The information of
user i is carried by Vi, where V 1 [ Unif V1

( )
and

V 2 [ Unif V2

( )
are independent. Let D1 and D2 be two

independent dither signals which are uniformly distributed
over V1 and V2, respectively. Decoder knows both D1 and
D2, whereas encoder i only knows dither signal Di. The
transmitted signals by encoder 1 and encoder 2 are
generated, respectively, as follows

X 1 = [V 1 − a1S̃1 + D1]modL1

X 1 = [V 2 − a2S̃2 + D2]modL2

where α1, α2∈ [0, 1]. The power constraints are satisfied
because for any Vi = vi, X i � Unif Vi

( )
, where Xi is

independent of Vi. The decoder, upon receiving Y, using
lattice Λr = krΛ, computes Y′ as follows

Y ′ = arY − gD1 − bD2

[ ]
modLr (6)

Note that, to achieve the desired results in each situation, we
need to determine the basic lattice Λ and the scalars α1, α2, αr,
k1, k2, kr, γ, β for the situation properly.

In the following theorems, it is provided conditions under
which lattice-strategies are optimal. By considering two
cases, imbalanced doubly dirty MAC with partial SIT
E1 + E2 + N ≤ ������

P1P2

√ −min P1, P2

( )( )
and nearly

balanced doubly dirty MAC with partial SIT
E1 + E2 + N ≥ ������

P1P2

√ −min P1, P2

( )( )
, the capacity and

achievable rate regions are given.

Theorem 2: In imbalanced case for P1≠ P2, capacity region
of the doubly dirty MAC with partial SI in transmitters, in
the limit of strong interference meets the outer bound of
Theorem 1 and is given by the set of all rate pairs (R1, R2)
satisfying

R1 + R2 ≤
1

2
log2 1+ min P1, P2

( )
E1 + E2 + N

( )
(7)

Corollary 2: Theorem 2 is reduced to [13, Theorem 2] by
E1 = E2 = 0.

Proof: The proof is given in Appendix 2.

In the following, an inner bound for the nearly balanced case
is derived. First, the symmetric (exactly balanced) case, that
is, P1 = P2 = P, and then, the general nearly balanced case is
considered.

Theorem 3: In exactly balanced case, achievable rate region
of the doubly dirty MAC with partial SIT is given by the
set of all rate pairs (R1, R2) satisfying

R1 + R2 ≤ u.c.e
1

2
log

1

2
+ P

E1 + E2 + N

( )[ ]+{ }
(8)

where u.c.e is the upper convex envelope with respect to (P/
(E1 + E2 +N )).

Corollary 3: Equation (8) in Theorem 3 is reduced to [13,
equation (75)] by E1 = E2 = 0.

Proof: The proof is given in Appendix 3.

Theorem 4: In general nearly balanced case, achievable rate
region of the doubly dirty MAC with partial SIT is given
for any interferences by the set of all rate pairs (R1, R2)
satisfying as follows

R1 + R2

≤ u.c.e
1

2
log2

P1 + P2 + E1 + E2 + N

2 E1 + E2 + N
( )+ ���

P1

√ − ���
P2

√( )2
( )[ ]+{ }

(9)

where the upper convex envelope is with respect to P1, P2.

Corollary 4: Theorem 4 is reduced to [13, Theorem 3] by E1 =
E2 = 0.

Corollary 5: Theorem 4 is reduced to Theorem 3 by
considering P1 = P2 = P.

Proof: The proof is given in Appendix 4.Fig. 4 Gaussian doubly dirty MAC with partial SIT
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2.2 MAC with a single dirty user with partial SI

Fig. 5 shows the extended model of Gaussian dirty MAC with
a single dirty user with partial SI and the helper problem,
where only user 2 has a message to send and the user 1
helps user 2 to transmit at the highest possible rate. The
input of decoder is Y = X1 + X2 + S1 + Z =
X1 + X2 + S̃1 + A1 + Z, where partial SI (S̃1) is only
known for user 1 (informed user) which satisfies (i)
E[(S1 − S̃1)2] = E1, (ii) S1 − S̃1

( ) = A1 � N 0, E1

( )
and (iii) E[S1S̃1] = E[S̃21] = Ps̃1

. In the following Theorems,
after deriving an outer bound for the capacity of this model,
inner bounds are obtained.

2.2.1 Outer bound for the capacity of Gaussian
MAC with a single dirty user with partial SIT

Theorem 5: Capacity region of the Gaussian MAC with a
single dirty user with partial SIT and helper problem
R1 = 0
( )

is contained in the following region as long as
S̃1 and S1 are strong (i.e. Q1, Ps̃1

� +1)

R2 ≤
1

2
log 1+min P1, P2

( )
E1 + N

( )
(10)

Corollary 6: Equation (10) is reduced to [13, Corollary 1] by
considering E1 = 0.

Proof:We can use the proof of Theorem 1. Note that here we
have X1 = f S̃1

( )
and X2 = g(W2). □

2.2.2 Inner bounds for the capacity of Gaussian MAC
with a single dirty user and with partial SIT: A
lattice-based transmission scheme is used for the Gaussian
MAC with a single dirty user and with partial SIT. Any
good code for quantisation and channel coding is used by
the informed user, whereas any good code for channel
coding is used by the uninformed user. Same as the
previous section, the results depend on how balanced the
SNRs are. Hence, it is defined imbalanced case, where N +
E1≤ |P1− P2|, and nearly balanced case, where N + E1≥ |
P1− P2|. Using lattice-alignment transmission schemes,
achievable rate regions are derived for these two cases.

Theorem 6: Considering a MAC with a single dirty user and
partial SI where N + E1≤ |P1− P2| (imbalanced case),
capacity of the helper problem (R1 = 0) in the limit of
strong interference is derived as follows

Chelper P1, P2

( ) = 1

2
log 1+min P1, P2

( )
E1 + N

( )
(11)

Corollary 7: Theorem 6 is reduced to [13, Theorem 4] by
E1 = 0.

Proof: The proof is given in Appendix 5.

Theorem 7: Capacity region of the helper problem in the
nearly balanced case satisfies

Chelper P1, P2, N
( )

≥ u.c.e
1

2
log 1+ 4P1P2

P2 − P1 + E1 + N
( )2+4P1 E1 + N

( )( ){ }
(12)

where the upper convex envelope is with respect to P1 and P2.
If we consider exactly balanced case (nearly balanced case

with equal power), then we will have Chelper(P1, P2, N )≥ u.c.
e{(1/2)log(1 + ((4(SNRP)2)/(1 + 4SNRP)))}, where signal to
noise ratio-partial case (SNRP) = (P/(E1 +N )) and the upper
convex envelope is with respect to SNRP.

Corollary 7: Theorem 7 is reduced to [13, Lemma 5] by
considering E1 = 0.

Proof: The proof is given in Appendix 6.

2.3 MAC with partial common SIT

Fig. 6 shows the extended model of Gaussian dirty MAC with
partial common SIT. Partial SI S̃c

( )
instead of exact SI (Sc) is

known non-causally at both transmitters which satisfies
E[ Sc − S̃c

( )2] = E1 and E[ScS̃c] = E[S̃2
c] = Ps̃c

. The
channel model is as Y =X1 +X2 + Sc + Z. The capacity
region of Gaussian MAC with partial common SIT is
achieved using random binning and lattice strategies.
First, random binning is used. Using DPC with partial SI

(like [5]) twice for each user, (R1, R2) is achieved. The
auxiliary random variables are considered as follows (as in
the point to point case [5]), U1 = X1 + a1S̃c where X1 and
S̃c are independent and S̃c satisfies E[ Sc − S̃c

( )2] =
E1 , E[S̃2c] = E[ScS̃c] and U2 = X2 + a2

˜̂Sc where Ŝc =
Sc − a1S̃c, X2 and ˜̂Sc are independent and ˜̂Sc satisfies

E[(Ŝc − ˜̂Sc)2] = E2 , E[̃Ŝ2c] = E[Ŝc̃Ŝc]. First, the model of
writing on dirty paper for user 1 is considered. The channel
model is supposed to be Y = X1 + Sc + Zeq where Zeq = X2 +
Z. Then, similar to [5], α1 = ((P1)/(P1 + P2 +N + E1)) and R1 =
(1/2)log(1 + ((P1)/(P2 +N + E1))) can be obtained.
Then, the model of writing on dirty paper for user 2 is

investigated. Considering Ŝc = Sc − a1S̃c, the equivalent
channel is as Y ′ = Y − U1 = X2 + Ŝc + Z. Hence, user
2 can achieve R2 by using α2 = ((P2)/(P2 + E2 + N )) as R2 =
(1/2)log(1 + ((P2)/(E2 +N ))). Then, the corner point (13) of

Fig. 5 MAC with helper problem and a single dirty user with
partial SIT Fig. 6 MAC with common partial SI

www.ietdl.org

1102 IET Commun., 2013, Vol. 7, Iss. 11, pp. 1099–1108
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-com.2012.0523



the pentagon is achieved

R1, R2

( )= 1

2
log 1+ P1

P2+N+E1

( )
,

1

2
log 1+ P2

E2+N

( )( )
(13)

In the following, lattice strategy is used for deriving the
capacity region of Gaussian MAC with common SIT. User
1 and user 2 use the lattices Λ1 and Λ2 with second
moments P1 and P2, respectively. The transmitted signals
by encoders are as follows

X1 = V 1 − a1S̃c + D1

[ ]
mod L1;

X 2 = V 2 − a2
˜̂Sc + D2

[ ]
mod L2

(14)

where S̃c is the estimated Sc, Ŝc = Sc − a1S̃c,
˜̂Sc is the

estimated

E Sc − S̃c

( )2[ ]
= E1, E S̃

2
c

[ ]
= E ScS̃c

[ ]
and

E Ŝc − ˜̂Sc

( )2[ ]
= E2 , E

˜̂S2
c

[ ]
= E Ŝc

˜̂Sc

[ ]

Fig. 7 shows the decoder of Gaussian MAC with common
SIT. In the first stage, the decoder calculates Y’ as follows

Y ′ = a1Y − D1

[ ]
modL1

= a1 X 1 + X2 + Sc + Z
( )− D1

[ ]
modL1 (15)

= [V 1 −
(
1− a1

)
X1 + a1

(
Sc − S̃c

)
+ a1X 2 + a1Z

]
modL1 (16)

The rate achieved by user 1 is given as follows

R1 =
1

n
I V 1; Y

′( ) = 1

n
h Y ′( )− h Y ′|V 1

( ){ }
(17)

≥ 1

2
log

P1

G L1

( )( )

− 1

2
log 2pe 1− a1

( )2
P1 + a2

1 P2 + E1 + N
( )( )( )

(18)

= 1

2
log

P1

1− a1

( )2
P1 + a2

1 P2 + E1 + N
( )( )

− 1

2
log 2peG L2

( )( )
(19)

Using the optimal minimum mean-square error (MMSE)
factor for user 1, a∗

1 = P1

( )
/ P1 + P2 + E1 + N
( )( )

is
obtained. For lattice that is good for quantisation, the
achievable rate is given by R1 ≤ (1/2)log(1 + ((P1)/(P2 + E1

+N ))).
In the second stage, the effective noise is considered as

follows

Ẑeq = Y ′ − V̂1

[ ]
modL1

= − 1−a1

( )
X 1+a1 Sc− S̃c

( )+a1X2+a1Z
[ ]

modL1

(20)

Since

1

n
E ‖− 1− a1

( )
X 1 + a1 Sc − S̃c

( )+ a1 X2 + Z
( )‖2{ }

= P1 P2 + N + E1

( )
P1 + P2 + N + E1

≤ P1

we have

Ẑeq = − 1− a1

( )
X 1 + a1 Sc − S̃c

( )+ a1 X2 + Z
( )

with high probability. Hence, the decoder calculates

Ỹ = 1− a1

( )
Y + Ẑeq (21)

= 1− a1

( )
X 1 + X2 + Sc + Z
( )− 1− a1

( )
X 1

+ a1 Sc − S̃c

( )+ a1(X2 + Z) (22)

= X2 + Sc − a1S̃c + Z = X2 + Ŝc + Z (23)

where Ŝc = Sc − a1S̃c. In the third stage, the decoder
calculates

Y ′′ = a2Ỹ − D2

[ ]
mod L2

= a2 X 2 + Ŝc + Z
( )− D2

[ ]
mod L2 (24)

= V2 − 1− a2

( )
X 2 + a2 Ŝc − ˜̂Sc

( )
+ a2Z

[ ]
mod L2

(25)Fig. 7 Decoder of MAC with common interference [13]
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The rate achieved by user 2 is given by

R2 =
1

n
I V 2; Y

′′( ) = 1

n
h Y ′′( )− h Y ′′|V 2

( ){ }
(26)

≥ 1

2
log

P2

1− a2

( )2
P2 + a2

2 E2 + N
( )( )

− 1

2
log 2peG L2

( )( )
(27)

Using the optimal MMSE factor for user 2, we have
a∗
2 = P2

( )
/ P2 + E2 + N
( )( )

. For lattice that is good for
quantisation, the achievable rate is given by R2≤ (1/2)log(1
+ ((P2)/(E2 +N ))).
Similarly, we can obtain the achievability of the second

corner point ((1/2)log(1 + ((P1)/(E1 +N ))), (1/2)log(1 +
((P2)/(P1 + E2 +N )))) by first decoding user 2 and then
decoding user 1. Using time sharing for the corner points,
the capacity region follows. Supposing E1 = E2 = 0, we can
see the results of [13, section VIII].

3 Conclusion

In this paper, Gaussian doubly dirty MAC, Gaussian MAC
with common interference and the helper problem were
studied. Since at high SNR with strong interference
regime, random binning strategy is not able to give
positive rates, achievable rate regions and outer bounds
of these models were obtained by using lattice strategy.
It is shown that in some cases (based on how the SNRs
are balanced), capacity is achieved. It was shown that
partiality in SI at the transmitters reduces the achievable
rate or capacity regions the same as that occurs for the
Costa Gaussian channel.
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5 Appendix 1

Proof of Theorem 1: We bound the sum rate R1 + R2 as
follows

n R1 + R2

( )≤ h W1, W2

( )
= h W1, W2|Y
( )+ I W1, W2; Y

( )≤ n1n + I W1, W2; Y
( )

(28)

= n1n + I W1, W2, S̃1, S̃2; Y
( )− I S̃1, S̃2; Y |W1, W2

( )
= n1n + h(Y )− h Y |W1, W2, S̃1, S̃2

( )
− h S̃1, S̃2|W1, W2

( )+ h S̃1, S̃2|W1, W2, Y
( )

= n1n + h(Y )− h A1 + A2 + Z
( )

− h S̃1, S̃2|W1, W2

( )+ h S̃1, S̃2|W1, W2, Y
( )

(29)

= n1n + h(Y )− h A1 + A2 + Z
( )− h S̃1, S̃2

( )
+ h S̃1|W1, W2, Y
( )+ h S̃2|W1, W2, Y , S̃1

( )
(30)

≤ n1n + h(Y )+ h S̃1|Y
( )+ h S̃2|W1, W2, Y , S̃1

( )
− h A1 + A2 + Z
( )− h S̃1, S̃2

( )
(31)

≤ n1n + h Y |S̃1

( )+ h S̃1

( )+ h X2 + A1 + A2 + Z
( )

− h A1 + A2 + Z
( )− h S̃1

( )− h S̃2

( )
(32)

≤ n1n + h X1 + X2 + A1 + A2 + S̃2 + Z
( )

+ h X2 + A1 + A2 + Z
( )− h A1 + A2 + Z

( )− h S̃2

( )
≤ n1n +

n

2
log

( ���
P1

√ + ���
P2

√ + ���
E1

√ + ���
E2

√ + ����
Ps̃2

√( )2
+N

Ps̃2

.

×P2 + E1 + E2 + N

E1 + E2 + N

)
(33)
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where εn→ 0 as n→∞. Here, (28) is because of Fano’s
inequality, (29) follows from (4) and the fact that

E S̃
2
i

[ ]
= E SiS̃i
[ ] = Ps̃i

, i = 1, 2 and Xi, is a function of

S̃i, Wi

( )
, (30) follows from mutually independence of

S̃1, S̃2, W1, W2

{ }
, (31) comes from the fact that

conditioning reduces entropy, (32) follows from (4) and
the facts that X1 is a function of S̃1, W1

( )
and the

conditioning does not increase entropy, and (33) follows
from the fact that Gaussian distribution maximises
differential entropy for a fixed second moment and
Cauchy–Schwarz inequality. On the other hand, we can
also rewrite (30)–(33) as follows

n R1 + R2

( )
≤ n1n + h(Y )− h A1 + A1 + Z

( )− h S̃1, S̃2

( )
+ h S̃2|W1, W2, Y
( )+ h S̃1|W1, W2, Y 1, S̃2

( )
≤ n1n + h(Y )+ h S̃2|Y

( )+ h S̃1|W1, W2, Y , S̃2

( )
− h A1 + A2 + Z
( )− h S̃1, S̃2

( )
≤ n1n + h Y |S̃2

( )+ h S̃2

( )+ h X1 + A1 + A2 + Z
( )

− h A1 + A2 + Z
( )− h S̃1

( )− h S̃2

( )
≤ n1n + h X1 + X2 + A1 + A2 + S̃1 + Z

( )
+ h X1 + A1 + A2 + Z
( )− h A1 + A2 + Z

( )− h S̃1

( )
≤ n1n +

n

2
log

( ���
P1

√ + ���
P2

√ + ���
E1

√ + ���
E2

√ + ����
Ps̃1

√( )2
+N

Ps̃1

.

×P1 + E1 + E2 + N

E1 + E2 + N

)
(34)

Then for asymptotic case of strong interference
(Ps̃1

, Ps̃2
� +1), we obtain R1 + R2≤ (1/2)log(1 + ((min

(P1, P2))/(E1 + E2 + N ))).

6 Appendix 2

Proof of Theorem 2: The converse part has been proved in
Theorem 1. In the following, achievability regions are
studied. Four cases are considered, the first case user 1 is a
helper for user 2 where P1≥ P2((P2 +N + E1 + E2)/(P2))

2,
the second case user 1 is a helper for user 2 where P2≥
P1((P1 +N + E1 + E2)/(P1))

2, the third case user 2 is a helper
for user 1 where P1≥ P2((P2 +N + E1 + E2)/(P2))

2,
the fourth case user 2 is a helper for user 1 where P2≥
P1((P1 +N + E1 + E2)/(P1))

2. Now, the achievability for the
first case is investigated.
Applying the lattice transmission scheme and considering

α1 = k1 = 1, k2 = α2, V1 = 0 and s2
1 = P1, s2

2 = a2
2P1, the

encoder 1 and encoder 2 send X1 and X2, respectively, that
are generated as follows

X 1 = [−S̃1 + D1]mod L1

X 2 = [V 2 − a2S̃2 + D2]mod L2 (35)

After receiving Y, the decoder sets kr = γ = αr = α2, β = 1 and
computes Y′ = [α2(Y−D1)−D2]mod Λ2 as follows:

Y ′ = a2 X 1 + X2 + S1 + S2 + Z − D1

( )− D2

[ ]
mod L2

(36)

= V 2 − 1− a2

( )
X 2 + a2 S1 − S̃1

( )+ a2 S2 − S̃2

( )[
+a2Z − a2QL1

−S̃1 + D1

( )]
mod L2 (37)

= V 2 − 1− a2

( )
X 2 + a2 S1 − S̃1

( )+ a2 S2 − S̃2

( )[
+a2Z

]
mod L2 (38)

where (37) follows from (1), (2) and (35). Equation (38)
follows from the fact that a2QL1

−S̃1 + D1

( )
[ L2, because

Λ1 =Λ and Λ2 = α2Λ. In fact, the interference signal with
Λ2 using the modulo-Λ2 operation is aligned. The rate
achieved by user 2 is given by

R2 =
1

n
I V 2; Y

′( ) = 1

n
h Y ′( )− h Y ′|V 2

( ){ }
(39)

= 1

n
h Y ′( )− h [− 1− a2

( )
X 2 + a2 S1 − S̃1

( )({
+a2 S2 − S̃2

( )+ a2Z]mod L2

)}
(40)

≥ 1

2
log2

P2

G L2

( )( )
− 1

2
log2

× 2pe 1− a2

( )2
P2 + a2

2 E1 + E2 + N
( )( )( )

(41)

= 1

2
log2

P2

1− a2

( )2
P2 + a2

2 E1 + E2 + N
( )( )

− 1

2
log2 2peG L2

( )( )
(42)

where (41) is because of (i) Y’ is uniformly distributed over
V2, (ii) for fixed second moment, Gaussian distribution
maximises the entropy and (iii) modulo operation reduces
the second moment. For P1 = P2((P2 +N + E1 + E2/P2))

2,
using the optimal MMSE factor for user 2, we have
∂R2/∂a2 = 0, a∗

2 = P2/P2 + E1 + E2 + N . Hence, as long
as Λ2 is a good lattice for quantisation, we have

R2 ≤
1

2
log2 1+ P2

E1 + E2 + N

( )
(43)

Considering the second case, similarly, the following rate
can be achieved.

R2 ≤
1

2
log 1+ P1

E1 + E2 + N

( )
(44)
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From (43) and (44), the achievable rate for the point (0, R2)
satisfies (see (45))

Similarly, for the third and fourth cases, the achievable rate
region for the point (R1, 0) can be given by (see (46))

Using time sharing between (45) and (46) for
E1 + E2 + N ≤ ������

P1P2

√ −min P1, P2

( )
and P1 ≠ P2, any

rate pair in the straight line R1 + R2≤ (1/2)log(1 + ((min(P1,
P2))/(E1 + E2 +N ))) is achievable and the proof is complete.

7 Appendix 3

Proof of Theorem 3: Using the lattice-alignment transmission
scheme, we consider the case that k1 = k2 = kr = β = γ = 1 and
α1 = α2 = αr = α. The encoder 1 and encoder 2 send X1 and
X2, respectively, generated as follows

X1 = [V 1 − aS̃1 + D1]mod L

X 2 = [V 2 − aS̃2 + D2]mod L (47)

The receiver calculates Y’ = [αY−D1−D2]modΛ. Using (2)
and (47), the equivalent channel is given by

Y ′ = V 1 + V 2 − (1− a)X 1 − (1− a)X 2

[
+a S1 − S̃1

( )+ a S2 − S̃2

( )+ aZ
]
mod L (48)

The sum of achievable rates is given by

R1 + R2 =
1

n
I V 1V 2; Y

′( ) = 1

n
h Y ′( )− h Y ′|V 1V 2

( ){ }
(49)

≥ 1

2
log

P

G(L)

( )
− 1

2
log2 2pe 2(1− a)2P + a2 E1 + E2 + N

( )( )( )
(50)

= 1

2
log2

P

2(1− a)2P + a2 E1 + E2 + N
( )( )

− 1

2
log 2peG(L)
( )

(51)

Using the optimal MMSE factor, we achieve α* = ((2P)/(2P
+ E1 + E2 +N )). Therefore any rate pair satisfying (52) is

achievable

R1 + R2 ≤
1

2
log2

1

2
+ P

E1 + E2 + N

( )[ ]+
(52)

Clearly, using a time sharing argument, (8) can be
achieved.

8 Appendix 4

Proof of Theorem 4: For proof of this theorem, considering
user 2 as a helper, two cases P1≤ P2≤ P1((P1 +N + E1 +
E2)/(P1))

2 and P2≤ P1 ≤ P2((P2 +N + E1 + E2)/(P2))
2 are

investigated. Supposing the case one, achievable region for
the rate pair (R1, 0) is derived as follows

R1 =
1

2
log2

P1 + P2 + E1 + E2 + N

2 E1 + E2 + N
( )+ ���

P1

√ − ���
P2

√( )2
( )

(53)

Using the lattice transmission scheme, it is considered k1 = kr
= β = ((α1)/(α2)), k2 = γ = 1, αr = α1, V2 = 0 and
s2
2 = P2 , s2

1 = a2
1

( )
/ a2

2

( )( )
P2. The encoders send

X1 = V 1 − a1S̃1 + D1

[ ]
mod L1

X2 = −a2S̃2 + D2

[ ]
mod L2 (54)

The receiver calculates Y′ = [α1Y−D1− βD2]mod Λ1. Using
(54), (1), (2) and this point that
a1

( )
/ a2

( )( )
QL2

−a2S̃2 + D2

( )
[ L1, we have

Y ′ = V 1 − 1− a1

( )
X 1 −

a1

a2
1− a2

( )
X 2

[
+a1 S1 − S̃1

( )+ a1 S2 − S̃2

( )+ a1Z
]
mod L1 (55)

Since X1 is independent of V1 and X2 is independent of V1 and
X1, then R1 can be obtained as follows

R2 =
1

2
log2 1+ P1

N + E1 + E2

( )
, P2 ≥ P1

P1 + N + E1 + E2

P1

( )2

1

2
log2 1+ P2

N + E1 + E2

( )
, P1 ≥ P2

P2 + N + E1 + E2

P2

( )2

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (45)

R1 =
1

2
log2 1+ P1

N + E1 + E2

( )
, P2 ≥ P1

P1 + N + E1 + E2

P1

( )2

1

2
log2 1+ P2

N + E1 + E2

( )
, P1 ≥ P2

P2 + N + E1 + E2

P2

( )2

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (46)
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R1 =
1

n
I V 1; Y

′( ) = 1

n
h Y ′( )− h Y ′|V 1

( ){ }
= 1

n

{
h Y ′( )− h

[
− 1− a1

( )
X 1 −

a1

a2
1− a2

( )
X 2.

(

+ a1 S1 − S̃1

( )+ a1 S2 − S̃2

( )+ a1Z
]
modL1

)}
(56)

≥ 1

2
log2

P1

G L1

( )( )

− 1

2
log2

(
2pe
(
1− a1

( )2
P1 +

a1

a2

( )2

1− a2

( )2
P2+a2

1 E1 + E2 + N
)( ))

(57)

Considering a1

( )
/ a2

( )( ) = ��������������
P1

( )
/ P2

( )( )√
and G(Λ1)→ (1/

(2πe)) as n→∞ (good lattice), a∗
1 =

���
P1

√((���
P1

√ + ���
P2

√( ))/ P1 + P2 + E1 + E2 + N
( )( )) can be found

by using the optimal MMSE factor. Therefore the rate
region is achieved as (53).
Similarly, the rate pair (R1, 0) can be achieved for the

second case as follows

R1, 0
( )= 1

2
log2

P1+P2+E1+E2+N

2 E1+E2+N
( )+ ���

P1

√ − ���
P2

√( )2
( )[ ]+

, 0

( )
(58)

Owing to the symmetry, it can be shown that the achievable
rate of the point (0, R2) for E1 + E2+ N ≥ ������

P1P2

√ −
min P1, P2

( )
is derived as follows

0, R2

( )= 0,
1

2
log2

P1+P2+E1+E2+N

2 E1+E2+N
( )+ ���

P1

√ − ���
P2

√( )2
( )[ ]+( )

(59)

Using a time sharing between the achievable rate pairs in (58)
and (59), the proof is complete.

9 Appendix 5

Proof of Theorem 6: The converse part was proved in
Theorem 5. In the followings, the achievability for two
cases, P2≥ P1 + E1 +N and P1≥ P2 + E1 + N is investigated.
In the first stage, the case P2≥ P1 + E1 + N is studied. Using
the lattice-alignment transmission scheme, we have

k1 = kr =
��������������
P1

( )
/ P2

( )( )√
, k2 = 1 (i.e. L1 = Lr =��������������

P1

( )
/ P2

( )( )√
L and L2 = L). We set V1 = 0, D2 = 0, γ = 1,

α2 = 0, β = 0 and αr = α1. The encoder 1 and encoder 2 send
X1 and X2 generated as follows, respectively

X1 = −a1S̃1 + D1

[ ]
mod L1; X 2 = V 2 (60)

where the information of user 2 is carried by V 2 � Unif V2

( )
and the dither signal is denoted by D1 � Unif V1

( )
. The

transmitted signal has uniform distribution over V1, that is,
X 1 � Unif V1

( )
, from the dithered quantisation property.

The receiver calculates Y′ as follows

Y ′ = a1Y − D1

[ ]
mod L1

= a1V 2 − 1− a1

( )
X 1 + a1 S1 − S̃1

( )+ a1Z
[ ]

mod L1

(61)

where X1 and V2 are independent and a1V 2 � Unif V1

( )
. The

rate achieved by user 2 can be derived as follows

R2 =
1

n
I V 2; Y

′( ) = 1

n
h Y ′( )− h Y ′|V 2

( ){ }
(62)

≥ 1

2
log

P1

1− a1

( )2
P1 + a2

1 E1 + N
( )( )

− 1

2
log 2peG L1

( )( )
(63)

For P2 = P1 +N + E1, using the optimal MMSE factor for user
2, we have a∗

1 = P1

( )
/ P1 + E1 + N
( )( ) = P1

( )
/ P2

( )( )
.

Consequently, for lattice that is good for quantisation and
AWGN channel coding, the achievable rate is given by
R2≤ (1/2)log(1 + ((P1)/(E1 +N ))).
Similarly, the achievable rate for the second case (where

P1≥ P2 +N + E1), can be obtained as R2≤ (1/2)log(1 +
((P2)/(E1 +N ))).

10 Appendix 6

Proof of Theorem 7: Using the lattice-alignment transmission

scheme, we have k1 = kr =
��������������
P1

( )
/ P2

( )( )√
, k2 = 1

L1 = Lr =
��������������
P1

( )
/ P2

( )( )√
L and L2 = L

( )
. We set V1 =

0, D2 = 0, γ = 1, α2 = 0, β = 0 and αr = α1. The transmitted
signals by encoders are as follows.

X1 = −a1S̃1 + D1

[ ]
mod L1; X 2 = V 2 (64)

The receiver calculates Y′ as follows

Y ′ = a1Y − D1

[ ]
mod L1

= a1V 2 − 1− a1

( )
X 1 + a1 S1 − S̃1

( )+ a1Z
[ ]

mod L1

(65)

The scalar α1 is determined such that E{[a1V 2−(1− a1)X 1 + a1(S1 − S̃1) + a1Z]2} = P1. Hence a2
1 P2+
(

N + E1) + 1− a1

( )2
P1 = P1, where α1 = ((2P1)/(P1 + P2 +

E1 +N )). For lattice Λ that is good for quantisation and
AWGN channel coding, the rate achieved by user 2 is
obtained as follows

R2 =
1

n
I V 2; Y

′( ) = 1

n
h Y ′( )− h Y ′|V 2

( ){ }
(66)

≥ 1

2
log

P1

1− a1

( )2
P1 + a2

1 E1 + N
( )( )

+ 1 (67)
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= 1

2
log 1+ 4P1P2

P2 − P1 + E1 + N
( )2+4P1 E1 + N

( )( )
+ 1

(68)

where (67) is because of (i) Y′ is uniformly distributed over
V1, (ii) for fixed second moment, Gaussian distribution
maximises the entropy, (iii) modulo operation reduces the
second moment and (v) Λ1 is a good lattice for quantisation.
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