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Abstract: The authors study the opportunistic spectrum access techniques for hybrid overlay–underlay cognitive radio networks.
A secondary user (SU) chooses a channel, transmission mode and adjusts its power so that the interference limit is not crossed and
its throughput is maximised. The authors assume that multiple primary user (PU) channels are available and the SU conducts
spectrum sensing to access the channels. The objective is to maximise the throughput by switching between the overlay and
underlay transmission modes. Using finite-horizon partially observable Markov decision process framework, the authors first
study the optimal policies, where the PU is assumed to be in busy, concurrent or idle state, and the SU either stays idle or
transmits with any of the two designed power levels. Although the PU’s states are hidden, their activity statistics,
transmission ranges and interference thresholds are assumed to be known. Via Monte Carlo simulation, the authors evaluate
the performance of physical layer optimal policy (PLOP) and cross-layer policy (CLAP) and compare them with a fully
observable optimal policy. The beliefs in each slot for both policies are updated using the forward algorithm based technique.
Simulation results show that the proposed CLAP is more throughput efficient than the conventional PLOP.

Nomenclature

Notation for common variables

N number of PU channels
Tf, Tslot duration of a radio frame and time-slot in

seconds, respectively
Ts, Td sensing and data transmission time,

respectively
H number of time-slot in a radio frame (also

horizon)
Pswitch the probability of sensing next out-of-band

channel after PU reappears in the current
channel

Po,u the probability of switching to underlay mode
from overlay mode

PMD, PFA misdetection and false alarm probabilities,
respectively

Pfe feedback error probability
S, si, st set of states (with dimension 1-by-3), ith state

and state at time-slot T,t respectively
U, ui set of actions (with dimension 1-by-3) and ith

action, respectively
O, oi observation vector and ith observation,

respectively
Ps(u) transition probability matrix
Psi,sj

(u) probability of transition from state si to sj for
action u

Pst self-transition probability

P(oj|si, uk) observation probability of oj given state si and
action uk

Rsi
(u) the reward value in state si when action u is

chosen
N number of time-slot to go
O1:m observation sequence
f0:m(si) the probability of state si given the

observations
f0:m the 3-by-1 column vector containing

probability of state si∈ S given the
observations

Od diagonal observation matrix (with dimension
3-by-3)

Β normalisation factor in belief update formula
ζi ith threshold for energy detector
X(y) test statistics for the energy detector’s received

signal y
P(oi|sj) probability of observing oi in state sj
Of feedback observation vector (with dimension

1-by-2)
q1, q2 no collision and collision observation
Q feedback observation matrix
qik probability of qk feedback in state si

1 Introduction

In order to cope with the ever increasing bandwidth demand
in the future generation wireless networks, cognitive radio is
thought to be one of the most promising technologies [1].
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Wireless spectrum is limited a natural resource and it is severely
under-utilised in some bands (TV transmission, amateur radio
and so on). As well, it is extremely crowded in consumer
radio communications band because of current static
allocation of wireless spectrum. Following a study conducted
by the federal communications commission (FCC), the
cognitive radio network (CRN) technologies have been
incepted for the dynamic and opportunistic utilisation of the
under-utilised spectrum. An opportunistic secondary user
(SU) can reuse a free piece of spectrum (also called a
spectrum hole) that is licensed to a primary user (PU). In
order to reuse spectrum holes, an SU must first carry
out-of-band sensing [2]. If a spectrum hole is found by the
sensor, the SU can then use it for its data transmission.
However, it should also conduct in-band sensing periodically
so that it can vacate the acquired channel when the
incumbent user re-appears and starts transmission [3]. In
IEEE 802.22 Wireless Regional Area Networks (WRANs),
PUs should be detected within 2s of their reappearance with
the sensing error probabilities no greater than 0.1 [4]. In order
to avoid interference among multiple sensors and achieve
reliable sensing, it is also necessary that all the SUs sense the
channel during quiet period. In this period, all SUs should
postpone their transmissions so that any sensor monitoring
the channel, may observe the presence/absence of PU signals
without interference.
Channel access techniques based on physical layer (PHY)

and medium access control (MAC) layer channel sensing
have been discussed in the literature. In [5], a decentralised
MAC protocol for ad hoc CRNs has been proposed that
senses channel in each time-slot and takes opportunistic
channel access decisions. Zhang and Tsang in [6] extended
the partially observable Markov decision process
(POMDP)-based optimal and myopic greedy suboptimal
techniques of [5] to cooperative sensing CRNs. In [7],
Liang et al. studied the problem of designing the sensing
slot duration to maximise the achievable throughput. A
comparative study of energy detection and feature detection
in-band spectrum sensing techniques in WRANs has been
studied in [4]. Although the above works consider that the
PU’s state may be in one of the two states, namely, busy
and idle, Senthuran et al. in [8] consider a third state
(where concurrent transmission is possible) that a PU user
may occupy, and have studied opportunistic access
strategies for three-state CRNs. An information theoretic
perspective of three paradigms, namely, underlay, overlay
and interweave has been discussed in [9].
The following works also deal with the capacity

maximisation schemes that intelligently combine the underlay
and overlay modes for the purpose. In [10], Khoshkholgh
et al. analysed the achievable capacity for overlay, underlay
and mixed access strategies. A hybrid strategy that combines
overlay and underlay spectrum access schemes is studied in
[11] utilising a double-threshold energy detection method and
Markov chain model. The SUs can switch between
full-access and partial-access modes dynamically. Bansal
et al. studied a joint overlay and underlay power allocation
scheme for OFDM-based cognitive radio systems in [12] in
order to maximise the transmission capacity. A hybrid
cognitive radio system by combining both the underlay and
the overlay modes is studied to maximise the average
throughput of a secondary network in [13]. In [14], an
overlay/underlay spectrum sharing techniques is studied for
multi-operator environment in CRNs. Using continuous time
Markov chain model, Nair et al. [15] analysed the hybrid
spectrum access scheme which combines overlay and

underlay spectrum sharing schemes to improve the system
throughput. A spectrum access and power adaptation
technique on a single PU channel is discussed in [16] using
three hidden states of the PU channel.
Motivated by the above studies, we study the spectrum

access and power adaptation techniques for a CRN with
three-states. Because, in overlay mode, the SU remains ‘off’
when the PU channel is in ‘busy’ mode. However, if the SU
switches to the underlay mode, it can still transmit with low
power provided the interference threshold is maintained.
Moreover, since multiple channels are available, the SU can
find another free channel. In this paper, we first study the
optimal channel access and power adaptation strategy by
formulating the problem as a finite-horizon POMDP that
optimises the throughput and avoids the interference to the
PUs. The optimal alpha vectors for the formulated POMDP
problem is computed using the incremental-pruning
algorithm. Then the instantaneous optimal policies in a
particular time-slot are obtained from the tabulated optimal
alpha vectors and the belief of the states that are estimated
using the forward algorithm from the spectrum sensing in
each time-slot for physical layer optimal policy (PLOP).
Since the PLOP requires channel to be sensed in every
time-slot (which causes loss in both the energy and the data
transmission time), we propose a novel cross-layer policy
(CLAP)-based algorithm that updates the state belief using
spectrum sensing result in the first time-slot and then using
ACK/NAK information (obtained from data link-layer) of
the previous time-slot in the rest of the frame. When the PU
reappears in the current channel, the SU takes the decision
whether to switch in underlay mode or sense another
channel for spectrum hole. We study the throughput and
collision performance results via simulation for different
number of PU channels, PU channel mixing rates and error
occurrence both in sensing and in feedback.
The summary of our contributions are given below:

† We formulate the channel access, transmission mode
switching and power allocation techniques for CRNs, where
multiple PU channels are available.
† We formulate the problem as a POMDP and discuss its
components. Incremental pruning based algorithm is
presented to find the optimal alpha vectors.
† We propose a CLAP and compare its performance with
traditional PLOP. We also compared both policies with
benchmark fully observable optimal policy (FOOP).
† We have carried out Monte Carlo simulations to show the
effect of various system parameters, such as number of PU
channels, self-transition probabilities, sensing error and
feedback error.

The paper is organised as follows. In Section 2, we
describe the system model for the problem. The formulation
of the problem as a POMDP is given in Section 3 and its
solution technique to obtain the optimal alpha vectors is
discussed in Appendix 1. Depending on belief tracking, two
policies: PLOP and CLAP are described in Section 4. The
FOOP is also discussed in this section. The belief tracking
algorithm, namely forward algorithm, is discussed in
Section 5. We provide simulation results in Section 6 and
conclude in Section 7.

2 System model

In this paper, a hybrid underlay–overlay CRN is considered,
where an SU is intelligently accessing channels that are
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licensed to the PUs. The SU adjusts its transmission power so
that it can concurrently transmits its information data with the
PU transmission in underlay mode. However, the transmitter
power should be small enough so that the interference
perceived by the PU is below some acceptable threshold. In
overlay mode, the SU senses the channel to find the
spectrum holes, where the PU is absent. The SU can use
higher transmission power. However, the SU should
periodically sense the channel, and either leave the channel
free or switch to underlay mode when the presence of PU is
detected. In the first case, the PU needs to carry out-of-band
spectrum sensing to find out spectrum opportunity. In the
latter case, the PU can continue to transmit with lower
power by switching to underlay transmission mode. Let us
assume that Pswitch denotes the probability of sensing the
next out-of-band channel. Therefore, the probability of
switching to the underlay mode is just Po,u = Prob(Underlay|
Overlay) = 1− Pswitch.
Let us assume that the time is discretised into a finite

number of time-slots, and duration of each time-slot is Tslot
seconds. A radio frame of duration Tf =H × Tslot consists of
H discrete time-slots, where H is the horizon of the
transmission. In the time-slots where spectrum sensing is
done, a time-slot consists of sensing time Ts seconds and
data transmission time Td = Tslot− Ts seconds, as shown in
Fig. 1a. Data transmission time also includes the control
and feedback signal times. When spectrum sensing is not
carried out in a particular time-slot, the whole time-slot Ts
is used for data transmission. Later, we will note that in
some transmission policy, the spectrum sensing is not
necessary in all but the first few time-slots. Let us assume
that the number of possible PU channels in the geographic
region is N.
The system evolves as follows: at the beginning of a radio

frame, an SU decides how many and which channels to sense,
and in what sequence. It then carries out spectrum sensing for
the first channel. If the sensed channel is found empty, SU
stops sensing the next channels. Otherwise, it senses the
next channel in the sequence. Note that our studied model
is general enough to accommodate any PHY channel
sensing schemes. The performance of the channel sensing
scheme is assumed to only affect the accuracy of the

mis-detection and false alarm probabilities, PMD and PFA. If
no channels are found empty, the SU picks up one channel
and transmits in underlay mode. Otherwise, after one empty
channel has been picked up, the SU starts transmitting on
that channel for the remaining of the time-slots. In the next
time-slot of the frame, the SU carries out in-band spectrum
sensing and transmits packets if it is still free. Otherwise,
either it starts the out-of-band sensing with probability
Pswitch or switches to underlay mode with probability Po,u.
In the next frame, the SU again starts the out-of-band or
in-band channel sensing depending on its strategy and the
availability status of the previously occupied channel, and
then it repeats the transmission process. Upon receiving the
data packet, the receiver sends an ACK/NAK feedback via
automatic repeat request (ARQ) technique for the
transmission. Let Pfe denote the probability of feedback
error. However, in our proposed CLAP, the SU does not
need to sense all the time-slots. Rather, it uses the already
available ACK/NAK feedback information as discussed
later. In the following, we discuss the problem formulation
assuming that the channel is sensed in every time-slot. The
modification for CLAP is discussed in respective section.

3 Problem formulation

In this paper, our goal is to intelligently access available PU
channels via switching between channels and modes so that
the achievable throughput in the horizon is maximised. We
are concerned with the optimum utilisation of the channel
and adaptation of power in order to maximise the
throughput and avoid the collision occurrence in a CRN. It
can be noted that the exact instantaneous state of the PU is
unknown to the SU. However, the SU wants to adapt the
transmission with respect to PU activity. Thus, the problem
can be inherently formulated as a POMDP. A POMDP
problem is composed of the following ingredients: a set of
states S, a set of actions U, transition probability matrices
Ps, a set of observations O, observation probability
matrices Q and reward matrix R [17]. Below we discussed
each component individually:

3.1 System states

Assume that S = {s1, s2, s3} is the set of activity states of the
PUs as seen by the SU, where s1, s2 and s3 correspond to busy,
concurrent and idle states, respectively.
The brief descriptions of the states are given below:

(1) Busy state s1: In this state, we assume that the channel is
occupied by the PU. Thus, it does not expect any kind of
overlay channel access by the SU. Because when an SU
tries to access the channel with full transmission power
whereas PU is in state s1, it will cause undesirable
interference to PU.
(2) Concurrent state s2: In this state, the SU can transmit
simultaneously with the PU using underlay mode, possibly
using lower transmission power than that in state s3. There
will be two possible scenarios where this state may be possible:

† When the receiver of the PU network has a specified
interference tolerance limit and SU transmitter is able to
transmit using lower power so that the interference
threshold is not violated. We assume that the PU broadcasts
its QoS requirement when transmitting its data information
and SU knows its and PU transmission ranges [8].

Fig. 1 Time and state dynamics for the system

a A pictorial view of a radio frame and the slot structure, where in the
beginning part of a slot is for sensing and remaining part is for data
transmission. The tth time-slot is denoted as Tt and the number slots to go
in the frame is represented as n
b The state diagram and the corresponding observations for the POMDP
problem
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† When the SU transmitter uses dirty paper coding (DPC)
techniques to zero-force interference for its own receiver’s
signal and uses a part of its power to amplify and relay PU
signal to compensate the interference it causes.

In any case, it is clear that the SU transmitter has to use
lower transmission power in this state than the full
transmission power possible.

(3) Idle state s3: In this state, the channel is assumed to be
completely free to be used by the SU and the SU can use
overlay transmission mode. The SU can use any power
actions depending on its number of packets in the buffer
and channel gain between the SU transmitter and receiver
pair. Although all actions are allowable in state s3, higher
power action is most preferable since SU can transmit with
higher rate with this action.

3.2 Transmission power actions

During a radio frame, at each time-slot, the controller of the
cognitive transmitter takes the decision whether or not to
access the channel. If it decides to access a channel, it also
decides which mode to use, namely, either overlay or
underlay. Depending on the above decision, the controller
also decides what power it will use to transmit data to the
cognitive receiver. Let U = {u1, u2, u3} =
{zero power, low power, high power} be the set of power
actions, where each action corresponds to a specific
transmission rate for the corresponding power. Note that
action u1 corresponds to no transmission. The SU must use
it in state s1. Any actions can be chosen in state s3.
However, in state s2, action u3 is not permitted.

3.3 State transition matrix

The underlying states can transit from one to another over
time. The transition probability matrix for a particular
action captures this probability of switching from one state
to another. For action u [ U, it can be written as

Ps(u) = Psi,sj
(u)

[ ]
S×S

. Note that, for the problem at hand,

state transitions of the PU activity are independent of the
SU’s choice of action. Therefore, we can write,
Psi,sj

(u) = Psi,sj
, ∀u [ U. The SU can learn the system state

transitions matrix by any statistical method.

3.4 State observation and its probability

The spectrum sensor at the SU transmitter senses the channel
and takes decision on the hidden state of the system. The
sensing outcomes on the hidden system state form the
observation vector Os = {o1, o2, o3} = ŝ1 , ŝ2 , ŝ3

{ }
, where

oi = ŝi is the spectrum sensor’s outputs for corresponding
hidden states si [ S. The relationship between the spectrum
sensor outputs and the hidden states is shown in Fig. 1b,
where the probability of a state being in a particular state
for a particular action is expressed in terms of observation
probabilities P(oj|si, uk ), si [ S, oj [ O, uk [ U.

3.5 Reward matrix

At the beginning of a time-slot, the system moves to the next
state according to the state transition probability matrix of the
hidden core process (PU activity process) and an observation

of the state is received through spectrum sensor. Then, the
controller at the SU transmitter takes a power action, based
on the updated belief of the state. The system receives a
reward (when no interference occurs) or incurs a cost (when
interference occurs) depending on the action choice. The
controller chooses the best action that is expected to give
the highest reward. Let Rsi

(u) represent the reward value in
state si when action u is chosen. Please note that the reward
values for each state should be assigned in such way so that
the controller chooses the best action. We discuss more on
the reward values in Section 6. Unless specified otherwise,
we use superscript t, t = 0, 1, …, H to denote a variable at
time-slot Tt throughout this paper. For example, we
represent the state of the PU at time-slot T t by st. On the
other hand, subscript n is used to denote n time-slots to
reach the end of the horizon as shown in Fig. 1. A list of
commonly used symbols is given in I.

4 Solution techniques

In this section, we discuss three possible policies that can be
used to obtain the actions in each time-slot and state.
Although first policy gives us optimal policy for the
problem, the second and the third are based on belief state.
Note that a policy gives us the action to be taken in each
state and in all the time-slots in a frame.

4.1 Fully observable optimal policy

First, let us consider the optimal policy when, in each
time-slot, the states are fully observable to the SU
transmitter. We termed this policy as FOOP. In state si, 1 =
1, 2, 3 the optimal policy ui, 1 = 1, 2, 3 is applied. That is,
in each time-slot, we assume that the scheduler is provided
with the hidden states of the PUs’ channels. This policy is
certainly infeasible in many practical cases. However, it
serves as a benchmark of performance of the two policies
discussed below. Both policies use optimal alpha vectors of
the formulated POMDP problem as given in Appendix 1.
Note that in the Appendix 1, the alpha vectors are

determined using the transition probability, observation
probability and rewards models for the problem. Both
policies discussed below compute action for each time-slot
of the SU communications. They update belief state vector
[We call forward probability distribution over states as
belief state vector for PLOP and CLAP. For POMDP
formulation model and solution, we use information vector
to distinguish between two.], which is defined as the
updated probability distribution over all the states starting
from an initial belief states, using sensor outcome and/or
ACK/NAK information.

4.2 Physical layer optimal policy

In this policy, the spectrum sensor at the SU transmitter
senses (either in-band or out-of-band as necessary) the
channels in each time-slot. The steps for finding the
instantaneous optimal policy in each slot are as follows: (1)
in every time-slot, the scheduler obtains the observation and
it updates the belief state vector using the forward
algorithm. The initial belief vector for the first slot is
initialised randomly, (2) the value of belief vector is
plugged into the respective slot’s alpha vector sets and (3)
the alpha vector that maximises the value function for the
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belief vector is the optimal alpha vector and the
corresponding action is the optimal action.

4.3 Cross layer policy

It can be noted that in PLOP, the spectrum sensor at the SU
transmitter needs to sense the channels in all the time-slots
in order to update belief vector. There are two
disadvantages of doing this: first, sensing in all the
time-slots consumes bandwidth, and second it also spends
the power for sensing process. Especially since the ACK/
NAK information for the previous time-slot is already
known at the link-layer, using the cross-layer interaction,
the scheduler at the PHY can use those already available
information to reduce the burden of sensing and eliminate
two consequent disadvantages.
We propose a novel CLAP using the forward algorithm that

estimates and maintains the probability distribution of the
states, also called belief, from both the sensing observation
result and the feedback ACK/NAK observations. We
assume that the transmitter senses the channel in the first
time-slot and thereafter it uses feedback observation during
the rest of the slots to update the belief of the states. The
belief of the states in each time-slot is then used to pick up
the alpha vector that gives maximum rewards and
associated action using (8).

5 Forward algorithm

We discuss the forward algorithm that deals with the updating
and propagating the belief for both PLOP and CLOP in the
following subsections.

5.1 Hidden state belief estimation

It can be noted that spectrum sensor is the only source of
observations in PLOP. In CLAP, however, we have two
sources from where we can obtain observations: spectrum
sensor and ACK/NAK feedback. Let O1:m: = o1, o2, …, om
denotes a given sequence of observations (either from
sensor or from feedback). Therefore, we can write the
probability of state si given the observations as

fo:m(si) = P(sm = si|o1, o2, . . . , om, p), ∀si [ S (1)

where π is the belief of the states at time-slot T0. When we
know the current belief and obtain the new observation, we
can iteratively update the belief of the hidden states by
using the following relation

fo:m = OdPs fo:m−1 (2)

where f0:m is the 3-by-1 column vector containing probability
of state si [ S given the observations, and Od is the 3-by-3
diagonal observation matrix whose diagonal elements
Od[i,i] are the observation probabilities for states si [ S and
other elements are zeros. After normalising the probabilities
so that the sum is equal to 1, we can write the normalised
belief vectors as follows

f̂o:m = bOdPs f̂o:m−1 (3)

where b = 1/
∑

OdPsf o:m−1

( )( )
is the normalising factor.

Below we discuss the update of belief using both the sensor
and ACK/NAK observations.

5.2 Belief update using sensor observation

In order to utilise unused spectrum opportunistically and at
the same time avoid interference to the returning PUs,
spectrum sensing is done periodically. Among the different
spectrum sensing methods, energy detection is the most
popular because of its simple design and smaller sensing
time [4]. Without loss of generality, we continue our
discussion using energy detection technique, where the
collected energy after sampling and frequency domain
operations forms the test statistics, X(y) of the energy
detector’s received signal y. The probability density
function (pdf), p(y) of the test statistic can be approximated
by a Gaussian distribution [7]. The SU transmitter senses
the channel energy and compares with two different
thresholds ζ1 and ζ2 to determine the state of the PU [8].
The probability of false alarm P( ŝ1|s3), which is the
probability of the sensor falsely declaring the presence of
primary signal in lower state when it is actually in upper
state, can be written as P( ŝ1|s3) = Pr(X (y) . z1|s3). The
probability of mis-detection P( ŝ3|s1), which is the
probability of the sensor incorrectly declaring the presence
of primary signal in state that is higher than actual state,
can be written as P( ŝ3|s1) = Pr(X (y) , z2|s1). Similarly,
other false alarm probabilities P( ŝ2|s3) and P( ŝ1|s2), and
mis-detection probabilities P( ŝ2|s1) and P( ŝ3|s2) can be
evaluated using appropriate thresholds and pdf. The
diagonal observation matrix Od, for observation ŝ1 in (2),
can be written as Od = diag(P(o1|s1), P(o1|s2), P(o1|s3)).

5.3 Belief update using ACK/NAK observation

In a particular time-slot, in state st when the controller takes a
particular action ut, the secondary transmitter obtains an
observation using the feedback from the receiver. When the
receiver receives the packet sent from the transmitter
successfully, it sends an ACK. Therefore, when an ACK is
received, the transmitter assumes that no collision occurred
with PU’s transmission. The absence of ACK is interpreted
as collision with the PU’s transmission.
Hence, the set of feedback observations can be written as

Of = {q1, q2} = {No Collision, Collision}. Although the
actual states of the PU’s activity are hidden, the SU obtains
an idea of them using the previous observations. The
relationship between the actual state and the observation for
each action can be expressed in terms of 3 × 2 feedback
observation matrix and can be expressed as Q = [qik],
where qik = P qt = qk |st = si, u

t( )
, qk [ Of , si [ S. The

diagonal observation matrix Od can be written for ACK (no
collision) feedback as follows: Od = diag(q11, q21, q31).

6 Simulation results

In this section, we present simulation results for the PLOP and
CLAP using Monte Carlo technique averaged over 106

time-slots. As discussed before, the belief of the states is
updated using sensing information in each time-slot for
PLOP. For the CLAP case, it is updated using channel
sensing information in the first time-slot and using previous
ACK/NAK information in the other time-slots. We compare
both policies with the FOOP. The throughput results for
FOOP are obtained assuming that states are completely
known and the action that gives maximum throughput
without any collision are chosen. For both PLOP and
CLAP cases, the action for a particular time-slot is obtained
by substituting the respective updated belief in (8). Note
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that the alpha vectors are obtained using incremental pruning
algorithm as described in Appendix 1. The algorithms for
FOOP, PLOP and CLAP are given in Appendix 2. For our
problem in hand, we found that the computation complexity
is very minimal. The computations of the alpha vectors are
very fast. The computation of the actions for FOOP, PLOP
and CLAP are very fast as well.
We assume that spectrum sensing requires 10%

(approximately 1 ms [4]) of time in a slot. The duration of
each slot is Tslot = 10 ms [18]. The horizon length (frame
size), H is varied from 2 to 20. The number of radio frames
for each scenario is found according to the frame size, H.
Although any activity statistics of PU are valid for the
problem, without loss of generality, we consider three cases
where the self-transition probabilities, Pst = Psi,si

, si [ S
are 0.99, 0.97 and 0.95. When in state s1 and s3, the
adjacent transition probability, Psi,sj

, |i− j| = 1 is
0.8(1− Psi,si

) and other transition probability is
0.2(1− Psi,si

). When in state s2, both adjacent states are
equally probable, that is, Psi,sj

= 0.5(1− Psi,si
), |i− j| = 1.

We use the following rewards so that the occurrence of
collision among transmission of PU and SU can be
avoided: Rs1(u1) = 0, Rs2

(u2) = 1, Rs3
(u2) = 1, Rs3

(u3) = 2,
and others are −1. We use positive reward and negative
reward for an action when it is expected and is not expected
in a state, respectively.
That is, the negative value discourages the scheduler for

taking actions when a higher positive reward exists. For
example, when in state s1, action u2 and u3 are not
permitted as both of these two actions will introduce
interference to the PU. Therefore, the rewards
corresponding to these actions in state s1 are negative. The
reward for action u1 is zero, which is better than negative
reward, so the scheduler chooses u1 over u2 and u3. In state
s2, our expected action is u2 because u3 will introduce
interference and u1 will miss spectrum utilisation
opportunity. Likewise, in state s3, expected action is u3, but
u2 is permitted (but discouraged) since it does not either
introduce interference or miss spectrum opportunity. The
reward is lower because the throughput obtained using u2 is
less than that using u3. Action u1 is not expected in state s3
as discussed above. Note that the reward matrices are not

the same as throughput matrices. We assume that we
receive throughput of 1 and 2 for actions u2 and u3,
respectively, when no collision happened. In state si [ S
collision occurs for action uj [ U when i < j. We use 1 and
0 to express collision and successful events to find average
collision per-slot. We have found that the policy does not
depend on the initial belief and therefore, it is initialised to
steady-state vector. It is worth to mention that when
short-term fading is considered, the throughput rate can take
many values as determined by the employed modulation
and coding schemes.
Unless specified otherwise, we use following: number of

PU channels, N = 10 and self-transition probabilities, Pst =
0.99. We show the throughput and the collision
performances as a function of different horizon lengths for
different number of PU channels in Figs. 2–6. In all these
figures, the solid, dashed and dotted curves are for number

Fig. 2 Throughput against horizon size when sensing/feedback
error is zero

The solid, dashed and dotted curves are for number of PU channels, N = 2,
N = 5 and N = 10, respectively

Fig. 3 Throughput against horizon size when sensing error is zero,
but feedback error is non-zero

The solid, dashed and dotted curves are for number of PU channels, N = 2,
N = 5 and N = 10, respectively

Fig. 4 Collision against horizon size when sensing error is zero,
but feedback error is non-zero

The solid, dashed and dotted curves are for number of PU channels, N = 2,
N = 5 and N = 10, respectively
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of PU channels, N = 2, N = 5 and N = 10, respectively. In
Fig. 2, we first show the normalised throughput per slot for
FOOP, PLOP and CLAP, where it is assumed that the
sensing and feedback errors are zero. Note that maximum
possible normalised throughput is 1, which we obtain for
FOOP for any numbers of PUs channels and any horizon
lengths.
For PLOP, the throughput increases as the horizon length

increases. Within a radio frame, the belief is updated in
each time-slot with the new sensing observation. More
observation data translates into better belief. Therefore, the
average throughput for PLOP increases as the number of
time-slots in a frame (which is the horizon) increases.
However, for CLAP, the average throughput is determined
by the two factors. For this reason, there is a break over
point for CLAP plots. It can be seen that the throughput
first increases and then decreases. Since each curve has a
break over point, the horizon length can be intelligently
chosen depending upon the number of PU channels. First

since there is no sensing (and no corresponding time-slot
loss) after first slot, the average throughput should increase
when the number of time-slot in a frame increases. Owing
to the effect of throughput loss in the first slot is averaged
out over the horizon length and becomes smaller for
increasingly larger horizon lengths. There is another factor
is the accuracy of the belief. Although the sensing
observation is very accurate indication about the channel
state, ACK/NAK is not that accurate (since ACK/NAK are
outdated information). Moreover, the belief is more accurate
as the horizon length increases in this case (no error in
sensing and feedback). Thus, the accuracy of the belief
degrades for larger horizon lengths for CLAP.
When the number of PU channels N increases, the

throughput increases for larger horizon lengths. However, it
is opposite for lower horizon length. Here two opposing
factors are working as well. First, the throughput increases
with the number of PUs. As for larger N, the SU transmitter
has more probability of getting free channels (rather than
staying with one channel). However, when the number of
PUs are larger, it takes more time-slots to obtain refined
belief (since the states are initialised to equally probably at
the beginning). That is why the throughput initially
decreases for the smaller horizon length and then gradually
improved as the horizon length increases. When the
feedback errors are 5%, the throughput is not changed for
PLOP in Fig. 3 because PLOP depends on sensing
observation. However, it is decreased at higher horizon
length for CLAP. Since the accuracy of belief for CLAP
depends on feedback observation. Therefore, the accuracy
of ACK/NAK would drop when the accuracy of feedback
degrades. For the above reason, the collision is still zero for
PLOP (since sensing error is zero), but it is non-zero for
CLAP (since feedback error is non-zero and it is less
accurate indication of the hidden state). However, it is less
than 1% as can be seen from Fig. 4.
Now let us see the cases when the sensing error is 5% and

feedback error is zero in Figs. 5 and 6. It can be noticed that
both the PLOP and CLAP throughput and collision
performances are affected by sensing error. However, in all
the above cases, it can be noticed that the CLAP attains
better performance, especially at lower horizon lengths. The

Fig. 6 Collision against horizon size for non-zero sensing and zero
feedback error

The solid, dashed and dotted curves are for number of PU channels, N = 2,
N = 5 and N = 10, respectively

Fig. 5 Throughput against horizon size for non-zero sensing and
zero feedback error

The solid, dashed and dotted curves are for number of PU channels, N = 2,
N = 5 and N = 10, respectively

Fig. 7 Throughput against horizon size for non-zero sensing and
zero feedback error

The solid, dashed and dotted curves are for self-transition probabilities, Pst =
0.95, Pst = 0.97 and Pst = 0.99, respectively
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effect of different self-transition probabilities is shown in
Fig. 7. It can be seen that the throughput performance is
better for lower value of Pst. This is because when
self-transition probability increases the channel is going to
stay in the same state for longer time. When it is in the
state s1, it is stuck there for longer time and less chance to
switch in better state in another channel that permit
transmission with higher rate. As a result, the average
throughput decreases when the value of Pst increases. It is
seen that at a certain value of horizon length the CLAP
curves cross PLOP curves in the downward direction. The
crossing value of the horizon length increases as the state
memory decreases (i.e. when the state mixing rate
increases.). That is, CLAP maintains better performance in
the longer horizon length region than PLOP for the faster
channel mixing.

7 Conclusion

In this paper, we investigated the throughput and the collision
performances of a hybrid overlay–underlay CRN. It was
assumed that the PU has three hidden states and multiple
PU channels are available. We provided POMDP-based
formulation and incremental-pruning algorithm based
solution technique to find the optimal alpha vectors needed
to compute policy for a particular belief vector. For a
particular belief vector in a particular time-slot, the power
adaptation actions and overlay–underlay transmission mode
are found by plugging the belief vector in the alpha vector
sets and by finding maximum value of the scalar products
of them. We studied two policies: in order to track the
belief, whereas first technique (termed as PLOP) requires
channel to be sensed in each time-slot, second technique
(termed as CLAP) requires channel sensing in the first
time-slot only. In the other time-slots, ACK/NAK feedback
from previous slot is used in the latter technique. We
evaluated the throughput and the collision performances of
both policies and compared them with FOOP. Simulation
results showed that the proposed CLAP is more throughput
efficient than the PLOP, especially when the frame size is
smaller. The collision rate for both policies are also well
below the specified threshold by the standards.
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10 Appendix

10.1 Appendix 1: optimal solution techniques

The finite-horizon POMDP problem formulated in Section 3
can be solved using different techniques, such as incremental
pruning algorithm. Incremental pruning algorithm gives us
optimal alpha vectors, which forms the basis of the optimal
policy in a POMDP problem. We use the optimal alpha
vectors in both PLOP and CLAP to obtain the action for a
given belief state.

10.1.1 Information state: Information state of hidden
state s [ S can be tracked and updated with the new
observation o [ O in each time-slot and it provides
sufficient statistics for POMDP problem. It is the
probability associated with hidden state s and denoted by I
(s). I(s) is a continuous positive real number and bounded
by 0 and 1. Thus an information state vector I is just a
probability distribution over the set of states S. The
information state at time-slot Tt can be calculated when the
sequence of observations and actions so far are known
using relation

I(st) = P st|ut−1, ot−1, . . . , u0, o0, s0
( )

(4)

where o0 and u0 are the observation and action at the starting
time-slot T0. Please note that this conditional probability (4) is

www.ietdl.org

IET Commun., 2014, Vol. 8, Iss. 15, pp. 2666–2675
doi: 10.1049/iet-com.2013.0796

2673
& The Institution of Engineering and Technology 2014



essentially a filtering task. Thus, the new information state can
be calculated recursively from the previous information state
and the new observation-action pair. As we mentioned before,
at any time-slot, the information vector is a sufficient statistic
of the past sequence of observation and actions.
Let I(st) denotes the previous information state at time-slot

T t, and the agent perceives observation ot. Now, if it takes
action ut, then the new information state at time-slot Tt + 1

can be written as

I(st+1) = aP(ot|st+1, ut)
∑
st

Pst ,st+1 (ut)I(st) (5)

where the factor α is a normalising constant that makes the
information state sum equal to 1. We can write it as
a = ∑

st+1 P(ot|st+1, ut)
∑

st Pst ,st+1 (ut)I (st)
( )−1

. Then the

information state transformation function T(I|u, o) = I(st + 1)
becomes

I (st+1) = P(ot|st+1, ut)
∑

st Pst ,st+1 (ut)I (st)∑
st+1 P(ot|st+1, ut)

∑
st Pst ,st+1 (ut)I(st)

(6)

Therefore, transformation function T(I|u, o) updates the
information state I(st), ∀st [ S at time-slot Tt to the
information state I (st+1), ∀st+1 [ S at time-slot Tt + 1. Once
the observation probabilities are known, the term
P(ot|st+1, ut), ∀st+1 [ S can be found by P(ot|st+1, ut) =∑

st[S P(ot|st, ut)Pst ,st+1 (ut). We can note that the
observation probability of a state depends only on the
underlying hidden state and it is independent of the action.
Therefore, we can again write P(ot|si, ut) = P(ot|si),∀ot [ O, si [ S.

Fig. 8 Algorithm to compute actions for FOOP, PLOP and CLAP
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10.1.2 Value function: The value function is an important
function in POMDP problem that maps the information state
to expected discounted total reward. Assume that Vn(I ) is the
maximum expected reward that the system can accrue during
the lifetime of the process when the current information
vector is I1 × 3 and there are n slots remaining before the
process terminates. The recursive equation for the value
function can be written as

Vn(I ) = max
u[U

I .R(u)+ g
∑
o[O

P(o|I , u)Vn−1[T (I |u, o)]
[ ]

(7)

where 0 < γ≤ 1 is a discount factor for the expected reward,
R(u) is the reward column vector of dimension 3-by-1 for
action u, and P(o|I , u) = ∑s3

si=s1
I(si)

∑s3
sj=s1

Psi,sj
(u)

P(o|sj, u) is the probability of observing output o if the
current information vector is I and action u is taken.
Therefore, the value for an information state I is the value
of the best action that can be taken from I of the expected
immediate reward for that action plus the expected
discounted value of the resulting information state. It is
shown that the value function Vn(I ) is piecewise, linear and
convex [19] and can be written as

Vn(I) = max
k

∑i=3

i=1

ak
i (n)I (si)

[ ]
(8)

for some set of vectors, called α-vectors, ak (n) =
ak
1(n), a

k
2(n), a

k
3(n)

[ ]
, k = 1, 2, . . . . The exact numbers of

α-vectors depend on the numbers of action-observation
pairs. We can see from the above relation (8) that once the
alpha vectors for various time-slots in the horizon are
calculated, the policy that maximises Vn(I ) for a given
information vector is the optimal policy.

10.1.3 Algorithm for calculating alpha vectors: There
are several algorithms in the literature to find the optimal
policy for the formulated finite-horizon discounted reward
POMDP problem. Some of the algorithms are as follows:
enumeration, witness, incremental pruning and so on. In all
the algorithms, the algorithm calculates the best policy for a
given information vector in each time-slot during the finite
horizon. In [20], Cassandra et al. have discussed different
techniques for calculating the alpha vectors for (8). Their
relative merits and limitations are also presented there.
Incremental pruning algorithm is shown to perform the best
in [20]. As such, although any algorithm can be used for
the considered problem, we use incremental pruning
algorithm in this paper to calculate the alpha vectors over
the horizon. The basic idea behind this algorithm is to form
transformed value function sets for a particular action and
all observations, and then combining all choices
incrementally in observation by observation manners (e.g.
value functions for first and second observations are
combined first, then the results are combined with third,
and so on) to find dominant sets. The process is repeated
for the other actions and then the alpha vector sets are
obtained by combining and eliminating dominated sets.

10.2 Appendix 2: algorithm to compute actions for
FOOP, PLOP and CLAP

Below we present the algorithm used to compute different
performance parameters. In each case, we assume that the
total number of simulations slots is the same and the same
sets of actual states are used in all the simulations. We also
assume that the optimal alpha vectors are computed using
incremental pruning algorithm. We repeat the simulations
for different frame sizes, different number of PU channels,
and different sensing and feedback errors (see Fig. 8):
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