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Abstract: An efficient method is proposed to estimate the carrier frequency offsets (CFOs) in the orthogonal frequency-division
multiple access (OFDMA) uplink. The conventional alternating projection method is accelerated by utilising the inherited
properties of the matrices involved. The multiplication of large sparse projection matrices can be elegantly transformed to a
series of products involving small dense matrices, and the inverse operation of these large matrices can be substituted by
direct computations. Hence, the computational cost is significantly reduced without compromising the accuracy of the CFO
estimation.

1 Introduction

Orthogonal frequency-division multiple access (OFDMA)
has been widely used in satellite communications [1], cable
TV [2], IEEE 802.16e-2005 [3] and so on. The
orthogonality among subcarriers is the key feature to render
the OFDMA scheme suitable for multi-user diversity,
adaptive control of service quality and low complexity of
equalisation.
Each subscriber station (SS) may suffer from carrier

frequency offset (CFO) in the downlink because of clock
mismatch, Doppler shift, among other reasons. The
downlink CFO can be estimated in the same way as the
OFDM scheme [4]. On the other hand, since subcarriers are
allocated to different SS’s in the uplink, estimation of the
CFO’s from different SS’s at the base station (BS) becomes
a complicated task.
In general, the range of each CFO can be narrowed down

with downlink synchronisation procedure. The residual
CFO’s can then be estimated and compensated to reduce
inter-carrier interference (ICI) [5, 6]. Several methods have
been proposed to estimate the CFO’s [7–15]. In [10, 11],
minimum mean-squared-error (MMSE) and least-square
method are used to minimise the difference between the
received signal and the reconstructed signal, without
resorting to a grid search. These methods require less
computational load, but the Cramer–Rao lower bound
(CRLB) can be reached only at high signal-to-noise ratio
(SNR).
Iteration methods such as space-alternating generalised

expectation-maximisation (SAGE) and its variations [7–9],
as well as alternating projection (AP) method have been
proposed. In [7], a modified SAGE algorithm is improved

in convergence rate with a windowing technique in the
frequency domain to decrease the ICI, and its computational
complexity to estimate the CFO is also reduced by using
the cyclic prefix (CP) similar to the OFDM scheme. Its
computational load is relatively low since no grid search is
needed, but its performance is degraded at low SNR.
In [12], a closed-form solution of multi-dimensional CFO

estimation procedure is derived based on an optimisation
theorem. The computational load is reduced to O(N2) by
reducing the matrix to a block diagonal form. Although it is
more efficient than the conventional AP method, but its
computational load is still a way too high.
Although the AP method can reach the CRLB of CFO’s

and can be applied over a wide SNR range, its
computational load is much higher than the other
approaches [11, 12]. Variants of AP method have been
developed to overcome this drawback. For example,
approximate AP frequency estimator and divide-and-update
frequency estimator bear less computational complexity, but
at the cost of degraded performance [13]. The variant in
[14] is claimed to approach the performance of AP with
large number of SS’s.
In this paper, an efficient AP method is proposed to reduce

the computational load of conventional AP methods by
several orders, while maintaining the same accuracy. It

starts with a proof that the matrix product, ��C
†
B · ��CB,

representing a column space, can be reduced to a constant
identity matrix. Hence, its inverse can be derived using a
more efficient method, and its eigenvalues can be derived
using direct algebraic computation, without resorting to
matrix multiplications. It is also observed that other
matrices appearing in the CFO estimator can be
decomposed into various constant identity submatrices, of
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which the eigenvalues can be derived without using matrix
multiplications. As a consequence, the computational cost
is dramatically reduced. The conventional AP method is
briefly reviewed in Section 2. The efficient AP method is
presented in Section 3 for four SS’s or less, and for any
number of SS’s in Section 4, followed by the conclusion.

2 Brief review of conventional AP method

2.1 Signal model

Assume there are N subcarriers assigned to K SS’s. Each
preamble symbol is transmitted with pilot tones of equal
amplitude at regular intervals. The preamble symbol of the
kth SS can be expressed in the digital-frequency domain as

xk[m] = ck [u], m = uD+ Dk , u = 0, . . . , Np − 1
0, otherwise

{
(1)

where Np is the number of pilot tones, D =N/Np, ck[u] is a
binary phase-shift keying data stream carried by the kth SS,
Δk = ⌊(k − 1)D/K⌋ is the index offset of pilot tones of the
kth SS and ⌊α⌋ stands for the integer part of α.
The preamble symbol of the kth SS in the time domain is

�sk =
1���
N

√ ��F
† ·�xk

where ��F
{ }

m, n
= ���

N
√ −1

e−j2pmn/N , �xk = xk[0], xk [1],
[

. . . , xk[N − 1]
]t
, and ��F

†
means the Hermitian of ��F. The

preamble symbol amended with CP of length Ng becomes

�uk = sk [N − Ng], . . . , sk [N − 1], sk[0], . . . , sk[N − 1]
[ ]t

.
In the presence of CFO and timing error, the received

signal at the BS can be represented as

r′[n] =
∑K
k=1

ejvkn
∑Lk−1

ℓ=0

hk[ℓ]uk[n− ℓ− mk]+ v[n]

where−Ng≤ n≤N− 1 and ωk = 2πΔfk/N, with Δfk as the
normalised frequency offset, Lk is the number of channel
taps, μk is the integer part of timing error, all associated
with the kth SS, the fractional part of timing error is
absorbed into the channel impulse response (CIR), �hk and
v[n] is a complex white Gaussian noise with zero-mean and
covariance matrix s2 ��IN . To avoid inter-symbol
interference, choose Ng≥max{μk + Lk} for all SS’s. Fig. 1
shows the schematic of the system. After removing the CP
part from �r′, the received signal can be represented in a

matrix form as

�r =
∑K
k=1

�rk +�v

= ��G(v1) · ��A′
1 , . . . , ��G(vK ) · ��A′

K

[ ] �h1

..

.

�hK

⎡
⎢⎢⎣

⎤
⎥⎥⎦+ �v (2)

where ��G(vk ) = diag 1, ejvk , . . . , ej(N−1)vk
{ }

, �rk = ��G(vk) ·
��A′

k · �hk , �hk = hk [0], hk[1], . . . , hk[Lk − 1]
[ ]t

, and

��A
′
k =

uk[−mk] · · · uk[−mk − Lk + 1]
uk[1− mk] · · · uk[−mk − Lk + 2]

..

. . .
. ..

.

uk[N − 1− mk] · · · uk[N − mk − Lk ]

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

The channel length of SS k is extended to Ng by inserting μk
zeros in front of the CIR and padding Ng − μk− Lk zeros after
it. The extended CIR thus becomes

�h
e
k = �0

t
mk

, �h
t
k , �0

t
Ng−mk−Lk

[ ]t
, and ��A′

k · �hk is reorganised as
��Ak · �hek with

��Ak =

uk[0] · · · uk[1− Ng]
uk[1] · · · uk[2− Ng]

..

. ..
. ..

.

uk[N − 1] · · · uk [N − Ng]

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

Since uk[−i] = uk[N − i] with 1≤ i≤ Ng by definition of CP,
��Ak can be further expanded to ��A

circ

k · ��U , where
��U = ��INg×Ng

, ��0
t

(N−Ng)×Ng

[ ]t
. The circulant matrix ��A

circ

k can

be decomposed into ��F
† · ��Lk ·��F, where DFT stands for

discrete Fourier transform, and

��Lk = diag DFT uk [0], . . . , uk [N − 1]
{ }{ }

= diag xk [0], . . . , xk[N − 1]
{ }

Explicitly

��Ak = ��A
circ

k · ��U = ��F
† · ��Lk ·��F · ��U (3)

The received signal in (2) is rewritten as

�r =
∑K
k=1

��G(vk ) · ��Ak · �hek +�v

= ��G(v1) · ��A1 , . . . , ��G(vK ) · ��AK

[ ]
· �he +�v = ��Q · �he +�v

(4)

where ��Q = ��G(v1) · ��A1 , . . . , ��G(vK ) · ��AK

[ ]
and �h

e =
�h
e
1

[ ]t
, . . . , �h

e
K

[ ]t[ ]t
.Fig. 1 Schematic of the system
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2.2 Conventional AP method

There are several cycles in the conventional AP method, with
each cycle divided into K steps [16]. In each step, only the
CFO of a specific SS is updated, whereas those of the other
SS’s are fixed. Without loss of generality, step k is applied
to SS k.
The maximum-likelihood estimate of CFO of the kth SS

can be derived as [12]

v̂(i)
k

{ }
= arg

ṽk

min �r − ��PQ ṽk , �̂v(i)
k

( )
· �r

∥∥∥ ∥∥∥2{ }
(5)

where v̂(i)
k denotes the estimate of parameter ṽk in step k of

cycle i, all the previously updated CFO’s except the kth one

are denoted as �̂v
(i)
k =

[
v̂ (i)

1 , . . . , v̂ (i)
k−1 ,

v̂ (i−1)
k+1 , . . . , v̂ (i−1)

K

]
, and

��PQ ṽk , �̂v
(i)
k

( )
= ��Q ṽk , �̂v

(i)
k

( )

· ��Q
†
ṽk , �̂v

(i)
k

( )
· ��Q ṽk , �̂v

(i)
k

( )[ ]−1
· ��Q†

ṽk , �̂v
(i)
k

( )

The ��PQ matrix projects �r onto the column space of ��Q, which
is decomposed into [16]

��PQ ṽk , �̂v
(i)
k

( )
= ��PB �̂v

(i)
k

( )
+ ��PCB

ṽk , �̂v
(i)
k

( )
(6)

where

��PB �̂v
(i)
k

( )
= ��B �̂v

(i)
k

( )
· ��B

†
�̂v
(i)
k

( )
· ��B �̂v

(i)
k

( )[ ]−1
· ��B†

�̂v
(i)
k

( )
(7)

represents the projection onto the column space of ��B �̂v
(i)
k

( )
��PCB

ṽk , �̂vk
(i)

( )
= ��CB ṽk , �̂vk

(i)
( )

· ��C
†
B ṽk , �̂vk

(i)
( )

·
[

��CB ṽk , �̂vk
(i)

( )]−1

· ��C†
B ṽk , �̂vk

(i)
( )

represents the projection

onto the column space of ��C ṽk

( )
, excluding the column space

of ��B �̂v(i)
k

( )
, with

��CB ṽk , �̂vk
(i)

( )
= ��IN − ��PB �̂v

(i)
k

( )[ ]
· ��C ṽk

( )

where ��C ṽk

( ) = ��G ṽk

( ) · ��Ak and

��B �̂v
(i)
k

( )
= ��G v̂ (i)

1

( )
· ��A1 , . . . , ��G v̂ (i)

(k−1)

( )
· ��A(k−1) ,

[
��G v̂ (i)

(k+1)

( )
· ��A(k+1) , . . . , ��G v̂ (i)

K

( )
· ��AK

]

Note that ��B �̂v(i)
k

( )
and ��C ṽk

( )
constitute

��Q ṽk , �̂v
(i)
k

( )
= ��G v̂ (i)

1

( )
· ��A1 , . . . , ��G v̂ (i)

(k−1)

( )
· ��A(k−1) ,

[
��C ṽk

( )
, ��G v̂ (i)

(k+1)

( )
· ��A(k+1) , . . . , ��G v̂ (i)

K

( )
· ��AK

]

As illustrated in Fig. 2, the column space of ��CB ṽk , �̂vk
(i)

( )
is

orthogonal to that of ��B.

Since ��PB �̂v
(i)
k

( )
is independent of ṽk , (5) can be reduced to

v̂ (i)
k

{ }
= arg

ṽk

max ��PCB
ṽk , �̂v(i)

k

( )
· �r

∥∥∥ ∥∥∥2{ }
(8)

The matrix to be inverted in ��PCB
ṽk , �̂v

(i)
k

( )
is much smaller

than that in ��PB �̂v
(i)
k

( )
, so is the computational load. To

streamline the subsequent derivations, the arguments of
matrices will be ignored wherever possible, for example,
��PCB

ṽk , �̂v
(i)
k

( )
· �r is abbreviated as ��PCB

·�r.

2.3 Some observations

A direct expansion leads to

��PCB
·�r

∥∥∥ ∥∥∥2 = �r† · ��CB · ��C
†
B · ��CB

( )−1
· ��C†

B ·�r (9)

and

��C
†
B · ��CB

( )−1
= ��IN − ��PB

( )
· ��C

[ ]†
· ��IN − ��PB

( )
· ��C

{ }−1

= ��C
† ·��C − ��C

† · ��PB ·��C
( )−1

(10)

where ��C
† · ��C = ��A

†
k · ��Ak is independent of the CFO’s. It takes

much longer time to compute ��PB than the matrix inversion in
(10), luckily the former is computed only once per step. As
will be shown in the next section, the result of (10) is a
constant identity matrix, and ��PB is consisted of small blocks
of constant identity matrices.

Fig. 2 Decomposition of column space of ��Q
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Next, expand ��PB with a given k as (see (11))
where

��b p, q = ��A
†
p · ��G

†
(vp)

[ ]
· ��G(vq) · ��Aq

[ ]
(12)

Note that the∼ sign over all CFO’s is removed from here on
for convenience.

3 Efficient AP method for k≤ 4

3.1 Cyclic product ��b p,q · ��bq, r . . .
��bg,p

A direct substitution leads to

��b p, q = ��A
†
p · ��G

†
(vp) · ��G(vq)

��Aq = ��A
†
p ·��G(vq − vp)

��Ap

= ��U
t · ��F† · ��Lp · ��F · ��G(vqp) · ��F

† · ��Lq · ��F · ��U (13)

with ωqp = ωq − ωp and

��F · ��G(vqp) · ��F
† =

v0 vN−1 · · · v1
v1 v0 · · · v2

..

. ..
. ..

. ..
.

vN−1 v(N−2) · · · v0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (14)

where vn is the nth entry of the inverse discrete fourier

transform (IDFT) of the complex conjugate of ��G(vqp)
′s

diagonal entries, ��Lp and ��Lq are two diagonal matrices
with diagonal elements of xk[m]. Since �xk contains many

zeros, ��Lp ·��F · ��G(vqp) · ��F
† · ��Lq has non-zero entries in row

m and column n, where m and n are the indices of non-zero

entries in ��Lp and
��Lq, respectively.

Let the value of pilot tones for SS p and SS q be cp and cq,
respectively. Thus, we have (see (15) and (16))

where �0ℓ represents a zero vector of length ℓ, Dp and Dq are
offsets of the first pilot-tone of SS p and SS q, respectively, D
is the pilot-tone interval. By carefully examining (13), ��b p, q

can be calculated in a more computationally efficient way as

��b p, q =
Ng

N
��Dp · ��F

†
Ng

·��cp · ��V pq ·��cq · ��FNg
· ��D†

q (17)

where

��Dp = diag 1, ej2pDp/N , . . . , ej2p(Ng−1)Dp/N
[ ]

, ��FNg

{ }
m, n

=
���
Ng

√ −1
e−j2pmn/Ng ,

��cp = diag cp[0], cp[1], . . . , cp[Ng − 1]
[ ]

The ��V pq is a circulant matrix [17] with the first column being

vmod(N+D pq,N ), vD+D pq
, . . . , v(Ng−1)D+D pq

[ ]t
.

The inverse of ��B
† ·��B can be reduced to the products of

various ��b p, q matrices, many of which can be reduced to an
identity matrix multiplied by a constant. Consider the case
p = q

��b p, p =
Ng

N
��Dp · ��F

†
Ng

·��cp · ��V pp ·��cp · ��FNg
· ��D†

p =
Ng

N
��INg

(18)

where ��INg
is an Ng × Ng identity matrix. The inverse of ��b p, p is

straightforward as

��b
−1

p, p =
N

Ng

��INg
(19)

Next, consider the product

��b p, q · ��bq, p =
Ng

N

( )2
��Dp · ��F

†
Ng

·��cp · ��V pq · ��V qp ·��cp · ��FNg
· ��D†

p

(20)

��PB = ��G v1

( ) · ��A1 , . . . , ��G vk−1

( ) · ��Ak−1 ,
��G vk+1

( ) · ��Ak+1 , . . . , ��G vK

( ) · ��AK

[ ]
��b1, 1 . . . ��b1, k−1

��b1, k+1 . . . ��b1,K

..

. ..
. ..

. ..
. ..

. ..
.

��bk−1, 1 . . . ��bk−1, k−1
��bk−1, k+1 . . . ��bk−1,K

��bk+1, 1 . . . ��bk+1, k−1
��bk+1, k+1 . . . ��bk+1,K

..

. ..
. ..

. ..
. ..

. ..
.

��bK , 1 . . . ��bK, k−1
��bK, k+1 . . . ��bK,K

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

��G v1

( ) · ��A1 , . . . , ��G vk−1

( ) · ��Ak−1 ,
��G vk+1

( ) · ��Ak+1 , . . . , ��G vK

( ) · ��AK

[ ]†

(11)

��Lp = diag �0Dp
, cp[0], �0D−1 , cp[1], �0D−1 , . . . , cp[Ng − 1], �0D−Dp−1

[ ]
(15)

��Lq = diag �0Dq
, cj[0], �0D−1 , cq[1], �0D−1 , . . . , cq[Ng − 1], �0D−Dq−1

[ ]
(16)
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From the definition of ��V pq, it can be derived that

��V pq · ��V qr

{ }
(m, n)

= Ng

N2

1− ejvqp

1− ej vqp−2pD pq

( )
/D

1− ejvrq

1− ej vrq−2pDqr

( )
/D

×
∑Ng−1

ℓ=0

ej vrp−2pD pr

( )
/Ne−j2p(m−n)/Ng

[ ]ℓ
(21)

In case of r = p

��V pq · ��V qp

{ }
(m, n)

= Ng

N 2

1− cosv pq

1− cos v pq − 2pDqp

( )
/D

[ ] ∑Ng−1

ℓ2=0

e−j2p(m−n)/Ng
[ ]ℓ2

(22)

The summation in (22) is zero if m≠ n, and is Ng if m = n.
Hence

��V pq · ��V qp = N2
g

N2

1−cosv pq

1−cos v pq−2pDqp

( )
/D

[ ]{ } ��INg

and the product in (20) becomes

��b p, q · ��bq, p = b p, q
��INg

= ��bq, p · ��b p, q (23)

where

b p, q =
Ng

N

( )4 1− cosvqp

1− cos vqp − 2pD pq

( )
/D

[ ]
By induction, we derive

��V pq · ��V qr · · · ��Vgp = 1−ejvqp

1−ej vqp−2pD pq( )/D
N
K1
g

NK1
· · · 1−ejv pg

1−ej v pg−2pDgp( )/D
��INg

��b pq · ��bqr · · · ��bgp = N
K1
g

NK1

��Dp · ��F
†
Ng

·��cp · ��V pq · ��V qr · · ·
��V gp ·��cp · ��FNg

· ��Dp = b p, q, r, ..., g
��INg

where K1 + 1 is the number of ��V matrices in the product, and

b p, q, r, ...,g = 1

D2

1− ejvqp

1− ej vqp−2pD pq

( )
/D

· · · 1

D2

1− ejv pg

1− ej v pg−2pDgp

( )
/D

(24)

If Fg frequency grids and K SS’s are considered, there are
2FgK(K − 1) terms of the form

1− ejv
( )

/ D2 1− ej v−2pD( )/D
( )[ ]

, which can be computed

in advance and stored. Hence, it takes only K complex
multiplications to compute βp, q, r,…,γ in (24).

3.2 Layer-stripping approach to inverse ��B
† · ��B

A layer-stripping approach is proposed to compute
��B
† · ��B

( )−1
in (7). The product ��B

† · ��B associated with SS’s

1–3 can be represented as

��B
† ·��B =

��b1,1
��b1,2

��b1,3
��b2,1

��b2,2
��b2,3

��b3,1
��b3,2

��b3,3

⎡
⎢⎢⎣

⎤
⎥⎥⎦ =

��M
(1)

1,1
��M

(1)

1,2

��M
(1)

2,1
��M

(1)

2,2

⎡
⎣

⎤
⎦ (25)

where

��M
(1)

1, 1 = ��b1, 1 ,
��M

(1)

1, 2 = ��b1, 2 ,
��b1, 3

[ ]
,

��M
(1)

2, 1 = ��b
t

2, 1 ,
��b
t

3, 1

[ ]t
, ��M

(1)

2, 2 =
��b2, 2

��b2, 3
��b3, 2

��b3, 3

[ ]
(26)

The superscript (1) in (25) indicates the first layer-stripping
process. By applying the block inversion technique, we
obtain [17]

��B
† · ��B

( )−1
=

��N
(1)

1, 1
��N
(1)

1, 2

��N
(1)

2, 1
��N
(1)

2, 2

⎡
⎣

⎤
⎦

where

��N
(1)

1, 1 = a(1)
1, 1

��INg
, ��N

(1)

1, 2 = ��N
(1)

1, 2 (1, 1)
��N
(1)

1, 2 (1, 2)
[ ]

��N
(1)

2, 1 =
��N
(1)

2, 1 (1, 1)

��N
(1)

2, 1 (2, 1)

⎡
⎣

⎤
⎦, ��N

(1)

2, 2 = a(1)
2, 2(2, 2)

a(1)
2, 2 1, 1( )

a(1)
2, 2 2, 2( )

��INg
−

��b2, 3 −D ��b2, 1 · ��b1, 3
D−1 − Db2, 1

��INg

−
��b3, 2 −D ��b3, 1 · ��b1, 2
D−1 − Db2, 1

��INg

��INg

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

(27)

where

a(1)
1, 1 = D−1 − a(2)

1, 1 b1, 2 − 2Db1, 2, 3 + b3, 1

( )[ ]−1

a(2)
1, 1 = D−1 − Db3, 2

( )−1

a(1)
2, 2(1, 1) = D−1 − Db2, 1 − D−1 − Db3, 1

( )−1
[

× b2, 3 − 2Db2, 3, 1 + D2b1, 3b2, 1

( )]−1s

a(1)
2, 2(2, 2) = D−1 − Db3, 1 − D−1 − Db2, 1

( )−1
[

× b3, 2 − 2Db3, 2, 1 + D2b1, 2b3, 1

( )]−1

��N
(1)

1, 2 (1, 1) = −D a(1)
2, 2(1, 1)+

b1, 3a
(1)
2, 2(2, 2)

D−2−b2, 1

[ ]
��b1, 2

+ a
(1)
2, 2(2, 2)

D−2−b2, 1

��b1, 3 · ��b3, 2
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��N
(1)

1, 2 (1, 2) = −D a(1)
2, 2(2, 2)+

a
(1)
2, 2(2, 2)b1, 2
D−2−b2, 1

[ ]
��b1, 3

+ a
(1)
2,2(2, 2)

D−2−b2, 1

��b1, 2 · ��b2, 3
��N
(1)

2, 1 (1, 1) = −D a(1)
2, 2(1, 1)+

a
(1)
2, 2(2, 2)b1, 3
D−2−b2, 1

[ ]
��b2, 1

+ a
(1)
2, 2(2, 2)

D−2−b2, 1

��b2, 3 · ��b3, 1

��N
(1)

2, 1 (2, 1) = −D a(1)
2, 2(2, 2)+

a
(1)
2, 2(2, 2)b1, 2
D−2−b2, 1

[ ]
��b3, 1

+ a
(1)
2, 2(2, 2)

D−2−b2, 1

��b3, 2 · ��b2, 1

Note that βi, j = βj, i, and changing the order of {i, j, k} does
not change the value of βi, j, k.

3.3 Prove ��C
†
B · ��CB

( )−1
is a constant identity matrix

Equation (12) implies that ��bk, k = ��C
† · ��C, which is substituted

into (18) to obtain ��C
† · ��C = (Ng/N ) ��INg

. Let K = 4 and k = 4,

thus ��C = ��G(v4) · ��A4 and ��B = ��G(v1) · ��A1,
��G(v2) · ��A2,

[
��G(v3) · ��A3

]
. We will prove that ��C

† · ��PB · ��C is a constant

identity matrix by direct substitution as

��C
† · ��PB ·��C = ��C

† · ��B · ��B
† · ��B

( )−1
·��B† · ��C

= ��b4, 1 ,
��b4, 2 ,

��b4, 3

[ ] ��b1, 1
��b1, 2

��b1, 3
��b2, 1

��b2, 2
��b2, 3

��b3, 1
��b3, 2

��b3, 3

⎡
⎢⎢⎣

⎤
⎥⎥⎦

−1 ��b1, 4
��b2, 4
��b3, 4

⎡
⎢⎢⎣

⎤
⎥⎥⎦
(28)

Applying the layer-stripping approach in the last subsection
with K = 4, (28) can be reduced to

��C
† · ��PB ·��C = a(1)

1, 1b4, 1 − D a(1)
2, 2(1, 1)+ b1, 3G

[ ]
b4, 1, 2

{
+ Gb4, 1, 3, 2 − D a(1)

2, 2(2, 2)+ b1, 2G
[ ]

b4, 1, 3

+ Gb4, 1, 2, 3 − D a(1)
2, 2(1, 1)+ Gb1, 3

[ ]
b4, 2, 1

+ Gb4, 2, 3, 1 + a(1)
2, 2(1, 1)b4, 2

− a(1)
2, 2(2, 2) D−1 − Db2, 1

( )−1
b4, 2, 3 − Db4, 2, 1, 3

( )
− D a(1)

2, 2(2, 2)+ Gb1, 2

[ ]
b4, 3, 1 + Gb4, 3, 2, 1

− a(1)
2, 2(2, 2) D−1 − Db2, 1

( )−1
b4, 3, 2 − Db4, 3, 1, 2

( )
+a(1)

2, 2(2, 2)b4, 3

}
��INg

(29)

where G = a(1)
2, 2(2, 2) D−2 − b2, 1

( )−1
. Hence, ��C

†
B · ��CB

( )−1

in (10) is a constant identity matrix.

3.4 Computation of ��PCB
· �r

∥∥∥ ∥∥∥2
Based on the results in the last subsection, (9) can be
simplified as

��PCB
· �r

∥∥∥ ∥∥∥2 = �r† · ��IN − ��PB

( )
· ��C · ��C† · ��IN − ��PB

( )
· �r

��C
†
B · ��CB

∥∥∥ ∥∥∥
=

�R
† · ��a4 ·�R
��C
†
B · ��CB

∥∥∥ ∥∥∥ (30)

where �R = ��IN − ��PB

( )
· �r. Next, expand ��PB as

��PB = ��G(v1) · ��A1,
��G(v2) · ��A2,

��G(v3) · ��A3

[ ]

·
��b1, 1

��b1, 2
��b1, 3

��b2, 1
��b2, 2

��b2, 3
��b3, 1

��b3, 2
��b3, 3

⎡
⎢⎢⎣

⎤
⎥⎥⎦

−1

·
��A
†
1 ·��G (v1)

†

��A
†
2 ·��G(v2)

†

��A
†
3 ·��G(v3)

†

⎡
⎢⎢⎣

⎤
⎥⎥⎦

= a(1)
1, 1

��a1 + a(1)
2, 2

��a2 + a(1)
2, 2(2, 2)��a3

− D a(1)
2, 2(1, 1)+ b1, 3G

[ ]
��a1, 2 + ��a2, 1
( )

− D a(1)
2, 2(2, 2)+ b1, 2G

[ ]
��a1, 3 + ��a3, 1
( )

− GD−1 ��a2, 3 + ��a3, 2
( )

+ G ��a2, 1, 3 + ��a3, 1, 2 + ��a1, 3, 2 + ��a2, 3, 1 + ��a1, 2, 3 + ��a3, 2, 1
( )

(31)

with

��ak = ��G(vk) · ��Ak · ��A
†
k · ��G

†
(vk )

= 1

D2

��INg
k̃
−1 ��INg

· · · k̃
−(D−1) ��INg

k̃��INg

��INg
· · · k̃

−(D−2) ��INg

..

. ..
. ..

. . .
.

k̃
D−1 ��INg

k̃
D−2 ��INg

· · · ��INg

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

(32)

��ak, p, ..., g, d

= 1

D2

1− ejv pk

1− ej v pk+2pD pk

( )
/D

( )
1

D2

1− ejvqp

1− ej vqp+2pDqp

( )
/D

( )

· · · 1

D2

1− ejvdg

1− ej vdg+2pDdg

( )
/D

( )
1

D2

��INg
d̃
−1 ��INg

· · · d̃
−(D−1) ��INg

k̃��INg
k̃ d̃

−1 ��INg
· · · k̃ d̃

−(D−1) ��INg

..

. ..
. . .

. ..
.

k̃
D−1 ��INg

k̃
D−1

d̃
−1 ��INg

· · · k̃
D−1

d̃
−(D−1) ��INg

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
(33)

where k̃ = ej vk+2pDk( )/D, and k̃, . . . , k̃
D−1

can be stored in a
look-up table with (D− 1)FgK entries. In other steps to update
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another SS, the only difference is the order of subscripts of ��b
in (28). The indices and parameters in (31) will also be
replaced by those of the associated SS’s.
The matrices ��ai, ��ai, j and ��ai, j, k are constituted of Ng ×Ng

constant identity matrices, hence ��PB can be partitioned into
constant identity matrices too. The received signal �r is
partitioned into D vectors, �rm, each with length Ng.

��PB · �r
can be expanded as

��PB · �r
PB, (0, 0)

��INg
· · · PB, (0,D−1)

��INg

..

. . .
. ..

.

PB, (D−1, 0)
��INg

· · · PB, (D−1,D−1)
��INg

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ ·

�r0

..

.

�rD−1

⎡
⎢⎣

⎤
⎥⎦

=

∑D−1

ℓ=0
PB, (0, ℓ) �rℓ

..

.

∑D−1

ℓ=0
PB, (D−1, ℓ) �rℓ

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

(34)

where PB,(m, n) is the constant of the (m, n)th constant identity
submatrix of ��PB. Similarly, �R can be partitioned into D
vectors �Rm, each with length Ng, and

�R† · ��ak · �R = D−2
∑D−1

m=0

∑D−1

m=0

k̃
m−n �R†

m · �Rn

The double summation in (34) can be further reduced to

∑D−1

m=0

Rm,m + 2Re
∑D−1

n=1

∑D−1

m=n

Rm, (m−n)

( )
k̃
n

{ }
(35)

where Re{α} stands for the real part of a, Rm, n = �R†
m · �Rn

can be calculated in advance at the beginning of each step,
which takes 2NgD

2 complex multiplications, and (35) takes
only D complex multiplications.

3.5 Computational load in one cycle, K = 4

The load to compute ��PB can be estimated on (31). In βp,q,r,s of
(24), each factor of the form

1− ejv pq
( )/ D2 1− ej v pq−2pDqp

( )
/D

[ ]( )( )
can be

calculated in advance and stored in a table, and the product
in (24) can be calculated by picking proper factors from the
table. This table contains 2FgK(K − 1) entries to cover all
possible CFO’s and different combinations of SS’s. Each
βp,q,r,·s,γ term containing K1 + 1 factors, hence takes K1

complex multiplications. Also note that changing the order
of subscripts in βp,q or βp,q,r does not change its value.

Next, ��ak in (32) is a Toeplitz matrix with 2D − 1 different
elements, which takes 2D − 1 multiplications. The
second-order matrix ��ak, p is constructed in terms of the
first-order matrices as ��ak · ��ap and takes 2D2 multiplications.
The coefficients in (16) contain the same terms as used in
generating β in (24). The third-order matrix ��ak, q, p with the
first and the last indices the same as those in ��ak, p. By
observing (33), the matrix part of ��ak, q, p can be generated in
the same way as constructing ��ak, p and takes 3D2

multiplications.
Tables 1 and 2 list the number of multiplications required

in calculating simple and combined terms, respectively,
contained in ��PB of (31). Hence, it takes 24D2 + 6D + 19
complex multiplications to compute ��PB.
Similarly, Table 3 lists the number of multiplications

required for different terms in ��C
† · ��PB · ��C of (29), and the

total number of multiplications is 104.
It takes 2NgD

2 multiplications to compute Rm,n’s, D

multiplications to compute �R
† · ��ak · �R, and 104

multiplications to compute ��C
†
B · ��CB

∥∥∥ ∥∥∥ = ��C
† · ��PB · ��C. Hence,

one complete cycle takes K[(24D2 + 6D + 19) + 2NgD
2 +

Fg(D + 104)] complex multiplications. In comparison,
the conventional AP method takes O(KFg(Ng

3 +NgN
2))

complex multiplications [12].
In the following simulations, the parameters are extracted

from a scalable OFDMA system in [18]: N = 256, Ng =D =
16, Δfk is uniformly distributed over [−0.5, 0.5] with
resolution δf = 0.001, thus Fg = 1000. With K = 4, the
number of multiplications are 537 804 and O(4, 210, 688,
000) with this efficient AP method and conventional AP
method, respectively. This approach reduces the
computational load by about 8000 folds.
The SUI-3 model is chosen to model the channel in (2),

where three taps are allocated for the CIR of each SS [19].
The integer timing error μk is uniformly distributed over the
integer set {0, …, 7}. The SNR of the kth SS is defined as

SNRk =
E �s†k · �sk
{ }
Ns2

v

where E{A} is the expectation value of random variable A,
and s2

v is the noise variance in each subcarrier.

Table 1 Number of multiplications in calculating simple terms in (31)

Terms Numbers Terms Numbers Terms Numbers

3βp,qs 3 a(2)
1, 1 3 3��a p,qss 6D2

β1,2,3 3 a(1)
1, 1 5 3 ��a p,q, rs 9D2

D2 1 a(1)
2, 2(1, 1) 3 G 2

D4 1 a(1)
2, 2(2, 2) 3 3 ��A′s’s 6D− 3

Table 2 Number of multiplications in calculating combined
terms in (31)

Terms Numbers

D a(1)
2, 2(1, 1)+ b1, 3G

( )
��a1, 2 + ��a†

1, 2

( )
3D2

D a(1)
2, 2(2, 2)+ b1, 2G

( )
��a1, 3 + ��a†

1, 3

( )
3D2

G/D ��a2, 3 + ��a†
2, 3

( )
2D2

G = ��a2, 1, 3 + ��a†
2, 1, 3 + ��a1, 3, 2 + ��a†

1, 3, 2 + ��a1, 2, 3 + ��a†
1, 2, 3

( )
D2
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Fig. 3 shows the MSE of CFO simulated using the efficient
AP method of this work and that of conventional AP method.
The MSE of CFO is defined as

MSE = 1

M

∑M
m=1

CFOest,m −CFOtrue,m

[ ]2
(36)

whereM = 200 trials are used to obtain these curves. Since no
approximation has been made in deriving the efficient AP
method from the conventional one, the MSE with both
methods are the same.
The ��PB matrix in (31) can be decomposed into three

constituents with different orders of magnitude. The
second-order matrices ��ak, p are smaller than the first-order
matrices ��ak by an order of D2 and the third-order matrices

��ak, p, q are smaller than ��ak by an order of D4. By keeping
only the first- and the second-order matrices, the
computational load can be further reduced, especially when
K is large.
Fig. 4 shows the simulation results using both the complete

and the approximate version of efficient AP method. The
MSE of both versions reach the CRLB of MSE in two
cycles, with M = 1000 trials.

4 Efficient AP method for any number of SS’s

4.1 Isomorphism between ��B
† · ��B and its inverse

As embedded in (28) and (29), the inverse of ��B
† · ��B is a key

step to derive ��C
† · ��PB · ��C and ��C

†
B · ��CB, which dominate

the computational load of both the numerator and the

denominator of the CFO estimator, ��PCB
· �r

∥∥∥ ∥∥∥2, in (30). The

layer-stripping method presented in the last section is
suitable for small K. An alternative method to compute
��B
† · ��B, suitable for large K, is introduced here.
It will be proved by induction that a square matrix of the

following form has the same structure with, or is
isomorphic to, its inverse, namely

c1, 1
��b1, 1 · · · c1,M

��b1,M

..

. . .
. ..

.

cM , 1
��bM , 1 · · · cM ,M

��bM ,M

⎡
⎢⎢⎣

⎤
⎥⎥⎦

−1

=
d1, 1

��b1, 1 · · · d1,M
��b1,M

..

. . .
. ..

.

dM , 1
��bM , 1 · · · dM ,M

��bM ,M

⎡
⎢⎢⎣

⎤
⎥⎥⎦

(37)

where M is an arbitrary integer. Detailed derivation is
presented in the Appendix.

4.2 Inversion of ��B
† · ��B with direct mapping

Let k =K, the isomorphism between ��B
† · ��B and ��B

† · ��B
( )−1

leads to

��B
† · ��B

( )−1
=

d1, 1
��b1, 1 · · · d1,K−1

��b1,K−1

..

. . .
. ..

.

dK−1, 1
��bK−1, 1 · · · dK−1,K−1

��bK−1,K−1

⎡
⎢⎢⎣

⎤
⎥⎥⎦
(38)

with the coefficients di, j’s to be determined. The product of

Table 3 Number of multiplications in calculating simple terms in (29)

Terms Numbers Terms Numbers Terms Numbers

6βp,qs 6 a(2)
1, 1 3 miscellaneous 47

4βp,q,rs 12 a(1)
1, 1 5

6βp,q,rs 24 a(1)
2, 2(1, 1) 3

D2 1 a(1)
2, 2(2, 2) 3

Fig. 3 MSE of CFO, –°–:°—-: SNR1 = 30 dB, —-Δ—-: SNR1 =
15 dB, —-⋄—-: SNR1 = 0 dB

Fig. 4 MSE of CFO with SNR1 = 5, 10, 15, 20, 25, 30 dB (from top
to bottom), —-°—-: efficient AP method, —-Δ—-: efficient AP
method with approximate ��PB, –°–: CRLB
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��B
† · ��B and ��B

† · ��B
( )−1

is an identity matrix

��B
† · ��B · ��B

† · ��B
( )−1

∑K−1

i=1
di, 1

��b1, i · ��bi, 1 · · · ∑K−1

i=1
di,K

��b1, i · ��bi, k
..
. . .

. ..
.

∑K−1

i=1
di, 1

��bK , i · ��bi, 1 · · · ∑K
i=1

di,K
��bK , i · ��bi,K

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

= ��I (K−1)Ng

(39)

If the coefficients di, j’s are determined by direct comparison,
it will take O((K − 1)6) complex multiplications, which is
impractical when K is large. Instead, these coefficients are
determined as follows.
Compare the nth diagonal entry in (39) to have

∑K−1

i=1

di, n
��bn, i · ��bi, n =

∑K−1

i=1

di, nbn, i
��INg

= ��INg
(40)

and compare the (m, n)th entry off diagonal to have

∑K−1

i=1

di, n
��bm, i · ��bi, n =

∑K−1

i=1
di, ngm, i, n

��bm, n , vnm = 0

∑K−1

i=1
di, n

��0Ng
, vnm = 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

= ��0Ng

(41)

with

gm, i, n =
1

D2

1− ejvim

1− ej vim−2pDmi( )/D

× 1− ejvni

1− ej vni−2pDin( )/D
1− ejvnm

1− ej vnm−2pDmn( )/D

[ ]−1

(42)

based on the relation, ��bm, i · ��bi, n = gm, i, n
��bm, n. The entries in

the nth column of (39) involve the coefficients {d1,n, …, dK
−1,n}, and can be expanded as

g1, 1, n · · · g1,K−1, n

..

. ..
. ..

.

gn−1, 1, n · · · gn−1,K−1, n
bn, 1 · · · bn,K−1

gn+1, 1, n · · · gn+1,K−1, n

..

. ..
. ..

.

gK−1, 1, n · · · gK−1,K−1, n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

d1, n

..

.

dK−1, n

⎡
⎢⎣

⎤
⎥⎦

= [0, . . . , 0, 1, 0, . . . , 0]t (43)

from which {d1,n, …, dK−1,n} can be determined. The other
columns in (39) can be expanded in a similar manner to
solve the other coefficients dm, n’s. The total number of
complex multiplications is (K− 1)O((K− 1)3) =O((K− 1)4).
Note that dm, n = d∗n,m because ��B

† · ��B
( )−1

is Hermitian.

Once the nth column of dm,n is obtained, the number of
unknowns dm,n’’s in the n′th column is reduced by one, and
so on. Thus, the total number of complex multiplications is

reduced to

∑K−1

K ′=2

(K ′ − 1)3 = 1

4
K2(K − 1)2

4.3 Simulation on MSE of CFO

All the parameters chosen in the simulation are extracted from
the scalable physical layer in [18], and are the same as those
illustrated in the previous section.
Fig. 5 shows MSE results and their convergence rate with

four, six and eight SS’s, respectively. The SNR ranges from 5

Fig. 5 Convergence of MSE, SNR = 5, 10, 15, 20, 25, 30 dB (from
top to bottom)

a K = 4
b K = 6
c K = 8
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to 30 dB. In all cases, the MSE converges in three cycles for
K = 4, and five cycles for K = 6, 8. The fair convergence
properties of the conventional AP method is preserved.
The SUI-3 channel model is adopted in our paper, which is

the same as that used in [7]. As shown in Figs. 4 and 5 of [7],
the MSE against SNR plots with K = 4 and K = 8 look very
similar. In our case, the MSE results with K = 4, 6 and 8
also look close to one another, under the SUI-3 channel
model.

Fig. 6 shows the MSE with six SS’s after ten cycles. The
CRLB is almost reached at different SNR’s.
In Fig. 7, the MSE using this method is compared with that

of the modified SAGE (MSAGE) method in [7]. The efficient
AP method shows a similar convergence rate as the MSAGE
method when K = 4 and K = 8. In addition, the efficient AP
method approaches closer to the CRLB in both cases. The
MSE of the efficient AP method at SNR = 10 dB almost
reaches the CRLB, and that at SNR = 20 dB is also very
close to the CRLB.

5 Conclusion

An efficient AP method has been developed to estimate the
CFO’s of an arbitrary number of SSs. A demonstration with
four SSs shows that this approach reduces the
computational load of conventional AP method by about
8000 folds. Simulations confirm that the MSE of CFO with
this method converges in the same manner as the
conventional AP method, and also reaches the CRLB.
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8 Appendix

The induction process for derivation of isomorphism between
��B
† · ��B and its inverse.
First, consider a matrix with a single entry ��b1, 1

c1, 1
��b1, 1 = c1, 1

D
��INg

, c1, 1
��b1, 1

( )−1
= D

c1, 1
��INg

= d1, 1
��b1, 1

where ��b1, 1 = ��INg
/D and d1, 1 = D2/c1, 1. Thus, c1, 1

��b1, 1 and
its inverse are isomorphic.

Next, assume the ��B
† · ��B matrix with M ×M entries is

isomorphic to its inverse. With the size increased to (M +

1) × (M + 1), the matrix ��B
† · ��B can be expressed as

��B
† · ��B =

��P11
��P12

��P21
��P22

[ ]
(44)

where

��P11 =
c1, 1

��b1, 1 · · · c1,M
��b1,M

..

. . .
. ..

.

cM , 1
��bM , 1 · · · cM ,M

��bM ,M

⎡
⎢⎢⎣

⎤
⎥⎥⎦,

��P12 =
c1, (M+1)

��b1,M+1

..

.

cM ,M+1
��bM ,M+1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

��P21 = cM+1, 1
��bM+1, 1 · · · cM+1,M

��bM+1,M

[ ]
,

��P22 = cM+1,M+1
��bM+1,M+1

Its inverse can be expressed as

��B
† · ��B

( )−1
=

��Q11
��Q12

��Q21
��Q22

[ ]
(45)

Comparing (44) and (45), we have

��Q11 = ��R
−1

11 (46)

with

��R11 = ��P11 − ��P12 · ��P
−1

22 · ��P21,
��P
−1

22 = D
cM+1,M+1

��INg

The (i, j)th entry of ��R11 can be calculated as

ci, j
��bi, j −

D

cM+1,M+1
ci,M+1cM+1, j

��bi,M
��bM+1, j

= ci, j −
D

cM+1,M+1
ci,M+1cM+1, jgi,M+1, j

( )
��bi, j (47)

where ��bi,M+1 · ��bM+1, j = gi,M+1, j
��bi, j. Equations. (46) and (47)

imply that ��Q11 is isomorphic to ��R11, thus

��Q11 =
a1, 1

��b1, 1 · · · a1,M
��b1,M

..

. . .
. ..

.

aM , 1
��bM , 1 · · · aM ,M

��bM ,M

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (48)

Comparison of (44) and (45) also gives

��Q22 = ��R
−1

22 (49)

with (see (50))
Next, substitute (50) into (49) to have

��Q22 = aM+1,M+1
��bM+1,M+1 (51)

where

aM+1,M+1

= D2

cM+1,M+1−
∑M

j=1

∑M

i=1
cM+1, idi, jgM+1, i, jc j,M+1gM+1, j,M+1

Similarly

��Q12 = ��P
−1

11 · ��P12 · −��Q22

( )
=

a1,M+1
��b1,M+1

..

.

aM ,M+1
��bM ,M+1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (52)

��Q21 = −��Q22

( )
· ��P21 · ��P

−1

11

= aM+1, 1
��bM+1, 1 · · · aM+1,M

��bM+1,M

[ ]
(53)

By observing (48), (51)–(53), the ��B
† · ��B matrix of dimension

(M + 1) × (M + 1) is also isomorphic to its inverse. Thus,
complete the proof by induction.

��R22 = ��P22 − ��P21 · ��P
−1

11 · ��P12 = cM+1,M+1 −
∑M
j=1

∑M
i=1

cM+1, idi, jgM+1, i, jc j,M+1gM+1, j,M+1

( )
��bM+1,M+1 (50)
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