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Abstract. We consider social systems in which agents are not only characterized by their states but also
have the freedom to choose their interaction partners to maximize their utility. We map such systems onto
an Ising model in which spins are dynamically coupled by links in a dynamical network. In this model there
are two dynamical quantities which arrange towards a minimum energy state in the canonical framework:
the spins, si, and the adjacency matrix elements, cij . The model is exactly solvable because microcanonical
partition functions reduce to products of binomial factors as a direct consequence of the cij minimizing
energy. We solve the system for finite sizes and for the two possible thermodynamic limits and discuss the
phase diagrams.

PACS. 87.23.Ge Dynamics of social systems – 89.75.Fb Structures and organization in complex systems
– 05.90.+m Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems

1 Introduction

Properties of many statistical systems are not solely char-
acterized by the states of their constituents, but also de-
pend crucially on how these interact with each other, i.e.
their network (linking) structure. The way networks func-
tion can often not be fully understood by their linking
structure alone because function may depend heavily on
the internal states of individual nodes. Especially social
and economical interactions are of this kind. Not only ac-
tions (states) matter but the possibility of choice with
whom to interact (linking) plays a crucial role in socio-
economical dynamics [1]. It is therefore tempting to study
the co-evolution of network structure and internal states.
In the simplest case, this can be done in the framework
of the Ising model, which immediately reminds of spin-
glass models, such as the SK-model [2] or random-bond
models, see e.g. [3]. Ising models where both, spins and
interactions, are governed by dynamical rules have been
studied assuming different timescales of evolution, where
typically interaction topology ‘slowly’ adapts in a pre-
determined way on ‘fast’ relaxing spins [4]. Recently, such
systems have been analyzed with the replica approach
in the grand-canonical ensemble assuming that the in-
teraction topology also minimizes the energy of the sys-
tem [5]; the coupling of both, spins and interactions to
heat-baths at different temperatures can be treated in the
respective formalism as well [6]. Note that these doubly-
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dynamical models are in marked contrast to the Ising
model on fixed network structures, see e.g. [9]. Comple-
mentarily the formation of network structure driven by
various Hamiltonians has been investigated in some de-
tail [10]. We think that a full understanding of many pro-
cesses taking place in networks can only be achieved in
a combined approach. In the following we show that a
spin system in the canonical ensemble where both, linking
structure (given by the adjacency matrix cij) and spins si,
minimize the energy, can be exactly solved since partition
functions reduce to products of binomials.

The following model is classically phrased in terms of
magnetization of Ising spins. However, the main idea is
that it can be one-to-one related to economic terminol-
ogy. Magnetization, m, correspond to market shares in
a situation of a two-company world. Think for example
that there exist two telephone providers, A and B. The
monthly cost for each individual depends on its local con-
nectivity (telephone call network) and on the costs per
call (intra-provider and out of networks calls) fixed by the
provider. Here the state of an individual, si, being cus-
tomer of company A would relate to spin up, customers of
firm B relate to spin down. Connectivity, cij , is determined
by who calls whom. It is assumed that fully rational agents
minimize their costs. The amount of rationality is mod-
eled below by temperature, T . The external field, h, in the
following relates to external biases, such as asymmetries
of PR activity of firms. There are no conceptual problems
to extend the methodology of the present work to e.g. the
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Potts model, reflecting a more realistic situation of multi-
ple companies in a market.

2 The model

We study the Hamiltonian

H(cij , si) = −J
∑

i>j

cijsisj − h
∑

i

si, (1)

where sums are taken over all N nodes of the system. The
position of the links in the adjacency matrix cijε{0, 1} is
a dynamical variable. The system has thus two degrees of
freedom both minimizing energy: the orientation of the in-
dividual spins siε{−1, 1} as usual, and the linking of spins,
cij . cij = 1(0) means nodes i and j are (un)connected.
We consider undirected networks (cij = cji), the case of
directed networks is a trivial extension as pointed out be-
low. We denote the number of spins pointing upward by
n↑ =

∑
i θ(si), the number of links by L =

∑
i<j cij , mag-

netization m = 1
N

∑
i si = 2n↑−N

N , connectivity c = L
N ,

and connectedness ϕ = L
N2 . In the grand-canonical en-

semble this Hamiltonian was studied in [5] by use of the
replica method. In this work we focus on the canonical
framework.

We start our analysis with the microcanonical parti-
tion function for energy E

Ω(E, N, L, h) =
∑

{cij}

∑

{si}
δ(H(cij , si) − E)

=
N∑

n↑=0

Ω(N, n↑)
∑

{cij}
δ(H(cij , n↑) − E)

=
N∑

n↑=0

Ω(N, n↑)Ω(E, N, L, h, n↑), (2)

where Ω(N, n↑) is the number of configurations for a given
n↑. Ω(E, N, L, h, n↑) denotes the microcanonical partition
function for a fixed n↑.

In equation (2) the calculation becomes greatly simpli-
fied when realizing that a fixed number of spins pointing
upwards, n↑, alone is sufficient to determine the spin-state
of the system since one deals with all the different topolo-
gies for a given value of n↑. In other words, the crucial
observation is that the exact spin-configuration {si} loses
its relevance because the topology of the network is not
fixed. In this case partition functions simply reduce to bi-
nomial factors,

Ω(N, n↑) =
(

N

n↑

)
,

N∑

n↑=0

(
N

n↑

)
= 2N , (3)

and the remaining task is to determine Ω(E, N, L, n↑).
To find the number of microstates leading to energy E
for fixed n↑, the only relevant physical fact is whether a
link � connects two spins of (un)equal orientation, thus

contributing a unit −J (J) to the total energy. The pos-
sible energy states are Eε{−LJ − Nhm,−LJ + 2J −
Nhm, ..., LJ − 2J − Nhm, LJ − Nhm}, where the lowest
energy level, −LJ − Nhm, is realized if all links connect
spins of equal orientation. In general, if k links connect
spins of equal orientation (L − k links connect spins of
different orientation), E = LJ − 2kJ −Nhm. It is easy to
see that the number of possible ’positions’ of linking spins
of equal orientation, ae, and unequal orientation, au, is
given by

ae(N, n↑) =
1
2
(n↑(n↑ − 1) + (N − n↑)(N − n↑ − 1))

au(N, n↑) = n↑(N − n↑), (4)

for undirected networks. Directed networks trivially fol-
low from adir

e (N, n↑) = 2ae(N, n↑) and adir
u (N, n↑) =

2au(N, n↑), because while in the undirected case, 0 < L <
N(N − 1)/2, in the directed case we have, 0 < Ldir <
N(N−1). Each link positioned in ae(u)(N, n↑) contributes
−J (J) to the total energy E. Given equation (4), the mi-
crocanonical partition function for given n↑ and the total
partition function read

Ω(E, N, L, h, n↑) =
(

ae(N, n↑)
(LJ−E−Nhm)

2J

)(
au(N, n↑)

(LJ+E+Nhm)
2J

)
,

(5)

Ω(E, N, L, h) =
N∑

n↑=0

(
N

n↑

)(
ae(N, n↑)

(LJ−E−Nhm)
2J

)

×
(

au(N, n↑)
(LJ+E+Nhm)

2J

)
. (6)

We can now directly approach the problem of calculating
the canonical partition function Z(T, N, L, n↑) of a system
with fixed n↑ via the Laplace transform,

Z(β, N, L) =
∑

E

∑

n↑

(
N

n↑

)
Ω(E, N, L, h, n↑)e−βE . (7)

Performing the energy summation the exact solution is

Z(β, N, L, h, n↑) = eLJβ+Nhmβ Γ (1 + ae)
Γ (1 + L)Γ (1 + ae − L)

× 2Φ1(−au,−L, 1 + ae − L, e−2Jβ),
(8)

with 2Φ1(−a, b,−c, x) =
∑a

k=0
(−a)k(b)kxk

(−c)kk! the hypergeo-
metric function and Γ (x), the Gamma function. The total
canonical partition function finally is

Z(β, N, L, h) =
N∑

n↑=0

(
N

n↑

)
Z(β, N, L, h, n↑), (9)

and all thermodynamic quantities of interest are given ex-
actly for finite sized systems, of (fixed) dimensions L and
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Fig. 1. Internal energy for N = 100, and connectivities
c = 1, 3, 6. Solid lines correspond to the exact finite size so-
lution, equation (9). Symbols are the results from a Monte
Carlo simulation of the canonical ensemble pertaining to the
Hamiltonian of equation (1). Inset: maximum of magnetiza-
tion, m̄ as a function of T (lines exact, symbols MC).

N . In Figure 1 we show the internal energy U and magne-
tization as a function of temperature for different values
of connectivity c as calculated from equation (9). Perfect
agreement with Monte Carlo simulations of finite sized
systems is found, where rewiring and spin-flipping have
been implemented by the Metropolis algorithm. We note
that for low connectivities the obtained solutions are in
very good agreement with the result of independent spins,
i.e., U = c tanh(β), as expected.

3 Thermodynamic limits

Assuming large N , with Stirling’s approximation in the
form

(
a
b

) ∼ [
(b/a)b/a (1 − b/a)1−b/a

]−a
, and the notation

y = E
LJ , equation (7) reads – using m instead of n↑

Z = 2N−2NL(2ϕ)−L

∫ 1

−1

dm

∫ 1

−1

dy [I(m, y, L, N)]L ,

(10)
with

I(m, y, L, N)= exp(−βJy)
(
1 − m2

)− 1
2c

(
1 − m

1 + m

) m
2c

×
(

1 − m4

1 − y2

) 1
2

(
(1 − y)(1 − m2)
(1 + y)(1 + m2)

) y
2

×
(

1 − 2ϕ
1 − y

1 + m2

)− 1
4ϕ (1+m2−2ϕ(1−y))

×
(

1 − 2ϕ
1 + y

1 − m2

)− 1
4ϕ (1−m2−2ϕ(1+y))

, (11)

where c and ϕ are shorthands for L/N , and L/N2, respec-
tively; h is set to zero for simplicity. In the thermodynamic

Fig. 2. Logarithm of equation (11) in the m − y plane for
ϕ = 0.4 and c = 20 000. The forbidden zones are clearly visible.
The maximum is always attained within the allowed zone.

limit Z is reasonably approximated by the maximal con-
figuration, i.e. the solution to dI/dy = 0, which is

ymax =
−1 − m2t +

√
(1 + m2t)2 − 8ϕ(m2 − (2ϕ − 1)t)t

4ϕt
(12)

with t ≡ tanh(βJ). To ensure a real valued partition func-
tion the conditions, 1 > 2ϕ 1−y

1+m2 , and, 1 > 2ϕ 1+y
1−m2 , have

to hold. Regions where they do not hold are forbidden
zones in the y − m plane, where the integrand of equa-
tion (10) is not defined, see Figure 2. It can be shown that
the maximum condition line, ymax(m), always stays in the
allowed zone, ∀ −1 < m < 1, 0 < t < 1, and 0 < ϕ < 1/2.
The other solution of equation (12) is outside the allowed
parameter region of y.

For the following discussion let us compute the deriva-
tive of (the log of) I in equation (11),

d log(I)
dm

=
m

2ϕ
log

1 − 2ϕ 1+y
1−m2

1 − 2ϕ 1−y
1+m2

+
1
2c

log
1 − m

1 + m

+
[
1
2

log
2ϕ(1 − y2) − (1 − y)(1 − m2)
2ϕ(1 − y2) − (1 + y)(1 + m2)

− βJ

]
y′,

(13)

with

y′ =
m

2ϕ

(
1 + m2 − 4ϕ√

(1 + m2t)2 − 8ϕ(m2 − (2ϕ − 1)t)t
− 1

)
.

(14)
It is now natural to consider two distinct thermodynamical
limits, N → ∞, one, by keeping connectivity c = L/N , the
other by keeping the connectedness ϕ = L/N2, fixed.

3.1 c = const. limit

We fix c and take N → ∞. Consequently, ϕ vanishes as
1/N , and the maximum condition from equation (12) re-
duces to

lim
ϕ→0

ymax = − t + m2

1 + m2t
. (15)
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Fig. 3. Fixed-c thermodynamic limit. (a) Magnetization m as
a function of connectivity c at zero temperature for J = 1.
Below c = 1/2 there is no possibility for magnetization in the
system. At c ∼ 4, practically full magnetization is reached. (b)
Phase diagram in the T − c plane for J = 1.

The limiting cases for infinite and zero temperature can
be worked out immediately.

3.1.1 The low temperature case, β � 1

For Jβ � 1, t → 1, and the maximum con-
dition further simplifies to, ymax = −1, and
y′
max = 2m

1+m2t

(
t(t+m2)
1+m2t − 1

)
. Using this in equation (13),

and setting d log(I)
dm = 0 yields

1 − m

1 + m
= exp

(
− 4cm

1 + m2

)
. (16)

The self-consistent solution is shown in Figure 3a: we find
zero magnetization below a critical connectivity c < 1/2,
as well as a region where m �= 0. One can show [11] that
equation (16) can be obtained from the results pertaining
to the grand-canonical ensemble studied in [5] in the limit
of an infinitely large chemical potential.

3.1.2 Infinite temperature, β 	 1

For Jβ 	 1, the maximum condition here becomes,
ymax = −m2, and y′

max = −2m. Proceeding as before,

from d log(I)/dm = 0, we get log
(

1−m
1+m

)
= −4cmβJ ,

or m = tanh(2cmβJ). This implies no magnetization for
small β, or T → ∞, ∀c. The phase transition line, sepa-
rating the phases m = 0 and m �= 0, is found by noting in
equation (11) that for c = const.

lim
N→∞

I(m, y, L, N) = e(1−βJy)
(
1 − m2

)− 1
2c

×
(

1 − m

1 + m

) m
2c

(
1 − m4

1 − y2

) 1
2

(
(1 − y)(1 − m2)
(1 + y)(1 + m2)

) y
2

.

(17)

Differentiating equation (17) w.r.t. m, and setting it to
zero, i.e.

0 =
1
2c

log
1 − m

1 + m
− 2m

y + m2

1 − m4
+

m(t2 − 1)
(1 + m2t)2

×
[
log

1 − y

1 + y
+ log

1 − m2

1 + m2
− 2βJ

]
, (18)

reduces for m → 0 to the critical line given by

1
2c

= tanh
(

J

Tc

)
. (19)

Here we used limm→0 ymax = limm→0 − m2+t
1+m2t = −t. The

phase diagram is shown in Figure 3b.
Let us finish the c =const. case with a statement on

the critical exponent β. By inserting ymax, given in equa-
tion (15), into equation (18), we get

t =
log 1+m

1−m

4mc − m2 log 1+m
1−m

. (20)

Define τ = Tc−T
Tc

> 0, where T = 1/β and β is the inverse
temperature. Using the Ansatz m = λτβ , where β is the
critical exponent (not the inverse temperature) and λ is a
free parameter, in equation (20), for τ 	 1 one gets the
expression

12c
(
1 − 1

4c2

)

1 + 1
2c

= λ2τ2β−1. (21)

The critical temperature Tc is the solution of the equation
for T = β−1 and β is the inverse temperature. Since the
left hand side does not depend on τ , the only possible
choice for the critical exponent is β = 1/2. This is exactly
the mean field value.

3.2 ϕ = const. limit

Fixed ϕ means diverging c, for N → ∞.

3.2.1 The low temperature case, β � 1

For Jβ � 1, the second term on the right hand side of
equation (13) vanishes. A lengthy but trivial calculation
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shows that equation (13), without that term, is larger than
zero for 0 < m < 1, 0 < ϕ < 1/2, and 0 < t < 1, where we
used the fact that y+m2 ≤ 0. By symmetry, equation (13)
(without the term ∼ 1/c) is negative for −1 < m < 0. This
means there is no phase transition in the thermodynamic
limit for ϕ = const. and the system is always in a state of
maximum magnetization, m = ±1.

3.2.2 The high temperature case, β 	 1

For Jβ 	 1, we have t = tanh(Jβ) ∼ Jβ, and ymax =
−m2, and y′

max = −2m, as above. Setting d log(I)
dm = 0 in

equation (13), we get

m = tanh(2mβJϕN), (22)

which means m = 1 in the thermodynamic limit. Note,
that for the case where the coupling scales as J = J0/N ,
we get a phase transition, for finite J0, which is well known
for the complete graph, i.e. ϕ = 1/2. In the context here,
ϕ shifts the position of the phase transition.

More generally, assume that the coupling scales with
system size as J = J0N

a, with a ≤ 0, i.e. coupling de-
creases with size. Assume further that c scales as c =
c0N

b, with b ≥ 0, then ϕ = c0N
b−1. Using equation (22)

this means

m = tanh(2mβJ0c0N
a+b). (23)

We see that for a = −b, κ = 2βJ0c0 can be seen as the
critical parameter. For a > −b we get m = ±1, whereas
for a < −b there is no magnetization, m = 0.

4 Conclusion

The crucial observation of this paper is that the summa-
tion over all topologies in the Ising model on dynamical
networks is equivalent to re-writing the partition function

as a sum over all magnetizations. The model – which can
be seen as a toy model for a variety of socio-economical
situations – thus drastically reduces in complexity and
becomes exactly solvable, both for finite size and the two
possible thermodynamic limits.

We thank A. Allahverdyan and an anonymous referee for var-
ious most useful and clarifying comments. Supported by Aus-
trian Science Fund FWF Projects P17621 and P19132.
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