Hindawi Publishing Corporation
Scientific Programming

Volume 2015, Article ID 981759, 16 pages
http://dx.doi.org/10.1155/2015/981759

Research Article

Hindawi

Locality-Aware Task Scheduling and Data Distribution for
OpenMP Programs on NUMA Systems and Manycore Processors

Ananya Muddukrishna,' Peter A. Jonsson,” and Mats Brorsson">

'KTH Royal Institute of Technology, School of Information and Communication Technology, Electrum 229, 164 40 Kista, Sweden

2SICS Swedish ICT AB, Box 1263, 164 29 Kista, Sweden

Correspondence should be addressed to Ananya Muddukrishna; ananya@kth.se

Received 15 May 2014; Accepted 29 September 2014

Academic Editor: Sunita Chandrasekaran

Copyright © 2015 Ananya Muddukrishna et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Performance degradation due to nonuniform data access latencies has worsened on NUMA systems and can now be felt on-
chip in manycore processors. Distributing data across NUMA nodes and manycore processor caches is necessary to reduce
the impact of nonuniform latencies. However, techniques for distributing data are error-prone and fragile and require low-level
architectural knowledge. Existing task scheduling policies favor quick load-balancing at the expense of locality and ignore NUMA
node/manycore cache access latencies while scheduling. Locality-aware scheduling, in conjunction with or as a replacement for
existing scheduling, is necessary to minimize NUMA effects and sustain performance. We present a data distribution and locality-
aware scheduling technique for task-based OpenMP programs executing on NUMA systems and manycore processors. Our
technique relieves the programmer from thinking of NUMA system/manycore processor architecture details by delegating data
distribution to the runtime system and uses task data dependence information to guide the scheduling of OpenMP tasks to reduce
data stall times. We demonstrate our technique on a four-socket AMD Opteron machine with eight NUMA nodes and on the
TILEPro64 processor and identify that data distribution and locality-aware task scheduling improve performance up to 69% for
scientific benchmarks compared to default policies and yet provide an architecture-oblivious approach for programmers.

1. Introduction

NUMA systems consist of several multicore processors
attached to local memory modules. Local memory can be
accessed both faster and with higher bandwidth than remote
memory by cores within a processor. Disparity between local
and remote node access costs increases both in magnitude
and nonuniformity as NUMA systems grow. Modern NUMA
systems have reached such size and complexity that even
simple memory-oblivious parallel executions such as the
task-based Fibonacci program with work-stealing scheduling
have begun to suffer from NUMA effects [1]. Careful data dis-
tribution is crucial for performance irrespective of memory
footprint on modern NUMA systems.

Data distribution is also required on manycore processors
which exhibit on-chip NUMA effects due to banked shared
caches. Cores can access their local cache bank faster than
remote banks. The latency of accessing far-off remote cache

banks approaches off-chip memory access latencies. Another
performance consideration is that cache coherence of many-
core processors is software configurable [2]. Scheduling
should adapt to remote cache bank access latencies that can
change based on the configuration.

Scheduling decisions of the runtime system are key to
task-based program performance. Scheduling decisions are
made according to scheduling policies which until now
have focused mainly on load-balancing—distributing com-
putation evenly across threads. Load-balancing is a simple
decision requiring little information from task abstractions
used by the programmer and has been effective for several
generations of multicore processors.

However, scheduling policies need to minimize memory
access costs in addition to load-balancing for performance
on NUMA systems and manycore processors. Strict load-
balancing policies lose performance since they neglect data
locality exposed by tasks. Neglecting data locality violates

design principles of the complex memory subsystems that
support NUMA systems and manycore processors. The
subsystems require scheduling to keep cores running unin-
terrupted and provide peak performance by exploiting data
locality.

Despite rising importance of data distribution and
scheduling, OpenMP—a popular and widely available task-
based programming paradigm—neither specifies data distri-
bution mechanisms for programmers nor provides schedul-
ing guidelines for NUMA systems and manycore processors
even in the latest version 4.0.

Current data distribution practices on NUMA systems
are to either use third-party tools and APIs [3-5] or repurpose
the OpenMP for work-sharing construct to allocate and
distribute data to different NUMA nodes. The third-party
tools are fragile and might not be available on all machines
and the clever use of the parallel for work-sharing con-
struct [6] relies on a particular OS page management policy
and requires the programmer to know about the NUMA node
topology on the target machine.

Similar data distribution effort is required on many-
core processors. For example, programmers directly use
system API to distribute data on shared cache banks on
the TILEPro64. There are no third-party tools to simplify
data distribution effort. Programmers additionally have to
match data distribution choice with numerous configurations
available for the cache hierarchy for performance.

Expert programmers can still work around existing data
distribution difficulties, but even for experts the process can
be described as fragile and error-prone. Average program-
mers who do not manage to cope with all the complexity
at once pay a performance penalty when running their
programs, a penalty that might be partially mitigated from
clever caching by the hardware. The current situation will
get increasingly worse for everybody since NUMA effects
are exacerbated by growing network diameters and increased
cache coherence complexity [7] that inevitably follow from
increasing sizes of NUMA systems and manycore processors.

We present a runtime system assisted data distribution
scheme that allows programmers to control data distribution
in a portable fashion without forcing them to understand low-
level system details of NUMA systems and manycore proces-
sors. The scheme relies on the programmer to provide high-
level hints on the granularity of the data distribution in calls
to malloc. Programs without hints will work and have the
same performance as before, which allows gradual addition
of hints to programs to get partial performance benefits. Our
runtime system assisted distribution scheme requires nearly
the same programmer effort as regular calls to malloc and
yet doubles the performance for some scientific workloads on
NUMA systems.

We also present a locality-aware scheduling algorithm
for OpenMP tasks which reduces memory access times by
leveraging locality information gained from data distribution
and task data footprint information from the programmer.
Our scheduling algorithm improves performance over exist-
ing schedulers by up to 50% on our test NUMA system
and 88% on our test manycore processor in programs where
NUMA effects degrade program performance and remains

Scientific Programming

TaBLE 1: Simple data distribution policies for the programmer.

Policy Behavior
Standard Delegate data distribution to the OS.
Fine Distribute data, unit-wise round-robin, across all

locations.

Distribute data units, per-allocation round-robin,
Coarse .

across all locations.

TABLE 2: Data distribution policy abstractions.

System Unit Location
NUMA system Page NUMA node
TILEPro64 Cache line Home cache

competitive for other programs. Performance of scientific
programs—blocked matrix multiplication and vector cross
product—improves by 14% and 69%, respectively, when the
locality-aware scheduler is used.

The paper is an extension of our previous work on
NUMA systems [8] and manycore processors [9]. We provide
common data distribution mechanisms (Tables 1 and 2) and
unify the presentation of locality-aware scheduling mech-
anisms (Algorithms 1,2, and 3) for both NUMA systems
and manycore processors. The new experimental setup for
manycore processors enables L1 caching (Section 5.2) for a
more realistic scenario. We disabled L1 caching in previous
work to isolate locality-aware scheduling effects. We provide
new measurements for manycore processors with a work-
stealing scheduler as the common baseline (Figures 9 and 10).
Previous work used a central queue-based scheduler as
the baseline for manycore processors. We demonstrate the
impact of vicinity sizes while stealing tasks (Figure 11), which
is not done in previous work.

2. Potential for Performance Improvements

We quantify the performance improvement from data dis-
tribution by means of an experiment conducted on an
eight-NUMA node system with four AMD Opteron 6172
processors. The topology of the system is shown in Figure 1.
The maximum NUMA distance of the system according to
the OS is 22, which is an approximation of the maximum
latency between two nodes. NUMA interconnects of the
system are configured for maximum performance with an
average NUMA factor of 1.19 [11]. Latencies to access 4 MB
of memory from different NUMA nodes measured using
the BenchlIT tool are shown in Figure 2. Detailed memory
latencies of a similar system are reported by Molka et al. [12].

We execute task-based OpenMP programs using Intel’s
OpenMP implementation with two different memory allo-
cation strategies: the first strategy uses malloc with the first-
touch policy and the second distributes memory pages evenly
across NUMA nodes using the numactl tool [5]. We use first-
touch as a short hand for malloc with first-touch policy in the
rest of the paper. We measure execution time of the parallel
section of each program and quantify the amount of time

Scientific Programming

(1) Procedure deal-work(task T, queues Q,, ..
(2) Populate D[1 : N] with bytes in T.depend_list;
(3) if sum(D) > sizeof (LLC)/C and Standard_Deviation(D) > 0 then

(4) find Q, with least NUMA distance-weighted cost to D;
(5) enqueue(Q;, T);

(6) else

7) enqueue(Q,, T);

(8) end

(9) end

., Qu» current node n, cores per node C)

ALGORITHM 1: Work-dealing algorithm for NUMA systems.

.,Qun by NUMA distance from n) do

(1) Procedure find-work(queues Q,, ..
(2) if empty Q, then

3) for Q; in (Sort Q..

(4) if sizeof (Q;) > distance(i,n)+C then
(5) Run dequeue(Q;);

(6) break;

(7) end

(8) end

9) else

(10) Run dequeue(Q,,);

(1) end

(12) end

.»Qup current node n, cores per node C)

AvrGoriTHM 2: Work-finding algorithm for NUMA systems.

(2) if p == coarse then

(1) Procedure deal-work(task T, queues Q, ..
current data distribution policy p, access-intensive dependence index a)

(3) if exists a then

(4) find Q, containing T.depend_list[a];

(5) enqueue(Q,, T);

(6) else

7) Populate D[1 : N] with bytes in T.depend_list;
(8) if sum(D) > sizeof (L1) then

9) find Q; with least home cache latency cost to D;
(10) enqueue(Q,, T);

11) else

(12) enqueue(Q,,, T);

(13) end

(14) end

(15) else

(16) enqueue(Q,, T);

(17) end

(18) end

., Qy current home cache n,

ALGORITHM 3: Work-dealing algorithm for TILEPro64.

spent waiting for memory by counting dispatch stall cycles
which includes load/store unit stall cycles [13].

Several programs show a reduction in execution time
when data is distributed across NUMA nodes as shown in
Figure 3. The reduction in dispatch stall cycles contributes to
the reduction in execution time. Performance is maintained

with data distribution for all remaining programs except
Strassen.

We can explain why benchmarks maintain or lose per-
formance with data distribution. Alignment scales linearly
which implies low communication. Data distribution does
not relieve the memory subsystem for FFT, Health, SparseLU,

Scientific Programming

7
b
Die/NUMA node 5
___________ O
Memory CTRL | HT comm CTRL 1
N L
[[!
L3$
HT8
| | | i +
12$! HT16
/ link
| /
/ -
L1$ 7 E 6
/ Q
/ 3
0 L —
/
7 4
0
\W
ree?

FIGURE 1: Topology of eight NUMA node, 48-core system with four AMD Opteron 6172 processors. Each processor has a 64 KB DLI1 cache,

a 512 KB L2 cache and a 5 MB L3 cache.

400

300 ~

200 ~

Latency (cycles)

100 ~

0 1 2 3 4 5 6 7
Node

FIGURE 2: Latencies measured while accessing 4 MB of data allocated
on different NUMA nodes from node 0 of the eight-node Opteron
system. Remote node access is expensive.

and Strassen benchmarks. Execution time of Health sur-
prisingly improves despite increased dispatch stall cycles
implying bandwidth improvements with data distribution.
Strassen is a counter-example whose performance degrades
from data distribution. Strassen allocates memory inside
tasks. Distributing the memory incurs higher access latencies
than first-touch.

We demonstrate how locality-aware task scheduling used
in conjunction with data distribution can further improve
performance by means of an experiment on the TILEPro64
manycore processor. We explain the experiment after intro-
ducing key locality features of the TILEPro64 architecture.

The TILEPro64 is a 64-core tiled architecture processor
with a configurable directory-based cache coherence protocol

) III Ii
0 - [N | l- _ ——

[l Execution time
[Dispatch stall cycles

Reduction over first-touch malloc (%)

Alignment
FFT -
Fibonacci A
Health
Jacobi 4
Map
Matmul A
Nqueens A
Reduction -
Sort A
Sparselu A
Strassen

FIGURE 3: Performance impact of data distribution compared
to first-touch in programs taken or derived from the Barcelona
OpenMP Task Suite (BOTS) [10] and executed on the eight-node
Opteron system. Execution time corresponds to the critical path of
parallel section. Dispatch stall cycles are aggregated over all program
tasks. Most programs improve or maintain performance when data
is distributed across NUMA nodes.

and topology as shown in Figure 4. Load and store misses
from cores are handled by a specific L2 bank called the
home cache. A cache line supplied by the home cache can be
allocated selectively in the local L2 bank (inclusive) and the L1
cache depending on software configuration. Stores in a tile are

Scientific Programming

Tile Memory CTRL
L1$ 9 L | || || || || | ||
+ 0 H 1 H 2 = — — — = 7
banked — — — — — — —
L2 111 1111 10 11 1 1 o 11/ I 111
Js B — — — — = —
, = = = = = = =
Ao Al (I (] (I (I (I [[T
; — — — — — — —
A . 4 — — — — — — —
CTRL X M T W I I, M I T
= E B B H & E
M T 100 1 S 1 N |1 | 111
Multi-protocol = = = = = = =
communication M I 1 S 1 1 1 o 11/ I 11
links =5 B OB B B B B
[T [T [T [T (] (1] [T [0
M I 1 | 1 1 o 1/ S 1
= §H E E E B g

FIGURE 4: TILEPro64 topology. Tiles are connected by an 8 x 8 mesh on-chip network. Each tile contains a 32-bit VLIW integer core, a private
16 KB IL1 cache, a private 8 KB DLI cache, a 64 KB bank of the shared 4 MB L2 cache and a network controller.

70
60
50
40
30

Latency (cycles)

10

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Tile

(=)

FIGURE 5: Latencies measured while accessing a cache line from
different home cache access from tile 0 under isolation. Latencies
increase in the presence of multiprogrammed workloads, OS, and
hypervisor interference. Tile 63 runs dedicated system software
and is excluded from measurement. Off-tile access takes 4-6 times
longer.

always write-through to the home cache with a store update
ifthe line is found in the L1 cache. Load latency of a cache line
depends on home cache location and is nonuniform as shown
in Figure 5. Remote home caches take four to six times longer
to access than local home caches.

TILEPro64 system software also provides data distri-
bution mechanisms. Cache lines in a main memory page
can be distributed uniformly to all home caches or to a
single home cache. The home cache of an allocated line can
additionally be changed at a high cost through migration
[14]. The performance impact of data distribution on the

TILEPro64 is similar to NUMA systems. Memory alloca-
tions through malloc are uniformly distributed to all home
caches.

We now explain our experiment to demonstrate locality-
aware scheduling effectiveness. Consider map [15]—a com-
mon parallelization pattern as shown in Listing 1. Tasks
operate on separate chunks of data in the map pattern. We
execute the map program using two different strategies. Data
is uniformly distributed to all home caches and work-stealing
scheduling is used to assign tasks to idle cores in the first
strategy. Data is distributed per-allocation to separate home
caches and locality-aware scheduling is used to assign tasks
to cores such that data is supplied by the local home cache in
the second strategy.

The top and bottom graphs in the first column of Figure 10
show performance of the map program under the two
strategies, respectively. The second strategy outperforms the
first. Tasks execute faster under locality-aware scheduling
since data is supplied by the local home cache. Selectively
assigning home caches to cache lines rather than uniformly
distributing them is beneficial for locality-aware scheduling.
Task performance suffers from nonuniform home cache
access latencies due to uniform data distribution and work-
stealing scheduling.

We conclude that overheads from memory access laten-
cies are significant in OpenMP programs. Proper choice of
data distribution and scheduling is crucial for performance.

Scientific Programming

}

}

/* Allocate and initialize data */
for(int i=0; i<N; i++) {
list[i] = malloc(sizeof (int) * SZ);
initialize(i, list[i], SZ);

/* Work in parallel */

for(int i=0; i<N; i++) {

#pragma omp task input(list[i] [0:SZ-1])
map(list[i]l, SZ);

#pragma omp taskwait

L1sTING 1: Parallel map implemented using OpenMP tasks.

Our goal is to provide simple and portable abstractions
that minimize memory access overheads by performing data
distribution and enabling scheduling that can exploit locality
arising from data distribution.

3. Runtime System Assisted Data Distribution

Runtime system assisted data distribution is one mechanism
for increasing performance portability. Handling specific OS
and hardware details can be delegated to an architecture-
specific runtime system which has a global view of program
execution.

We propose a memory allocation and distribution mech-
anism controlled by a simple data distribution policy that is
chosen by the programmer. The distribution policy choice is
deliberately kept simple with only a few choices in order to
provide predictable behavior and be easy to understand for
the programmer, just like process binding hints in OpenMP
are defined. There are two different policies available to
the programmer as shown in Table1. Unit and location
abstractions used in policy descriptions are explained in
Table 2.

We demonstrate how the data distribution policies
work and propose preliminary interfaces for policy selec-
tion using an example program in Listing 2. The pro-
gram makes memory allocation requests A-E which span
eight units of memory. Requests A and B use a proposed
interface called omp.malloc whose signature is similar
to malloc. The user selects the data distribution policy
for requests A and B by setting a proposed environ-
ment variable called OMP_DATA_DISTRIBUTION to one
of standard, fine, or coarse prior to the program in-
vocation. The standard data distribution policy choice
refers to the machine default—first-touch for NUMA sys-
tems and uniform distribution for TILEPro64. Memory
requested using omp_malloc is distributed to different loca-
tions based on the global data distribution policy selected.
Requests C-E use omp malloc_specific—an extension
of omp_malloc—to override the global policy and distribute
specifically instead. Machine level results of policy actions are
shown in Figure 6.

We provide heuristics in Table 3 to assist in the choice
of data distribution policy. The heuristics are based on the

TaBLE 3: Heuristics to select data distribution scheme.

Number of tasks operating on data

One Many
Number of One Regular malloc Fine
malloc calls Many Coarse Coarse

number of data allocations through malloc in the origi-
nal program and the number of tasks operating on those
allocations. Programs with many tasks and a single malloc
call will benefit from using the fine policy since cores can
issue multiple outstanding requests to different nodes/home
caches. Programs with a single task and many malloc calls can
use the coarse policy to improve bandwidth since memory is
likely to be fetched from different network links. Programs
with many malloc calls and many tasks that operate on
allocated data are likely to improve performance with the
coarse policy due to reduced network contention assuming
tasks work on allocations in isolation.

We have built the runtime system assisted distribution
scheme using readily available support—libnuma on NUMA
systems and special allocation interfaces on the TILEPro64.
The overhead of the distribution scheme is low since our
implementation wraps the system API with a few additional
book-keeping instructions. The book-keeping instructions
track the round-robin node selection counter for the coarse
distribution policy and cache location affinity of data when
requested by the locality-aware scheduling policy described
in Section 4.

Programmers do not need to be concerned about NUMA
node/home cache identifiers and topology in order to use
our data distribution scheme. The distribution policy choice
is kept simple with only those choices that are easy to
predict and understand for the programmer. Programmers
can also incrementally distribute data by targeting specific
memory allocation sites. We also provide precise control for
expert programmers in our implementation allowing them
to override the global data distribution policy and request
fine or coarse data distribution for a specific allocation.
We have implemented two simple distribution policies to
demonstrate the potential of our data distribution scheme.
Runtime system developers can use the extensibility of our

Scientific Programming

int main(...) {

/* Allocate data */
size_t sz = 8 *x UNIT_SIZE

void* A = ompmalloc(sz);
void* B = ompmalloc(sz);
void* C =
voidx D =
void* E =

/* Initialize data */
/* Work in parallel */
#pragma omp parallel

}

}

$ <invoke program>

/* NUMA system: UNIT_SIZE = PAGE_SIZE */
/* TILEPro64: UNIT_SIZE =

omp-malloc_specific(sz, OMP_MALLOC_COARSE);
omp-malloc_specific(sz, OMP_MALLOC_COARSE);
omp-malloc_specific(sz, OMP_MALLOC_FINE);

init(A, B, C, D, E, sz, ..

$ export OMP_DATA DISTRIBUTION=<standard | fine | coarse>

PAGE_SIZE/CACHE_LINE_SIZE */

D5

LISTING 2: Program using the proposed interface for selecting data distribution policies.

Page/cache line distribution

Node/ Node/ Node/ Node/
tile 0 tile 1 tile 2 tile 3
Pages/cache lines Fine A0, A4, Al, A5, A2, A6, A3,A7,
BO, B4 BI, B5 B2, B6 B3, B7
X0 X1 X2 X3
X4 X5 X6 X7
Allocation X Coarse A0-A7 B0-B7
Co, C3, C6 C1,C4,C7
i C2,C5
Specific D0-D7 E0-E7

FIGURE 6: Data distribution results on an example four-node/four-tile
In reality, over 64 cache lines typically make up a page.

scheme to provide more advanced distribution policies as
plug-ins. Programmers can be educated about distribution
policies in a manner similar to existing education about for-
loop scheduling policies within the OpenMP specification.

4. Locality-Aware Task Scheduling

Our implementation of locality-aware scheduling aims to
further leverage the performance benefits of data distribu-
tion. The main idea behind our locality-aware scheduler is

ma-chine. We simplify illustration by using eight cache lines per page.

to schedule tasks to minimize memory access latencies. The
locality-aware scheduler uses an architecture-specific task
queue organization and takes locality-aware decisions both
during work-dealing and work-stealing. Work-dealing refers
to actions taken at the point of task creation and work-
stealing is actions taken when threads are idle.

Knowing the data footprint of tasks is crucial for the
scheduler we expect data footprint information to come from
the programmer through task definition clauses which do not
yet exist in the OpenMP specification. We currently estimate

the data footprint of each task through the information
provided by the depend clause in the OpenMP 4.0 speci-
fication. The estimate is fragile when programmers specify
an incomplete depend clause that is sufficient for scheduling
decisions but underestimate the data footprint. The limitation
can be overcome if programmers use low-effort expressive
constructs such as array-sections to express a large fraction of
the data footprint in the depend clause in return for improved
performance.

The locality-aware scheduler binds task queues to archi-
tectural locations to which data can be distributed. There is
a task queue per NUMA node on NUMA systems and per
home cache on the TILEPro64. Tasks are added at the front
and removed from the back of task queues. The scheduler
binds one thread to each core.

4.1. NUMA Systems. We describe the work-dealing algorithm
of the locality-aware scheduler in Algorithm 1. The scheduler
deals a task at the point of task creation to the node queue
having the least total memory access latency for pages not
in the last-level cache (LLC). The individual access latencies
are computed by weighting NUMA node distances with the
node-wise distribution D of the data footprint of the task.

NUMA node distances are obtained from OS tables which
are cached by the scheduler for performance reasons. The
distribution D is calculated using page locality information
cached by the data distribution mechanism. The complexity
of the access cost computation is O(N?) where N is the
number of NUMA nodes in the system, typically a small
number.

Tasks are immediately added to the local queue when
scheduling costs outweigh the performance benefits
decided by two thresholds. The first threshold—Sum(D) >
sizeof (LLC)/C—ensures that tasks have a working set size
exceeding the LLC size per core. The second threshold—
Standard_Deviation(D) > 0—ensures that scheduling effort
will not be wasted on tasks with a perfect data distribution.

Distributed task queues may lead to load-imbalance
and in our experience the performance benefits from load-
balancing often trumps those from locality. We have therefore
implemented a work-stealing algorithm to balance the load.
Stealing is still preferred over idle threads although cycles
spent dealing tasks are wasted.

We show the stealing algorithm of the scheduler in
Algorithm 2. Threads attempt to steal when there is no work
in the local queue. Candidate queues for steals are ranked
based on NUMA node distances. The algorithm includes
a threshold which prevents tasks from being stolen from
nearly empty task queues which would incur further steals for
threads in the victim node. There is an exponential back-off
for steal attempts when work cannot be found.

4.2. Manycore Processors. We describe the work-dealing
algorithm of the locality-aware scheduler in Algorithm 3.
The scheduler deals a task to the home cache queue having
the least total memory access latency for cache lines not
in the private L1 cache. The individual access latencies are
computed by weighting home cache access latencies with the
home-cache distribution D of the data footprint of the task.

Scientific Programming

Home cache access latencies are calculated by benchmarking
the interconnection during runtime system initialization. The
scheduler avoids recalculation by saving latencies across runs.
The distribution D is calculated using home cache locality
information cached by the data distribution mechanism. The
complexity of the access cost computation is O(N?*) where N
is the number of home caches in the system.

Tasks are immediately added to the local queue if schedul-
ing costs outweigh the performance benefits. The algorithm
ignores distribution policies which potentially distribute data
finely to all home caches (condition p == coarse). Only tasks
with a working set exceeding the L1 data cache are analyzed
(condition sum(D) > sizeof (L1)).

Another condition—exists a—minimizes scheduling
effort by using programmer information about the access
intensity to data dependences in the list T.depend_list.
The index a denotes the most intensely accessed data
dependence in the list. The scheduler queues tasks with
intensity information in the queue associated with the home
cache containing the intensively accessed dependence. Note
that we rely on a custom clause to indicate intensity since
existing task definition clauses in OpenMP do not support
the notion.

We have implemented a work-stealing algorithm to bal-
ance load on task queues. Queues are grouped into fixed size
vicinities and idle threads are allowed to steal tasks from
queues in the same vicinity. Cross-vicinity steals are forbid-
den. Threads additionally back off when work cannot be
found. The size of the vicinity is selected by the programmer
prior to execution. We allow vicinity sizes of 1, 4, 8, 16, and
63 tiles in our implementation as shown by tile groups in
Figure 4. A vicinity size of 1 only includes the task queue of

the member thread; vicinity size of 63 includes task queues of
all threads.

5. Experimental Setup

We evaluated data distribution assistance and locality-aware
scheduling using benchmarks described in Table 4. The
benchmarks were executed using MIR, a task-based runtime
system library which we have developed. MIR supports the
OpenMP tied tasks model and provides hooks to add custom
scheduling and data distribution policies which allows us
to compare different policies within the same system. We
programmed the evaluation benchmarks using the runtime
system interface directly since MIR does not currently have a
source-to-source translation front-end.

We ran each benchmark in isolation 20 times for all valid
combinations of scheduling and data distribution policies.
We recorded the execution time of the critical path of the par-
allel section and collected execution traces and performance
counter readings on an additional set of runs for detailed
analysis.

We used a work-stealing scheduler as the baseline for
comparing the locality-aware scheduler. The work-stealing
scheduler binds one thread to each core and uses one task
queue per core. The task queue is the lock-free dequeue by
Chase and Lev [16]. The implementation is an adaption of
the queue from the Glasgow Haskell Compiler version 7.8.3

Scientific Programming

TABLE 4: Pattern-based [15] and real-world benchmarks.

Data distribution

Benchmark Behavior heuristic
guidance
?ngt ern-based) 1D vector scaling Coarse
Reduction Iterative implementation of
) merge Fine
(pattern-based) phase of BOTS Sort
Vecmul Vector cross product Coarse
Blocked matrix
multiplication with
Matmul BLAS operations in task Coarse
computation
Jacobi Blocked 2D heat equation Fine
solver
LU factorization of sparse
matrix.
SparseLU Derived from BOTS Coarse
SparseLU.

runtime system. Each thread adds newly created tasks to its
own task queue. Threads look for work in their own task
queue first. Threads with empty task queues select victims
for stealing in a round-robin fashion. Both queuing and
stealing decisions of the work-stealing scheduler are fast but
can result in high memory latencies during task execution
since the scheduling is oblivious to data locality and NUMA
node/remote cache access latencies.

5.1. NUMA System. We used the Opteron 6172 processor
based eight-NUMA node system described in Section 2
for evaluation. Both runtime system and benchmarks were
compiled using the Intel C compiler v13.1.1 with -O3 opti-
mization. We used per-core cycle counters and dispatch stall
cycle counters to, respectively, measure execution time and
memory access latency of tasks.

5.2. Manycore Processor. Both runtime system and bench-
marks were compiled using the Tilera GNU compiler with
-O3 optimization. We used integer versions of evaluation
benchmarks to rule out effects of slow software-emulated
floating-point operations. Benchmark inputs were selected
to minimize off-chip memory access. We also minimized
the adverse effect of evicting local home cache entries to
memory by disabling local L2 (inclusive) caching. We used
per-core cycle counters and data cache stall cycle counters
to, respectively, measure execution time and memory access
latency of tasks.

The locality-aware scheduler avoids long home cache
access latencies. The L1 cache also mitigates the impact of long
home cache access latencies. We separated effects of locality-
aware scheduling by disabling L1 caching in previous work [9]
but enabled L1 caching in the current setup for a more realistic
scenario.

Normalized execution time

1-I . I I I
0

Matmul

Iacob1 ap Reductlon Sparselu

B Work-stealing numactl-interleave ® Work-stealing fine
Work-stealing coarse Locality-aware fine
Locality-aware coarse

FIGURE 7: Performance of data distribution combined with work-
stealing and locality-aware scheduling on eight-node Opteron
system. Execution time is normalized to performance of work-
stealing with memory page interleaving using numactl for each
benchmark. Inputs to Map: 48 floating-point vectors, 1 MB each;
Jacobi: 16384 x 16384 floating-point matrix and block size = 512;
Matmul: 4096 x 4096 floating-point matrix and block size =
128; SparseLU: 8192 x 8192 floating-point matrix and block size
= 256; Reduction: 256 MB floating-point array and depth = 10.
Combination of numact] page-wise interleaving and locality-aware
scheduling is excluded since the locality-aware scheduler does not
currently support querying numactl for page locality information.
Locality-aware scheduling, in combination with heuristic-guided
data distribution, improves or maintains performance compared to
work-stealing.

6. Results

We show performance of evaluation benchmarks for com-
binations of data distribution and scheduling policy for the
eight-node Opteron system in Figure 7. The fine distribution
is a feasible replacement for numactl since execution times
with the work-stealing scheduler are comparable to page-
wise interleaving using numactl. Performance degrades when
distribution policies violate the guidelines in Table 3 for both
work-stealing and locality-aware schedulers. For example,
performance of Matmul degrades when the fine distribution
policy is used. The locality-aware scheduler coupled with
proper data distribution improves or maintains performance
compared to the work-stealing scheduler for each bench-
mark.

We use thread timelines for Map and Matmul in Figure 8
to explain that reduced memory page access time is the main
reason behind the difference in task execution times of the
work-stealing and locality-aware scheduler.

The thread timeline indicates time spent by threads in dif-
ferent states and state transition events. Threads are shown on
the y-axis, time is shown on the x-axis, and memory access
latencies are shown on the z-axis. The z-axis is represented
using a linear green to blue gradient which encodes memory

10 Scientific Programming

Map Matmul

Work-stealing
Work-stealing

Work-stealing fine
Work-stealing fine

Work-stealing coarse
Work-stealing coarse

Locality-aware fine
Locality-aware fine

Locality-aware coarse
Locality-aware coarse

963,782,589 cycles 909,591,936 cycles

FIGURE 8: Thread timelines showing task execution on the eight-node Opteron system. Threads are shown on the y-axis and time is shown
on the x-axis. Memory access latencies are encoded using a green-blue gradient. Tasks stall for fewer cycles under locality-aware scheduling
combined with heuristic-guided data distribution.

Scientific Programming

access latencies measured at state transition boundaries.
Green represents lower memory access latencies and blue
represents higher ones. We filter out all thread states except
task execution. Timelines of a benchmark are time aligned
(same x-axis span) and gradient aligned (same z-axis span).
Timelines are additionally zoomed-in to focus on task execu-
tion and omit runtime system initialization activity.

Understanding benchmark structure is also necessary
to explain the performance difference. Each task in the
Map benchmark scales a separate vector in a list. Coarse
distribution places all memory pages of a given vector in
a single node whereas fine distribution spreads the pages
uniformly across all nodes.

The locality-aware scheduler combined with coarse dis-
tribution minimizes node access latency by ensuring that
each task accesses its separate vector from the local node. The
behavior can be confirmed by low memory access latencies
seen in Figure 8 (light green). The work-stealing scheduler
with coarse distribution loses performance due to increased
remote memory access latencies as indicated by the relatively
higher memory access latencies (dark green and blue).

We can also explain performance of cases that violate
the guidelines by using timelines. The locality-aware sched-
uler with fine distribution detects that pages are uniformly
distributed across nodes and places all tasks in the same
local queue. The imbalance can not be completely recovered
from since steals are restricted. The work-stealing scheduler
with fine distribution balances loads more effectively in
comparison.

Each task in the Matmul benchmark updates a block in
the output matrix using a chain of blocks from two input
matrices. Coarse distribution places all memory pages of a
given block in a single node whereas fine distribution spreads
the pages uniformly across all nodes. The memory pages
touched by a task are located on different nodes for both
coarse and fine distribution. The locality-aware scheduler
with fine distribution detects that data is evenly distributed
and falls back to work-stealing by queuing tasks in local
queues. Task execute for a longer time with both schedulers as
indicated by similar memory access latency (similar intensity
of green and blue). However, the locality-aware scheduler
with coarse distribution exploits locality arising from dis-
tributing blocks in round-robin as indicated by the relatively
lower memory access latency (lighter intensity of green and
blue) in comparison to the work-stealing scheduler.

We show the performance of evaluation benchmarks
for combinations of data distribution and scheduling pol-
icy for the TILEPro64 processor in Figure 9. Results are
similar to those on the eight-node Opteron system. Per-
formance degrades when distribution policies are chosen
against heuristic guidelines in Table 3 for both work-stealing
and locality-aware schedulers. The locality-aware scheduler
coupled with proper data distribution improves or maintains
performance compared to the work-stealing scheduler for
each benchmark. Locality-aware scheduler performance is
also sensitive to vicinity sizes.

SparseLU is a counter-example whose performance
degrades with heuristic-guided coarse distribution and work-
stealing scheduling. Performance is also maintained with

1

Normalized execution time

Map Reduction Sparselu Vecmul

B Work-stealing fine

B Locality-aware coarse vicinity-1
Locality-aware coarse vicinity-8

Locality-aware coarse vicinity-63

B Work-stealing coarse
Locality-aware coarse vicinity-4
Locality-aware coarse vicinity-16

FIGURE 9: Performance of data distribution combined with work-
stealing and locality-aware scheduling on TILEPro64. Execution
time is normalized to performance of work-stealing scheduling with
fine distribution for each benchmark. Inputs to Map: 63 integer
vectors, 32kB each; Reduction: 700 kB integer array and depth =
6; Vecmul: 128 integer vectors, 28 kB each; SparseLU: 1152 x 1152
integer matrix, block size = 36, and intensity heuristic enabled for
tasks executing the bmod function. Locality-aware scheduling, in
combination with heuristic-guided data distribution, improves or
maintains performance compared to work-stealing.

both coarse and fine distribution on NUMA systems.
SparseLU tasks have complex data access patterns which
require a data distribution scheme more advanced than fine
and coarse.

Reduction allocates memory using a single malloc call.
Coarse distribution is a bad choice since all cache lines are
allocated in a single home cache. Locality-aware scheduling
serializes execution by scheduling tasks on the core associated
with the single home cache. Stealing from larger vicinities
balances load to win back performance.

Thread timelines for Map and Vecmul in Figure 10 con-
firm that reduced cache line access time is the main reason
behind the reduction in task execution times. The work-
stealing scheduler loses performance by being oblivious to
locality despite balancing the load evenly.

We can explain vicinity sensitivity using timelines for
Map and Vecmul benchmarks in Figure 11. Increasing vicinity
sizes for Map increases the risk of tasks being stolen by
threads far from the home cache. Stolen tasks experience
large and nonuniform cache line access latencies as shown
by long blue bars. Threads fast enough to pick tasks from
their own queue finish execution faster. Larger vicinity sizes
promote better load-balancing and improve performance in
Vecmul.

The locality-aware scheduler can safely be used as the
default scheduler for all workloads without performance
degradation. There is a performance benefit in using the
locality-aware scheduler for workloads which provide strong
locality with data distribution. The locality-aware scheduler

12

Map

Work-stealing fine

Work-stealing coarse

Locality-aware coarse best vicinity

4,260,998,872 cycles

Scientific Programming

Vecmul

Work-stealing fine

Work-stealing coarse

Locality-aware coarse best vicinity

5,626,965,215 cycles

FIGURE 10: Thread timelines showing task execution on the TILEPro64. Threads are shown on the y-axis and time is shown on the x-axis.
Memory access latencies are encoded using a green-blue gradient. Tasks access memory faster under locality-aware scheduling combined

with heuristic-guided data distribution.

falls back to load-balancing similar to work-stealing sched-
uler for workloads which do not improve locality with data
distribution.

7. Related Work

Numerous ways of how to distribute data programmatically
on NUMA systems have been proposed in the literature. We
discuss the proposals that are closest to our approach.

Huang et al. [17] propose extensions to OpenMP to dis-
tribute data over an abstract notion of locations. The primary
distribution scheme is a block-wise distribution which is
similar to our coarse distribution scheme. The scheme allows
precise control of data distribution but relies on compiler
support and additionally requires changes to the OpenMP
specification. Locations provide fine-grained control over
data distribution at the expense of programming effort.

The Minas framework [4] incorporates a sophisticated
data distribution API which gives precise control on where

memory pages end up. The AP is intended to be used by an
automatic code transformation in Minas that uses profiling
information for finding the best distribution for a given
program. The precise control is powerful but requires expert
programmers who are capable of writing code that will decide
on the distribution required.

Majo and Gross [18] use fine-grained data distribution
API to distribute memory pages. Execution profiling is used
to get data access patterns of loops and used for both guiding
code transformation and data distribution. Data distribution
is performed in between loop iterations which guarantee that
each loop iteration accesses memory pages locally.

Runtime tracing techniques that provide automatic page
migration based on hardware monitoring through perfor-
mance counters have the same end goal as we do: to provide
good performance with low programming effort. Nikolopou-
los et al. [19] pioneered the idea of page migration with user-
level framework. Page access is traced in the background
and hot pages are migrated closer to the accessing node.

Scientific Programming

Vecmul

Vicinity-1
Vicinity-1

Vicinity-4
Vicinity-4

Vicinity-8

Vicinity-8

Vicinity-16

Vicinity-16

Vicinity-63

Vicinity-63

1,636,294,260 cycles

1,855,088,238 cycles

FIGURE 11: Vicinity size sensitivity on the TILEPro64. On each thread timeline, threads are shown on the y-axis and time is shown on the

x-axis. Memory access latencies are encoded using a green-blue gradient. Increasing vicinity size improves load balance but adversely affects
memory access time.

13

14

Terboven et al. [20] presented a next-touch dynamic page
migration implementation on Linux. An alternative approach
to page migration, which is expensive, is to move threads
instead, an idea exploited by Broquedis et al. [21] in a
framework where decisions to migrate threads and data are
based on information about thread idleness, available node
memory, and hardware performance counters. Carrefour
is a modification of the Linux kernel that targets traffic
congestion for NUMA systems through traffic management
by page replication and page migration [22]. One advantage
of the approach is that performance will improve without
having to modify applications.

Dynamic page migration requires no effort from the
programmer, which is a double edged sword. The benefit of
getting good performance without any effort is obvious, but
when the programmer experiences bad performance it is dif-
ficult to analyze the root cause of the problem. Performance
can also be affected by input changes. Attempts at reducing
the cost of page migration by providing native kernel support
give promising results for matrix multiplication on large
matrices [23].

Locality-aware scheduling for OpenMP has been studied
extensively. We focus on other task-based approaches since
our approach is based on tasks.

Locality domains where programmers manually place
tasks in abstract bins have been proposed [1, 24]. Tasks are
scheduled within their locality domain to reduce remote
memory access. MTS [25] is a scheduling policy struc-
tured on the socket hierarchy of the machine. MTS uses
one task queue per socket which is similar to our task
queue per NUMA node. Only one idle core per socket is
allowed to steal bulk work from other sockets. Charm++
uses NUMA topology information and task communica-
tion information to reduce communication costs between
tasks [26]. Chen et al. [27] reduce performance degradation
from cache pollution and stealing tasks across sockets in
multisocket systems by memory access aware task-graph
partitioning.

Memphis uses hardware monitoring techniques and pro-
vides methods to fix NUMA problems on general class
of OpenMP computations [7]. Monitoring crossbar (QPI)
related and LLC cache miss related performance counters
is used to measure network activity. Memphis provides
diagnostics to the programmer for when to pin threads,
distribute memory, and keep computation in a consistent
shape throughout the execution. Their recommendations
have inspired the design of our locality-aware scheduler and
our evaluation methodology.

Liu and Mellor-Crummey [28] add detailed NUMA
performance measurement and data distribution guidance
capability to HPCToolkit. They report several case studies
where coarse (block-wise) distribution improves perfor-
mance over default policies. Their multiarchitecture tool
is a good starting-point for implementing advanced data
distribution policies.

Schmidl et al. propose the keywords scatter and compact
for guiding thread placement using SLIT-like distance matri-
ces [29]. Our names for data distribution, fine and coarse, are
directly inspired by their work.

Scientific Programming

Task and data affinity mechanisms discussed in our
work are greatly inspired by the large body of research on
NUMA optimizations for OpenMP runtime systems. The
implicit memory allocation and architectural locality based
scheduling mechanisms we implemented in the runtime
system are inspired by a similar work on NUMA systems by
Broquedis et al. [30].

Few works have tackled data distribution and locality-
aware scheduling on manycore processors.

Yoo et al. [31] provide an in-depth quantitative analysis
of locality-aware scheduling for data-parallel programs on
manycore processors. They conclude that work-stealing
scheduling cannot capture locality present in data-parallel
programs which we also demonstrate through scheduling
results for the map program. They propose a sophisticated
locality-aware scheduling and stealing technique that max-
imizes the probability of finding the combined memory
footprint of a task group in the lowest level cache that
can accommodate the footprint. The technique however
requires task grouping and ordering information obtained
by profiling read-write sets of tasks and off-line graph
analysis.

Vikranth et al. [32] propose to restrict stealing to groups
of cores based on processor topology similar to our vicinity-
based stealing approach.

Tousimojarad and Vanderbauwhede [33] cleverly reduce
access latencies to uniformly distributed data by using copies
whose home cache is local to the access thread on the
TILEPro64 processor. Zhou and Demsky [2] build a NUMA-
aware adaptive garbage collector that migrate objects to
improve locality on manycore processors. We target standard
OpenMP programs written in C which makes it difficult to
migrate objects.

Techniques to minimize cache access latency by capturing
access patterns and laying out data both at compile-time
and runtime have been proposed for manycore processors.
Lu et al. [34] rearrange affine for-loops during compilation
to minimize access latency to data distributed uniformly
on banked shared caches of manycore processors. Marongiu
and Benini [35] extend OpenMP with interfaces to partition
arrays which are then distributed by their compiler backend
based on profiled access patterns. The motivation for their
work is enabling data distribution on MPSoCs without
hardware support for memory management. Li et al. [36,
37] use compilation-time information to guide the runtime
system in data placement. R-NUCA automatically migrates
shared memory pages to shared cache memory using
OS support reducing hardware costs for cache coherence
[38].

8. Conclusions

We have presented a data distribution and memory
page/cache line locality-aware scheduling technique that
gives good performance in our tests on NUMA systems and
manycore processors. The major benefit is usage simplicity
which allows ordinary programmers to reduce their suffering
from NUMA effects which hurt performance. Our technique
is easy to adopt since it is built using standard components

Scientific Programming

provided by the OS. The locality-aware scheduler can be used
as the default scheduler since it will fall back to behaving
like a work-stealing scheduler when locality is missing,
something also indicated from our measurements.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The work was partially funded by European FP7 project
ENCORE Project Grant Agreement no. 248647 and Artemis
PaPP Project no. 295440.

References

[1] S. L. Olivier, B. R. de Supinski, M. Schulz, and J. E Prins,
“Characterizing and mitigating work time inflation in task
parallel programs,” in Proceedings of the 24th International Con-
ference for High Performance Computing, Networking, Storage
and Analysis (SC '12), pp. 1-12, Salt Lake City, Utah, USA,
November 2012.

[2] J. Zhou and B. Demsky, “Memory management for many-core

processors with software configurable locality policies,” ACM

SIGPLAN Notices, vol. 47, no. 11, pp. 3-14, 2012.

E Broquedis, J. Clet-Ortega, S. Moreaud et al., “Hwloc: a

generic framework for managing hardware affinities in HPC

applications,” in Proceedings of the 18th Euromicro Conference
on Parallel, Distributed and Network-Based Processing (PDP’10),

pp. 180-186, February 2010.

[4] C. P. Ribeiro, M. Castro, J.-FE. Méhaut, and A. Carissimi,
“Improving memory affinity of geophysics applications on
NUMA platforms using minas,” in High Performance Com-
puting for Computational Science—VECPAR 2010, vol. 6449
of Lecture Notes in Computer Science, pp. 279-292, Springer,
Berlin, Germany, 2011.

[5] A.Kleen, A NUMA API for Linux, Novel, Kirkland, Wash, USA,
2005.

[6] C.Terboven, D. Schmidl, T. Cramer, and D. An Mey, “Assessing
OpenMP tasking implementations on NUMA architectures,” in
OpenMP in a Heterogeneous World, vol. 7312 of Lecture Notes in
Computer Science, pp. 182-195, Springer, Berlin, Germany, 2012.

[7] C. McCurdy and J. S. Vetter, “Memphis: finding and fixing

NUMA-related performance problems on multi-core plat-

forms,” in Proceedings of the IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS ’10), pp.

87-96, March 2010.

A. Muddukrishna, P. A. Jonsson, V. Vlassov, and M. Brors-

son, “Locality-aware task scheduling and data distribution on

NUMA systems,” in OpenMP in the Era of Low Power Devices

and Accelerators, vol. 8122 of Lecture Notes in Computer Science,

pp. 156-170, Springer, Berlin, Germany, 2013.

A. Muddukrishna, A. Podobas, M. Brorsson, and V. Vlassov,

“Task scheduling on manycore processors with home caches,”

in Euro-Par 2012: Parallel Processing Workshops, Lecture Notes

in Computer Science, pp. 357-367, Springer, Berlin, Germany,

2013.

[10] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade,

“Barcelona OpenMP tasks suite: a set of benchmarks targeting

—
=

[8

5

15

the exploitation of task parallelism in OpenMP;” in Proceedings
of the International Conference on Parallel Processing (ICPP 09),
pp- 124-131, Vienna, Austria, September 2009.

[11] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B.
Hughes, “Cache hierarchy and memory subsystem of the AMD
opteron processor,” IEEE Micro, vol. 30, no. 2, pp. 16-29, 2010.

[12] D. Molka, R. Schone, D. Hackenberg, and M. Miiller, “Memory
performance and SPEC OpenMP scalability on quad-socket
x86_64 systems,” in Algorithms and Architectures for Parallel
Processing, vol. 7016 of Lecture Notes in Computer Science, pp.
170-181, Springer, Berlin, Germany, 2011.

(13] AMD, BIOS and kernel developer’s guide for AMD family 10h
processors, 2010.

[14] Tilera, Tile Processor User Architecture Manual, 2012, http://
www.tilera.com/scm/docs/UG101-User-Architecture-Reference
.pdf.

[15] M. McCool, J. Reinders, and A. Robison, Structured Parallel
Programming: Patterns for Efficient Computation, Elsevier, 2012.

[16] D.ChaseandY. Lev, “Dynamic circular work-stealing deque,” in
Proceedings of the 17th Annual ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA °05), pp. 21-28, ACM, Las
Vegas, Nev, USA, July 2005.

L. Huang, H. Jin, L. Yi, and B. Chapman, “Enabling locality-
aware computations in OpenMP,” Scientific Programming, vol.
18, no. 3-4, pp. 169-181, 2010.

[18] Z.Majo and T. R. Gross, “Matching memory access patterns and
data placement for NUMA systems,” in Proceedings of the 10th
International Symposium on Code Generation and Optimization
(CGO ’12), pp. 230-241, April 2012.

[19] D.S. Nikolopoulos, T. S. Papatheodorou, C. D. Polychronopou-
los, J. Labarta, and E. Ayguade, “Is data distribution necessary
in OpenMP?” in Proceedings of the ACM/IEEE Conference on
Supercomputing (CDROM °07), p. 47, November 2000.

[20] C. Terboven, D. Mey, D. Schmidl, H. Jin, and T. Reichstein,
“Data and thread affinity in OpenMP programs,” in Proceedings
of the Workshop on Memory Access on Future Processors: A
Solved Problem? (MAW °08), pp. 377-384, May 2008.

[21] E Broquedis, N. Furmento, B. Goglin, R. Namyst, and P-A.
Wacrenier, “Dynamic task and data placement over NUMA
architectures: an OpenMP runtime perspective,” in Evolving
OpenMP in an Age of Extreme Parallelism, vol. 5568 of Lecture
Notes in Computer Science, pp. 79-92, Springer, Berlin, Ger-
many, 2009.

(17

[22] M. Dashti, A. Fedorova, J. Funston et al., “Traffic management: a
holistic approach to memory placement on NUMA systems,” in
Proceedings of the 18th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS ’13), pp. 381-394, ACM, March 2013.

[23] B. Goglin and N. Furmento, “Enabling high-performance
memory migration for multithreaded applications on linux,” in
Proceedings of the 23rd IEEE International Parallel & Distributed
Processing Symposium (IPDPS "09), pp. 1-9, May 2009.

[24] M. Wittmann and G. Hager, “Optimizing ccNUMA local-
ity for task-parallel execution under OpenMP and TBB on
multicore-based systems,” Computing Research Repository,
http://arxiv.org/abs/1101.0093.

[25] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, M. Spiegel, and
J. E Prins, “OpenMP task scheduling strategies for multicore
NUMA systems,” International Journal of High Performance
Computing Applications, vol. 26, no. 2, pp. 110-124, 2012.

16

(26]

(27]

(29

[30]

(31]

(32]

(33]

(34]

(37]

(38]

L. L. Pilla, C. P. Ribeiro, D. Cordeiro, and J.-E Mé¢haut,
“Charm++ on NUMA platforms: the impact of SMP optimiza-
tions and a NUMA-aware load balancer,” in Proceedings of the
4th Workshop of the INRIA-Illinois Joint Laboratory on Petascale
Computing, Urbana, Ill, USA, 2010.

Q. Chen, M. Guo, and Z. Huang, “Adaptive cache aware bitier
work-stealing in multisocket multicore architectures;” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 12,
pp. 2334-2343, 2013.

X. Liu and J. Mellor-Crummey, “A tool to analyze the perfor-
mance of multithreaded programs on NUMA architectures,” in
Proceedings of the 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP ’14), pp. 259-271,
ACM, Orlando, Fla, USA, February 2014.

D. Schmidl, C. Terboven, and D. an Mey, “Towards NUMA
support with distance information,” in OpenMP in the Petascale
Era, vol. 6665 of Lecture Notes in Computer Science, pp. 69-79,
Springer, Berlin, Germany, 2011.

E Broquedis, N. Furmento, B. Goglin, R. Namyst, and P.
Wacrenier, “Dynamic task and data placement over numa archi-
tectures: an openmp runtime perspective;” in Evolving OpenMP
in an Age of Extreme Parallelism, vol. 5568 of Lecture Notes in
Computer Science, pp. 79-92, Springer, Berlin, Germany, 2009.
R. M. Yoo, C. J. Hughes, C. Kim, Y.-K. Chen, and C. Kozyrakis,
“Locality-aware task management for unstructured parallelism:
a quantitative limit study;” in Proceedings of the 25th ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA
'13), pp- 315-325, ACM, Portland, Ore, USA, July 2013.

B. Vikranth, R. Wankar, and C. R. Rao, “Topology aware task
stealing for on-chip NUMA multi-core processors,” Procedia
Computer Science, vol. 18, pp. 379-388, 2013.

A. Tousimojarad and W. Vanderbauwhede, “A parallel task-
based approach to linear algebra,” in Proceedings of the IEEE 13th
International Symposium on Parallel and Distributed Computing
(ISPDC ’14), pp. 59-66, IEEE, 2014.

Q. Lu, C. Alias, U. Bondhugula et al., “Data layout transfor-
mation for enhancing data locality on NUCA chip multipro-
cessors,” in Proceedings of the 18th International Conference on
Parallel Architectures and Compilation Techniques (PACT "09),
pp- 348-357, IEEE, September 2009.

A. Marongiu and L. Benini, “An OpenMP compiler for efficient
use of distributed scratchpad memory in MPSoCs,” IEEE
Transactions on Computers, vol. 61, no. 2, pp. 222-236, 2012.

Y. Li, A. Abousamra, R. Melhem, and A. K. Jones, “Compiler-
assisted data distribution for chip multiprocessors,” in Proceed-
ings of the 19th International Conference on Parallel Architectures
and Compilation Techniques (PACT ’10), pp. 501-512, ACM,
September 2010.

Y. Li, R. Melhem, and A. K. Jones, “Practically private: enabling
high performance CMPs through compiler-assisted data classi-
fication,” in Proceedings of the 2Ist International Conference on
Parallel Architectures and Compilation Techniques (PACT ’12),
pp. 231-240, ACM, September 2012.

N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reac-
tive NUCA: near-optimal block placement and replication in
distributed caches,” ACM SIGARCH Computer Architecture
News, vol. 37, no. 3, pp. 184-195, 2009.

Scientific Programming

Advances in k& - - . Journal of

o 0 Industrial Engineerin
. WNultimedia J .

Applied
Computational
Intelligence and Soft
. g nternational Journal of T P - Com tll'lg"
The Scientific Dieenel Qumalof e iR e

World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications

Advances in »
Artificial
Intelligence

i ‘ Advances in
Biomedica ‘H'\{'ii Artificial
‘ & NS Neural Systems

International Journal of
Computer Games in
Technology S re Engineering

Intel ional J na
Reconfigurable
Computing

Computational i

Ad S
uman-Computer Intelligence and 2y Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Robotics

Copyright of Scientific Programming is the property of Hindawi Publishing Corporation and
its content may not be copied or emailed to multiple sites or posted to a listserv without the
copyright holder's express written permission. However, users may print, download, or email
articlesfor individua use.

