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Abstract: In this study, for interleaved orthogonal frequency division multiple access uplink with multi-antenna receiver, we
propose two generalised carrier frequency offset estimators which, respectively, exploit the subspace theory and maximum-
likelihood (ML) criterion. We find that, as long as the numbers of multipaths from two of the users are smaller than the
number of antennas at the receiver, both the proposed estimators support fully loaded transmissions. We also derive the
theoretical performance lower bound for the proposed ML estimator. The numerical results are then provided, which
corroborate the proposed studies.

1 Introduction

Orthogonal frequency division multiple access (OFDMA) has
recently received a considerable amount of interest [1, 2]. It is
widely recognised that OFDMA inherits from orthogonal
frequency division multiplexing (OFDM) the weakness of
sensitivity to the effect of carrier frequency offset (CFO).
The system performance of OFDMA relies heavily on the
proper CFO estimation and compensation.
In OFDMA downlink transmissions, a single CFO exists

between each transceiver pair, which makes the existing
CFO estimators for OFDM directly applicable [3, 4].
However, for OFDMA uplink, multiple CFOs co-exist at
the receiver, making the CFO estimation much more
challenging. To perform the CFO estimation, various kinds
of data-aided estimators [5, 6] as well as the blind
estimators [7–15] have been developed. For example, by
using the multiple signal classification technique [16], a
frequency estimation scheme for interleaved OFDMA
uplink that exploits the periodic structure of the signals
from each user has been presented in [9]. Based on the
observation of [9], several advancements have been
proposed later [10–14]. However, [9–14] need null
subcarriers or a longer cyclic prefix (CP) to build the noise
space which decreases the bandwidth efficiency.
Recently, by exploiting the multi-antenna redundancy at

the receiver, Zhang et al. [15] proposed two estimators for
the interleaved OFDMA uplink based on the subspace
theory and maximum-likelihood (ML) criterion,
respectively. It was shown in [15] that the two estimators
[15] can support fully loaded transmission, which provides

higher bandwidth efficiency as compared with the
estimators [9–14]. However, both the two estimators in [15]
require that the number of antennas at the receiver should
be larger than the maximum number of multipaths from all
users, which severely limits their applicable scenarios.
In this paper, inspired by the work of [15], we further

consider the more general scenarios that the number of
multipaths from some users may be larger than the number
of antennas at the receiver, and propose two generalised
blind CFO estimators for the interleaved OFDMA uplink
with multi-antenna receiver. The main contributions of this
paper can be summarised as follows:

† Two generalised CFO estimators which, respectively,
exploit the subspace theory and ML criterion are developed,
referred to as ‘GSSE’ and ‘GMLE’, respectively. We find
that, as long as the numbers of multipaths from two of the
users are smaller than the number of antennas at the
receiver, both the proposed estimators support fully loaded
transmissions. This greatly relaxes the antenna number
requirement at the receiver as compared with the work in [15].
† We derive the theoretical performance lower bound for the
proposed GMLE. The numerical results are also provided,
which demonstrate that GMLE behaves better than GSSE
and almost achieves the analytical lower bound.

The rest of this paper is organised as follows. Section 2
formulates the problem. The proposed GSSE and GMLE
are developed in Sections 3 and 4, respectively. The
theoretical performance analysis is presented in Section 5.
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Simulation results are given in Section 6 and conclusions are
drawn in Section 7.

Notations: superscripts (·)*, (·)T, (·)H, [·]† and E[·] represent
conjugate, transpose, Hermitian, pseudo inverse and
expectation, respectively; j = ����−1

√
is the imaginary unit;

||X|| denotes the Frobenius norm of X, and diag(·) is a
diagonal matrix with main diagonal (·); blkdiag(·) represents
the block-diagonal matrix operator; Cm×n defines the vector
space of all m × n complex matrices; IN is the N ×N identity
matrix; 0 represents an all-zero matrix with appropriate
dimension;⊗ stands for the Kronecker product; ° denotes
the element-wise product; Tr{·} denotes the trace operation;
MATLAB matrix representations are adopted, for example,
X(r1:r2, c1:c2) denotes the submatrix of X with the rows
from r1 to r2 and the columns from c1 to c2.

2 Problem formulation

Consider a multiuser OFDMA system with K users, N
subcarriers and M antennas at the receiver. All subcarriers
are sequentially indexed with {i}, i = 0, 1, …, N−1, and are
equally divided into Q subchannels, each having P = N/Q
subcarriers. The qth subchannel consists of subcarriers with
index set of {q, Q + q, …, (P− 1)Q + q}, q = 0, 1, …, Q−
1. Each subchannel will be exclusively assigned to one
user, and thus, no subchannel can be shared by more than
one user. To ease the presentation, we assume the system is
fully loaded in this paper, that is, K =Q.
Denote the normalised CFO of the kth user as ξ(k) =

Δf(k)/Δf, where Δf is the subcarrier spacing and Δf(k) is the
real CFO of the kth user. We assume ξ(k)∈ (−0.5, 0.5). The
channel impulse response from the kth user to the mth

antenna can be modelled as h(k)m (t) =∑L(k)

l=1 h
(k)
l,md t− t(k)l

( )
where L(k) is the number of multipaths, whereas
h(k)l,m and t(k)l are the complex amplitude and delay for the

lth multipath, respectively. We assume h(k)l,m’s are
independent and identically distributed (i.i.d.) complex
Gaussian variables with zero mean and power

E |h(k)l,m|2
{ }

= 1/L(k) such that the total power is normalised,

that is, E
∑L(k)

l=1 h(k)l,m

∣∣∣ ∣∣∣2{ }
= 1. Assume that the delays are

rounded to the nearest sampling position and t(k)l ’s are of
integer values. We also consider the fading channels are
constant over successive Ls block durations in this paper.

We define the user index set C = c1, c2, . . . , cNC

{ }
,

where L(ci) , M , i = 1, 2, . . . , NC, and NC denotes the
number of users whose multipath numbers are less than M.

In this paper, we assume NC ≥ 2, that is, there are at least
two users whose multipath numbers are less than M. Here,
we should note that the work in [15] requires that the
multipath numbers of all users should be less than M. Thus,
the antenna number requirement at the receiver in this paper
is much more relaxed as compared with [15].
Assume the kth user occupies the q(k)th subchannel and let

s(k)g = s(k)0, g , s
(k)
1, g , . . . , s(k)P−1, g

[ ]T
be the P information

symbols of the kth user in the gth OFDMA block. Denote

x(k)g = ej 2p(g−1)(N+G)j(k)/N
( )

as the phase shift of the kth user
accumulated from the previous g−1 blocks with G being
the length of CP. Then, in noise-free environment, the
received signal at the mth receiving antenna element from
the K users after CP removal can be expressed as [15]

where the expression in the bracket stands for the
frequency-domain channel response at the (pK + q(k))th
subcarrier from the kth user to the mth antenna, and (see (1))

We further define (see equation at the bottom of the page)

where Lsum =∑K
k=1 L

(k). Stacking the received signals from
all M antennas, we obtain the following space-domain
snapshot with the presence of noise

gn, g = [g1, g(n), g2, g(n), . . . , gM , g(n)]
T

= Hzn, g + nn, g (2)

where nn,g is a length-M additive white Gaussian noise
(AWGN) vector with covariance matrix s2

nIM at the nth
sample in the gth OFDMA block, and

zn, g = z(1)n, g

( )T
, z(2)n, g

( )T
, . . . , z(K)n, g

( )T[ ]T
[ CLsum×1

z(k)n, g = z(k)1, n, g, z
(k)
2, n, g , . . . , z(k)

L(k), n, g

[ ]T
[ C

L(k)×1

3 Proposed GSSE

By defining

�z(k)p, g =
z(k)p, g, L(k) , M

H (k)z(k)p, g , L(k) ≥ M

{
(3)

g(k)m, g(n) =
∑K
k=1

x(k)g���
N

√
∑P−1

p=0

∑L(k)
l=1

h(k)l,me
−j 2p(pK+q(k))t(k)l /N
( )⎛

⎝
⎞
⎠s(k)p, ge

j
(

2p(pK+q(k)+j(k))/N
( )

n
)

=
∑K
k=1

∑L(k)
l=1

h(k)l,mz
(k)
l, n, g

(1)

h(k)l = h(k)l, 1, h
(k)
l, 2, . . . , h(k)l,M

[ ]T
[ C

M×1, H (k) = h(k)1 , h(k)2 , . . . , h(k)
L(k)

[ ]
[ C

M×L(k)

H = H (1), H (2), . . . , H (K)[ ]
[ C

M×Lsum

www.ietdl.org

IET Commun., 2014, Vol. 8, Iss. 7, pp. 1158–1168
doi: 10.1049/iet-com.2013.0539

1159
& The Institution of Engineering and Technology 2014



we can rewrite (2) into

g p, g =
∑K
k=1

H (k)z(k)p, g + n p, g

=
∑
k ′[C

H (k ′)�z(k
′)

p, g +
∑
k�C

IM�z
(k)
p, g + n p, g (4)

Treat θ(k) = (q(k) + ξ(k)/K as the effective CFO of the kth user.
For t = 0, 1, …, K−1, there holds

�z(k)p+tP, g = ej2ptu
(k)

�z(k)p, g (5)

and

g p+tP, g =
∑
k′[C

ej2ptu
(k′)
H (k′)�z(k

′)
p, g +

∑
k�C

ej2ptu
(k)

IM�z
(k)
p, g

+ n p+tP, g (6)

Stacking space-domain snapshot vectors from K equally
spaced time samples (P samples apart) give the following
length-MK vector

a p, g = gTp, g, g
T
p+P, g, . . . , gTp+N−P, g

[ ]T
(7)

Define

v(k) = 1, ej2pu
(k)

, . . . , ej2p(K−1)u(k)
[ ]T

[ CK×1 (8)

V (k) = v(k) ⊗H (k), L(k) , M
v(k) ⊗ IM , L(k) ≥ M

{
(9)

Let �L
(k)

equal L(k) if L(k) , M and M elsewhere, that is,
�L
(k) = min{L(k), M}. Then, we have V (k) [ C

KM×�L(k) and

�z(k)p, g [ C
�L(k)×1. Denote �Lsum =∑K

k=1
�L
(k)
. From (6), we can

further rewrite (7) into the following matrix-form

a p, g = �Vz p, g + �n p, g (10)

where

V = [V (1), V (2), . . . , V (K)] [ C
MK×�Lsum

�z p, g = �z(1)p, g

( )T
, �z(2)p, g

( )T
, . . . , �z(K)p, g

( )T[ ]T
[ �Lsum × 1

�n p, g = nTp, g , n
T
p+P, g, . . . , nTp+N−P, g

[ ]T
[ C

MK×1

The correlation matrix of ap,g can be computed as

Ri = E a p, ga
H
p, g

{ }
= VR�z�zV

H + s2
nIMK (11)

where R�z�z = E �z p, g�z
H
p, g

{ }
. Assume L(k)≤ P and t(k)

L(k)
, P.

Following the similar steps of Appendix B in [15], we obtain

R�z�z = blkdiag R(1)
�z�z , R

(2)
�z�z , . . . , R(K)

�z�z

{ }
(12)

where

R(k)
�z�z =

1

K
IL(k) , L(k) , M

1

K
H (k) H (k)( )H

, L(k) ≥ M

⎧⎪⎨
⎪⎩

Owing to the random property of the wireless channels, the
non-singularity of R�z�z can be readily guaranteed.
Perform singular value decomposition (SVD) of Ri, which

gives

Ri = Us, Un

[ ]
Sa Us, Un

[ ]H
(13)

where Us [ CMK×�Lsum and Un [ CMK×(MK−�Lsum) represent
the signal and the noise space matrices, respectively.
We define the following parameterised Vandermonde

vector B(k)(j) with respect to ξ as

B(k)(j) = 1, ej 2p(q(k)+j)/K
( )

, . . . , ej 2p(K−1)(q(k)+j)/K
( )[ ]T

(14)

where ξ∈ (−0.5, 0.5). The following ‘Lemmas’ are the key
properties to design the generalised subspace-based CFO
estimator.

Lemma 1: For the kth user with L(k) <M, we have the
following observations:

† For ‘any’ non-zero length-M vector x, there holds

B(k)(j(k))⊗ x
( )H

Un = =0, x [ Span H (k){ }
=0, x � Span H (k){ }

{
(15)

† Given ‘any’ M × L(k) matrix X with full column rank and
ξ≠ ξ(k), there holds

B(k)(j)⊗ X
( )H

Un = 0 (16)

Proof: When x∈ Span{H (k)}, we know
B(k) j(k)

( )⊗ x = v(k) ⊗ x belongs to the column space of Us.
Thus, it is orthogonal to the noise space matrix Un.
Moreover, when x∉Span{H (k)}, according to Appendix C
in [15], we know B(k) j(k)

( )⊗ x is linearly independent with
the column vectors of Us. Thus, it cannot be orthogonal to
Un. Then, we concentrate on the proof of (16) which can be
obtained from the method of contradiction. According to

Appendix D in [15], if B(k)(j)⊗ X
( )H

Un = 0 holds, the

column space of X [ C
M×L(k) should simultaneously

belong to the column space of both IM and each

H (k ′) [ C
M×L(k

′)
, k ′ [ C. However, when the number of

users whose multipath number is less than M is not less
than 2, that is, NC ≥ 2, this has zero possibility because of
the random property of the wireless channels. From this
contradiction, we arrive at (16). Here it needs to be
mentioned that, when NC = 1, that is, there is only one user
whose multipath number is less than M, we have the

equation B(k)(j)⊗ X
( )H

Un = 0 since X can simultaneously
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belong to the column space of IM and H (k). Hence, NC ≥ 2 is
required in this paper to guarantee the validity of Lemma 1.

Lemma 2: For the kth user with L(k)≥M, there holds

B(k)(j)⊗ IM
( )H

Un
=0, j = j(k)

=0, j = j(k)

{
(17)

Proof: Note that B(k) j(k)
( )⊗ IM = v(k) ⊗ IM serve as a

submatrix of V. Thus, we can readily obtain that it is
orthogonal to the noise space matrix Un, that is,

B(k) j(k)
( )⊗ IM

( )H
Un = 0. Then, we concentrate on

B(k)(j)⊗ IM
( )H

Un = 0 when ξ≠ ξ(k) which can be proved
from the method of contradiction. According to Appendix

D in [15], if B(k)(j)⊗ IM
( )H

Un = 0, ξ≠ ξ(k), holds, the
column space of IM should simultaneously belong to the

column space of each H (k ′) [ C
M×L(k

′)
, k ′ [ C. However,

this is impossible when NC ≥ 1. From this contradiction, we
arrive at B(k)(j)⊗ IM )

HUn = 0 when ξ≠ ξ(k).

From the above two lemmas, we can design the CFO
estimator as follows. For any non-zero length-M vector x,
we have

B(k)(j)⊗ x
( )H

UnU
H
n B(k)(j)⊗ x
( ) = xHP(k)(j)x (18)

where P(k)(j) = B(k)(j)⊗ IM
( )H

UnU
H
n B(k)(j)⊗ IM
( )

.

For the kth user with L(k) <M, Lemma 1 indicates that
Π(k)(ξ) drops its rank to M−L(k) if and only if ξ = ξ(k). Thus,
the CFO estimate can be obtained similar to [15].
Specifically, for each trial ξ, we compute the M eigenvalues
of the matrix Π(k)(ξ) denoted by k(k)1 (j), k(k)2 (j), . . . , k(k)M (j)
in ascending order, and then calculate the summation of the
smallest L(k) eigenvalues of Π(k)(ξ) as the cost of current
trial value. The CFO estimate for the kth user is the trial
value that gives the minimum cost, that is

ĵ
(k) = argmin

j

∑L(k)
i=1

k(k)i (j) (19)

On the other side, for the kth user with L(k)≥M, according to

Lemma 2, we know B(k)(j)⊗ IM
( )H

Un equals zero matrix if
and only if ξ = ξ(k). Thus, the CFO can be obtained by

ĵ (k) = argmin
j

Tr P(k) (j)
{ }

(20)

Note that Tr P(k)(j)
{ } =∑M

i=1 k
(k)
i (j). Hence, combining both

(19) and (20), the proposed GSSE can be described as the
following unified form

ĵ (k) = argmin
j

gk (j) (21)

where the cost function is expressed as

gk(j) =
∑�L(k)
i=1

k(k)i (j) (22)

In noise-free environment, for both the situations with L(k) <

M and L(k)≥M, one can imagine that, gk(ξ) = 0 when ξ = ξ(k),
whereas gk(ξ) > 0 when ξ≠ ξ(k). Hence, by searching for the
minimum point of gk(ξ), we could obtain the estimation for
ξ(k). Moreover, for the kth user with L(k) <M, it is seen

from Lemma 1 that, after deriving CFO, P(k) ĵ (k)( )( )⊥
can

be considered as the estimate of H (k) with certain ambiguity.

4 Proposed GMLE

The parameter set of interest for the kth user can be expressed
as

v(k) = j(k), H (k){ }
L(k) , M

j(k) L(k) ≥ M

{
(23)

The corresponding whole parameter set for the K users is
given by ω = {ω(1), ω(2), …, ω(K )}. We rewrite (10) as the
following parameterised equation

a p,g = V (v)�z p,g + �n p,g (24)

where

V (v) = V (1)(v(1)), V (2) v(2)( )
, . . . , V (K) v(K)( )[ ]

V (k)(v(k)) = v(k)(j(k))⊗H (k) L(k) , M

v(k)(j(k))⊗ IM L(k) ≥ M

{

v(k)(j(k)) = 1, ej2p(q
(k)+j(k)/K), . . . , ej2p(K−1)(q(k)+j(k)/K)

[ ]T

Concatenating the vectors ap, g, p = 0, 1,…, P−1, g = 1, 2,…,
Ls, we obtain the following MK × PLs matrix

A = Ag, Ag+1, . . . , Ag+Ls−1

[ ]
= V (v)Z + N (25)

where Ag = [a0, g , a1, g, . . . , aP−1, g], Z and N denote the
corresponding signal and AWGN matrices, that is,
Z = [Zg , Zg+1, . . . , Zg+Ls−1] and N = [

�Ng, �Ng+1, . . . ,

�Ng+Ls−1

]
with Zg = �z0, �z1,g , . . . , �zP−1,g

[ ]
and �Ng = [�n0,g ,

�n1,g, . . . , �nP−1,g].
From (25), the ML parameter estimation of ω can be

obtained by

v̂ = argmax
ṽ

Tr AHPV (ṽ)A
{ }

(26)

where x̃ stands for the trial value of x, and

PV (ṽ) = V (ṽ) V (ṽ)
[ ]†

is the projection operator onto the
space spanned by the columns of the matrix V (ṽ). The
alternating projection algorithm [17] is then applied to
reduce the multi-dimensional searching complexity. The
estimation procedure consists of cycles and steps, where a
cycle is made of K steps. Each step updates the parameter
set of interest for a single user while keeping the other
parameter sets constant at their most updated values.
Without loss of generality, we follow the natural ordering
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k = 1, 2,·…, K in updating the users’ parameters. Denote

v̂ (k)
i = ĵ

(k)
i , Ĥ (k)

i

{ }
L(k) , M

ĵ
(k)
i , L(k) ≥ M

⎧⎨
⎩ (27)

as the estimate of v(k) at the ith cycle. Define v̂|k,i =
v̂ (1)
i+1, . . . , v̂ (k−1)

i+1 , v̂ (k+1)
i , . . . , v̂ (K)

i

{ }
and use PV ṽ(k),

(
v̂|k, i) to indicate the functional dependence of PV on

v̂ (1)
i+1, . . . , v̂ (k−1)

i+1 , ṽ(k), v̂ (k+1)
i , . . . , v̂ (K)

i

{ }
. At the kth

step of the (i + 1)th cycle, the alternating projection
algorithm updates the estimate of ω(k) by solving the
following minimisation problem [15 eq. (34)–(39)]

v̂ (k)
i+1 = arg min

ṽ(k), X̃
P⊥
B v̂|k, i
( )

V (k) ṽ(k)( )
X̃ − A

∥∥ ∥∥2 (28)

where P⊥
B v̂|k, i
( ) = IMK − B v̂|k, i

( )
B v̂|k, i
( )[ ]†

with

B v̂|k,i
( )

[ C
MK× �Lsum−�L(k)

( )
is a submatrix of V v̂ (k), v̂|k, i

( )
formed by deleting the corresponding columns of

V (k) v̂ (k)( )
, and X̃ [ C

�L(k)×PLs serves as a trial matrix that
aims to minimise the above cost function.
According to the value of L(k), we can further rewrite (28)

into

v̂ (k)
i+1 = arg min

j̃
(k)

, H̃
(k)
, X̃

P
(k)
i j̃

(k)
( )

H̃
(k)
X̃ − A

∥∥∥ ∥∥∥2, L(k) , M

(29)

ĵ
(k)
i+1 = arg min

j̃
(k)
, X̃

P(k)
i j̃

(k)
( )

X̃ − A
∥∥∥ ∥∥∥2, L(k) ≥ M (30)

where

P
(k)
i j̃

(k)
( )

= P⊥
B v̂|k, i
( )

v(k) j̃
(k)

( )
⊗ IM

( )
(31)

First, we consider the case of L(k) <M. Following the steps
similar to [15, eq. (43)–(50)], we know the minimisation
problem of (29) in fact falls into the well-known low rank

matrix approximation problem. Let SVD of P(k)
i j̃

(k)
( )

be

P(k)
i j̃

(k)
( )

= U (k)
P, i j̃

(k)
( )

S(k)
P, i j̃

(k)
( )

V (k)
P, i j̃

(k)
( )( )H

(32)

where the diagonal entries of S
(k)
P, i j̃

(k)
( )

[ C
M×M are the

non-zero singular values, U (k)
P, i j̃

(k)
( )

[ C
MK×M and

V (k)
P,i j̃

(k)
( )

[ CM×M denote the left and right singular

vector matrices that correspond to the M non-zero singular
values, respectively.

Define J
(k)
i j̃

(k)
( )

= U (k)
P, i j̃

(k)
( )( )H

RU (k)
P, i j̃

(k)
( )

where

R =AAH. Denote the M eigenvalues of J
(k)
i j̃

(k)
( )

in ascending order and the corresponding eigenvectors by

l(k)l, i j̃
(k)

( )
and n

(k)
l, i j̃

(k)
( )

, l = 1, 2, . . . , M , respectively.

According to [15], the CFO estimation for the kth user at

the (i + 1)th cycle can be expressed as

ĵ
(k)
i+1 = argmax

j̃
(k)

∑M
l=M−L(k)+1

l(k)l, i j̃
(k)

( )
(33)

The channel estimation for the kth user at this step can be then
obtained from [15]

Ĥ (k)
i+1=V (k)

P,i ĵ (k)
i+1

( )
× S

(k)
P,i ĵ (k)

i+1

( )( )−1
n
(k)
M−L(k)+1,i

ĵ (k)
i+1

( )
, ..., n(k)M ,i ĵ (k)

i+1

( )[ ]
(34)

Next, we consider the case of L(k)≥M. In this situation, we
can rewrite (30) into

ĵ (k)
i+1 = argmin

j̃
(k)

IMK −P(k)
i j̃

(k)
( )

P(k)
i j̃

(k)
( ))†( )

A

∥∥∥∥
∥∥∥∥2

= argmax
j̃
(k)

U (k)
P, i j̃

(k)
( )( )H

A

∥∥∥∥
∥∥∥∥2

= argmax
j̃
(k)

Tr J
(k)
i j̃

(k)
( ){ }

(35)

Note that Tr J
(k)
i j̃

(k)
( ){ }

=∑M
l=1 l

(k)
l, i j̃

(k)
( )

. Thus,

combining both (33) and (35), an unified form of the
proposed GMLE can be described as follows

ĵ (k)
i+1 = argmax

j̃
(k)

G(k)
i j̃

(k)
( )

(36)

where the utility function is expressed as

G(k)
i j̃

(k)
( )

=
∑M

l=M−�L(k)+1

l(k)l, i j̃
(k)

( )
(37)

5 Performance lower bound of GMLE

In this section, we assume that after the iteration of infinite
cycles, to estimate the CFO of the kth user using (36), the
effect from the parameter estimation error of the other users
can be neglected. We then derive the analytical mean
square error (MSE) for this simplified situation. Thus, the
following analysed MSE can be considered as the
performance lower bound of the GMLE.

We define L
(k)
i (j) = P

(k)
i (j) P

(k)
i (j)

( )H
= P⊥

B v̂|k, i
( )

G(k)(j) G(k)(j)
( )H

P⊥
B v̂|k, i
( )

, where Γ(k)(ξ) = v (k)(ξ)⊗ IM.

Denote the MK eigenvalues of L(k)
i (j) in descending order

and the corresponding eigenvectors by
m(k)
l, i (j) and e(k)l, i (j), i = 1, 2, . . . , MK , respectively.

Following the proof of Appendix E in [15], we know
L

(k)
i (j) has rank of M. Then, there holds

U (k)
P, i(j) = e(k)1, i(j), e

(k)
2, i(j), . . . , e(k)M , i(j)

[ ]
, and m(k)

l, i (j) = 0,

l = M + 1, . . . , MK . In the following, we omit the
parameterised notation (ξ) for presentation clarity.
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We obtain (see equation at the bottom of the page)

where D = (j2π/K )diag(0, 1,…, K−1)⊗ IM.
From Appendix of this paper, we know the first and second

derivatives of G(k)
i (j) with respect to ξ are given by

∂G(k)
i

∂j
=

∑M
l=M−�L(k)+1

n(k)l, i

( )H
Q

(k)
i n(k)l, i (38)

(see (39))

where

Q
(k)
i = U (k)

P, i

( )H
RV(k)

i m(k)
i

( )−1
+ m(k)

i

( )−1
V(k)

i

( )H
RU (k)

P, i

(40)

V
(k)
i = IMK − U (k)

P, i U (k)
P, i

( )H( )
∂L

(k)
i

∂j
U (k)

P, i (41)

m(k)
i = diag m(k)

1, i, m
(k)
2, i, . . . , m(k)

M , i

{ }
(42)

(see (43))

For the kth user, we denote P
(k)
i = P⊥

B v|k, i
( )

v(k)(j(k))⊗ IM
( )

and L(k)
i = P(k)

i P(k)
i

( )H
, where ωk, i =

{ω(1), …, ω(k−1), ω(k + 1), …, ω(K )} is formed by the perfect
knowledge of the parameters of the other users, except the
kth user. Denote the M non-zero eigenvalues of L

(k)
i in

descending order and the corresponding eigenvectors by
m(k)
l, i and e(k)l, i , l = 1, 2, . . . , M , respectively. Denote

U (k)
P, i = e(k)1, i, e

(k)
2, i, . . . , e(k)M , i

[ ]
as the matrix formed by the

eigenvectors that correspond to the non-zero eigenvalues of
L(k)

i . The eigenvalues in ascending order and the

corresponding eigenvectors of U (k)
P, i

( )H
RiU

(k)
P, i are

expressed by l(k)l, i and n(k)l, i , l = 1, 2, . . . , M , respectively.

The lower bound of the MSE of the CFO estimation for the
kth user can be expressed as [4]

MSEML, LB {j
(k)} =

E ∂G(k)
1 /∂j

( )2{ }
E ∂2G(k)

1 /∂2j
{ }( )2

∣∣∣∣∣∣∣
j=j(k)

(44)

where G(k)
1 stands for the utility function of G(k)

i after infinite
iterative cycles. As mentioned earlier, we ignore the effect of
the parameter estimation error from the other users in this
section. Thus, there holds

U (k)
P,1 = U (k)

P, i

m(k)
1 = m(k)

i = diag m(k)
1, i, m

(k)
2, i, . . . , m(k)

M , i

{ }
V(k)

1 = V
(k)
i = IMK − U (k)

P, i U (k)
P, i

( )H( )
∂L

(k)
i

∂j
U (k)

P, i

∂L
(k)
i

∂j
= P⊥

B v|k, i
( )

DG(k) P
(k)
i

( )H
+P

(k)
i (G(k))HDHP⊥

B v|k, i
( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
We denote R =Ri + ΔR and n

(k)
l,1 = n

(k)
l, i + Dn

(k)
l,1, where ΔR

and Dn
(k)
l,1 stand for the corresponding deviations from their

expectation. Then, according to (38), we have (see (45) in
next page)

Based on the fact that U (k)
P, i

( )H
RiV

(k)
i = 0, we can simplify

E{(∂G(k)
1 /∂j)2} into (see (46) and (47) in next page)

The derivation from (46) to (47) is based on the fact of [18, eq.
(12)]

E xH1 DRx2x
H
3 DRx4

{ } = 1

PLs
xH1 Rix4x

H
3 Rix2 (48)

∂L
(k)
i

∂j
= P⊥

B v̂|k, i
( )

DG(k) P
(k)
i

( )H
+P

(k)
i (G(k))HDHP⊥

B v̂|k, i
( )

∂2L
(k)
i

∂j2
= P⊥

B v̂|k, i
( )

2DG(k)(G(k))HDH + DDG(k)(G(k))H + G(k)(G(k))HDHDH( )
P⊥
B v̂|k, i
( )

∂2G(k)
i

∂j2
=

∑M
l=M−�L(k)+1

2< n(k)l, i

( )H
M

(k)
i n(k)l, i +

∑M−�L(k)

z=1

n(k)l, i

( )H
Q

(k)
i n(k)z, i

∣∣∣∣
∣∣∣∣2

l(k)l, i − l(k)z, i

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(39)

M
(k)
i = m(k)

i

( )−1
V(k)

i

( )H
RV(k)

i m(k)
i

( )−1
− J

(k)
i m(k)

i

( )−1
V(k)

i

( )H∂L(k)
i

∂j
U (k)

P, i m(k)
i

( )−1

+ U (k)
P,i

( )H
R IMK − U (k)

P, i U (k)
P, i

( )H( )
∂L(k)

i

∂j
V(k)

i m(k)
i

( )−2
+ ∂2L(k)

i

∂j2
U (k)

P, i m(k)
i

( )−1
( )

− 2 U (k)
P, i

( )H
RV(k)

i m(k)
i

( )−1
U (k)

P, i

( )H∂L(k)
i

∂j
U (k)

P, i m(k)
i

( )−1

(43)
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On the other hand, from (39), we obtain (see (49))

Note that V
(k)
i

( )H
∂L

(k)
i /∂j

( )
U (k)

P, i = V
(k)
i

( )H
V

(k)
i . Then,

combining both (47) and (49), the MSE lower bound of
the CFO estimation for the kth user can be finally given by
(see (50))

6 Simulations

In this section, we assess the proposed CFO estimation
algorithms from computer simulations. The total number of
subcarriers is taken as N = 64 and are divided into Q = 4
subchannels. The QPSK is adopted. The normalised CFO
of each user is randomly generated from −0.35 to 0.35. The
root MSE (RMSE) of the normalised CFO estimation is
adopted as the figure of merit. M = 8 and Ls = 8 are assumed
in the following simulations unless otherwise stated. The
estimates of GSSE are taken as the initial values of GMLE.
For comparison, we include the CFO estimation scheme of
[10], referred to as ‘ESPRIT’. For fairness, the multiple
receive antenna diversity is exploited in ESPRIT as
described in [9, eq. (28)]. The number of users in ESPRIT
is three since at least one subchannel should be reserved for
null subcarriers in ESPRIT. Note that the results of the
estimators of [15] are not included here, since they are
equivalent to the proposed GSSE and GMLE in this paper
when the multipath numbers of all users equal a same value
less than the antenna number.
We start by investigating the convergence rate of the

proposed GMLE. In Fig. 1, we depict the CFO estimation
performance of GMLE as the cycle number increases.
The signal-to-noise ratio (SNR) is taken as 20 dB. The
analytical lower bound is also included in this figure by
the dotted curves as the benchmark. We denote L = [L(1),
L(2), L(3), L(4)] and include several different cases of L in

this figure. Bearing in mind that GMLE estimator is
initialised by the GSSE estimator, the results explicitly
demonstrate the performance improvement of GMLE
introduced by the iterative procedure. We see that, for the
included different scenarios, the RMSEs of GMLE quickly
decline with first few cycles and almost approach the
corresponding analytical lower bounds. These indicate the
validity of our method and correctness of the analytical
results.
In the second example, we consider L(1) = L(2) and

L(3) = L(4) without loss of generality. We increase L(k) (k =
3, 4) from 1 to 16, and show the performance evolution of
both GSSE and GMLE in Fig. 2 when SNR equals 20 dB.
From these results, we can make the following observations.

Fig. 1 CFO estimation RMSE convergence process of GMLE
(SNR = 20 dB)

E
∂G(k)

1
∂j

( )2
⎧⎨
⎩

⎫⎬
⎭ = E

{( ∑M
l=M−�L(k) +1

n
(k)
l, i + Dn

(k)
l,1

( )H
U(k)

P, i

( )H
(Ri + DR)V(k)

i m(k)
i

( )−1
(

..

+ m(k)
i

( )−1
V(k)

i (Ri + DR)U (k)
P, i

)
n(k)l, i + Dn(k)l,1
( ))2} (45)

E
∂G(k)

1
∂j

( )2
⎧⎨
⎩

⎫⎬
⎭≃E

∑M
l=M−�L(k)+1

n
(k)
l, i

( )H
U (k)

P, i

( )H
DRV(k)

i m(k)
i

( )−1
+ m(k)

i

( )−1
V

(k)
i DRU (k)

P, i

( )
n
(k)
l, i

⎛
⎝

⎞
⎠

2⎧⎨
⎩

⎫⎬
⎭ (46)

≃
∑M

l=M−�L(k)+1

2s2
n

PLs
< l(k)l, i n(k)l, i

( )H
m(k)
i

( )−1
V(k)

i

( )H
V(k)

i m(k)
i

( )−1
n(k)l, i

{ }
(47)

E
∂2G(k)

1
∂j2

{ }
≃−

∑M
l=M−�L(k)+1

2< l(k)l, i n
(k)
l, i

( )H
m(k)
i

( )−1
V

(k)
i

( )H∂L(k)
i

∂j
U (k)

P, i m(k)
i

( )−1
n
(k)
l, i

{ }
(49)

MSEML, LB {j
(k)} = s2

n/2PLs
( )

∑M
l=M−�L(k)+1

l(k)l, i n
(k)
l, i

( )H
m(k)
i

( )−1
V

(k)
i

( )H
V

(k)
i m(k)

i

( )−1
n
(k)
l, i

(50)
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First, as expected, ESPRIT has the advantage of
insensitivity to the value of L(k), whereas both GSSE and
GMLE suffer from the performance degradation as the
multipath number increases when L(k)≤ 8, k = 3, 4, which
coincides with the observations in [15]. It is seen that,
GMLE always behaves better than GSSE when L(k) (k = 3,
4) are increased from 1 to 16, especially when L(k) (k = 3,
4) are around 8. Moreover, we observe that the performance
of GMLE is gradually degraded when L(k) is increased from
1 to 8 and is basically unchanged when L(k) becomes even
larger. Thus, this indicates GMLE also has the advantage of
being more insensitive to L(k) as compared with GSSE.
Second and more interestingly, we can observe that GSSE

behaves worst when L(k) (k = 3, 4) equal 8 and its performance
can be improved when L(k) (k = 3, 4) become larger than
8. This may be explained as follows. When L(k)≥M, the
increase of multipath number would improve the
non-singularity of the correlation matrices R(k)

�z�z statistically, k =
3, 4, which is beneficial to the estimation performance of GSSE.
Third, it is seen that, the simulation results of GMLE also

match the corresponding analytical curves of lower bound,
which indicates the correctness of theoretical analysis.

In Fig. 3, we show the performance comparison between
GSSE and GMLE as a function of SNR with different
configurations of multipath numbers. The comparison
clearly demonstrates the superiority of GMLE as compared
with GSSE. We also see that ESPRIT achieves better
performance than both GSSE and GMLE in the investigated
scenarios. However, we should note that the system is fully
loaded in both GSSE and GMLE, whereas one subchannel
should be reserved in ESPRIT. Thus, our estimators support
higher bandwidth efficiency as compared with ESPRIT.
Next, we show the performance comparison among the

different estimators as Ls increases from 2 to 8 in Fig. 4.
The SNR is assumed to be 20 dB in this example. The
comparison again indicates the superiority of GMLE as
compared with GSSE. It is also seen that both GMLE and
ESPRIT suffer from only slight performance degradation
when fewer block durations are available.

Fig. 5 shows the QPSK and 16QAM symbol error rate
(SER) performance comparison between the proposed
GMLE and ESPRIT estimator. We assume the
multi-antenna receiver employs the maximal-ratio
combining decoder after the CFO compensation. The
channel responses are assumed to be known to the receiver.

Fig. 2 CFO estimation RMSE performance of GSSE and GMLE
against L(k), k = 3, 4 (SNR = 20 dB)

Fig. 3 CFO RMSE performance comparison between GSSE and
GMLE as a function of SNR

Fig. 4 CFO RMSE performance comparison between GSSE and
GMLE as a function of Ls

Fig. 5 SER performance comparison as a function of SNR
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We consider two block durations are adopted in this example.
The results with perfect CFO estimation are also plotted as the
benchmark, referred to as ‘genie-aided’ in this figure. We can
observe the performance gap between our method and the
genie-aided results. However, it is seen that the proposed
method can achieve comparable SER performance with the
ESPRIT estimator.

7 Conclusions

We have developed two generalised blind CFO estimators for
the interleaved OFDMA uplink with multi-antenna receiver.
We consider the more general scenarios that the number of
multipaths from some users may be larger than the number
of antennas at the receiver. We have found that, as long as
the numbers of multipaths from two of the users are smaller
than the number of antennas at the receiver, the proposed
estimators support fully loaded transmissions. Both the
theoretical and numeral results are provided, which
corroborate the proposed studies.

8 Acknowledgments

This work is supported by the National Natural Science
Foundation of China under grants no. 61302069, 61071125,
61071216, 61172093, 61172092 and 61102081, China
Postdoctoral Science Foundation grant no. 2013M530425,
and Shaanxi Province Postdoctoral Research Funding.

9 References

1 Wong, C.Y., Cheng, R.S., Lataief, K.B., Murch, R.D.: ‘Multiuser
OFDM with adaptive subcarrier, bit, and power allocation’, IEEE
J. Sel. Areas Commun., 1999, 17, (10), pp. 1747–1758

2 Fa, R., Zhang, L.: ‘Generalised grouped minimum mean-squared
error-based multi-stage interference cancellation scheme for
orthogonal frequency division multiple access uplink systems with
carrier frequency offsets’, IET Commun., 2013, 7, (7), pp. 685–695

3 Tureli, U., Liu, H., Zoltowski, M.D.: ‘OFDM blind carrier frequency
offset estimation: ESPRIT’, IEEE Trans. Commun., 2001, 48, (9),
pp. 1459–1461

4 Zhang, W., Yin, Q.: ‘Blind maximum likelihood carrier frequency offset
estimation for OFDM with multi-antenna receiver’, IEEE Trans. Signal
Process., 2013, 61, (9), pp. 2295–2307

5 Sun, P., Zhang, L.: ‘Low complexity pilot aided frequency
synchronization for OFDMA uplink transmission’, IEEE Trans. Wirel.
Commun., 2009, 8, (7), pp. 3758–3769

6 Wang, Z., Xin, Y., Mathew, G.: ‘Iterative carrier-frequency offset
estimation for generalized OFDMA uplink transmission’, IEEE Trans.
Wirel. Commun., 2009, 8, (3), pp. 1373–1383

7 Barbarossa, S., Pompili, M., Giannakis, G.B.: ‘Channel-independent
synchronization of orthogonal frequency division multiple access
systems’, IEEE J. Sel. Areas Commun., 2002, 20, (2), pp. 474–486

8 Yao, Y., Giannakis, G.B.: ‘Blind carrier frequency offset estimation in
SISO, MIMO, and multiuser OFDM systems’, IEEE Trans. Commun.,
2005, 53, (1), pp. 173–183

9 Cao, Z., Tureli, U., Yao, Y.-D.: ‘Deterministic multiuser
carrier-frequency offset estimation for interleaved OFDMA uplink’,
IEEE Trans. Commun., 2004, 52, (9), pp. 1585–1594

10 Lee, J., Lee, S., Band, K.-J., Cha, S., Hong, D.: ‘Carrier frequency offset
estimation using ESPRIT for interleaved OFDMA uplink systems’,
IEEE Trans. Veh. Tech., 2007, 56, (9), pp. 3227–3231

11 Hisieh, H.T., Wu, W.R.: ‘Blind maximum-likelihood carrier-frequency
offset estimation for interleaved OFDMA uplink systems’, IEEE
Trans. Veh. Technol., 2011, 60, (1), pp. 160–173

12 Zhu, Y., Letaief, K.B.: ‘CFO estimation and compensation in single
carrier interleaved FDMA systems’. Proc. IEEE GLOBECOM,
Honolulu, USA, November 2009

13 Wu, K.H., Fang, W.H., Chen, Y.T.: ‘Joint carrier frequency offset and
direction of arrival estimation via hierarchical ESPRIT for interleaved
OFDMA/SDMA uplink systems’. Proc. IEEE VTC Spring, Taipei,
Taiwan, May 2010

14 Du, R., Wang, J., Liu, F.: ‘Unitary-ESPRIT algorithm for carrier
frequency offset estimation for interleaved OFDMA uplink systems’,
Wirel. Pers. Commun., 2013, 69, pp. 1615–1627

15 Zhang, W., Gao, F., Yin, Q., Nallanathan, A.: ‘Blind carrier frequency
offset estimation for interleaved OFDMA uplink’, IEEE Trans. Signal
Process., 2012, 60, (7), pp. 3616–3627

16 Schmidt, R.O.: ‘Multiple emitter location and signal parameter
estimation’. Proc. RADC Spectral Estimation Workshop, New York,
1979, pp. 243–258

17 Ziskind, I., Wax, M.: ‘Maximum likelihood localization of multiple
sources by alternating projection’, IEEE Trans. Acoust. Speech Signal
Process., 1988, 36, (10), pp. 1553–1560

18 Rao, B.D., Hari, K.V.S.: ‘Effect of spatial smoothing on the
performance of MUSIC and the minimum-norm method’, IEE Proc.,
1990, 137, (6), pp. 449–458

10 Appendix

In the following, we omit the parameterised notation (ξ) for
presentation clarity. The first derivative of G(k)

i with respect
to ξ is expressed as

∂G(k)
i

∂j
=

∑M
l=M−�L(k)+1

n(k)l, i

( )H∂J(k)
i

∂j
n(k)l, i (51)

where

∂J
(k)
i

∂j
= ∂U (k)

P, i

∂j

( )H

RU (k)
P, i + U (k)

P, i

( )H
R
∂U (k)

P, i

∂j

We have

∂e(k)l, i

∂j
=
∑M
j=l

e(k)j, i
e(k)j, i

( )H
∂L

(k)
i /∂j

( )
e(k)l, i

m(k)
l, i − m(k)

j, i

+ IMK − U (k)
P, i U (k)

P, i

( )H( ) ∂L(k)
i /∂j

( )
e(k)l, i

m(k)
l, i

(52)

Consequently, we have

∂U (k)
P, i

∂j
= U (k)

P, iE
(k)
i +V(k)

i m(k)
i

( )−1

where m(k)
i is defined in (43) and E(k)

i [ CM×M is constructed
as follows. We have

E(k)
i (l, j) =

e(k)j, i

( )H
∂L(k)

i /∂j
( )

e(k)l, i

l(k)j, i − l(k)l, i

when l≠ j, and E(k)
i (l, l) = 0, l = 1, 2, . . . , M . Hence, (51)

can be rewritten as (see (53) in next page)

Bearing in mind that E(k)
i + E(k)

i

( )H
= 0, we simplify (53)

into

∂G(k)
i

∂j
=

∑M
l=M−�L(k)+1

n
(k)
l, i

( )H
Q

(k)
i n

(k)
l, i (54)

where Q
(k)
i = S

(k)
i m(k)

i

( )−1
+ m(k)

i

( )−1
S
(k)
i

( )H
and S

(k)
i =

U (k)
P, i

( )H
RV(k)

i . Then, we arrive at (38).
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Next, based on (51), the second derivative of G(k)
i can be

given by

∂2G(k)
i

∂j2
=

∑M
l=M−�L(k)+1

n(k)l, i

( )H∂Q(k)
i

∂j
n(k)l, i

+ (nl, i)
HQ

(k)
i

∂n(k)l, i

∂j
+ ∂n(k)l, i

∂j

( )H

Q
(k)
i n(k)l, i

(55)

We obtain (see (56))

where

∂S
(k)
i

∂j
=

∂ U (k)
P, i

( )H
∂j

⎛
⎜⎝

⎞
⎟⎠

H

RV(k)
i + U (k)

P, i

( )H
R
∂V

(k)
i

∂j

= H
(k)
i + S(k)

i E(k)
i + E(k)

i

( )H
S(k)
i (57)

(see (58 and 59))

By substituting (57) into (56), we have (see (60))

where

∂(m(k)
i )−1

∂j = −((m(k)
i )−1(U (k)

P, i)
H ∂L

(k)
i

∂j U (k)
P, i(m

(k)
i )−1) ◦ IM

Moreover, note that (see equation at the bottom of the page)

Then, there holds

n
(k)
l, i

( )H
Q

(k)
i

∂n
(k)
l, i

∂j
=
∑M
z=l

n
(k)
l, i

( )H
Q

(k)
i n

(k)
z, i n

(k)
z, i

( )H
E(k)
i

( )H
n
(k)
l, i

+
(n(k)l, i )

HQ
(k)
i n(k)z, i

∣∣∣ ∣∣∣2
l(k)l, i − l(k)z, i

(61)

On the other side, we obtain (see (62) in next page)

Substituting both (60) and (62) into (55), we arrive at

∂G(k)
i

∂j
=

∑M
l=M−�L(k)+1

(n(k)l, i

( )H
U (k)

P, i

( )H
RV(k)

i m(k)
i

( )−1
n
(k)
l, i + n

(k)
l, i

( )H
m(k)
i

( )−1
V

(k)
i

( )H
RU (k)

P, in
(k)
l, i

+ l(k)l, i n(k)l, i

( )H
E(k)
i + E(k)

i

( )H( )
n(k)l, i

(53)

n(k)l, i

( )H∂Q(k)
i

∂j
n(k)l, i = 2< n(k)l, i

( )H ∂S(k)
i

∂j

( )
m(k)
i

( )−1
n(k)l, i + n(k)l, iS

(k)
i

∂ m(k)
i

( )−1

∂j
n(k)l, i

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭ (56)

H
(k)
i = m(k)

i

( )−1
V

(k)
i

( )H
RV(k)

i + U (k)
P, i

( )H
R I − U (k)

P, i U (k)
P, i

( )H( )
∂L

(k)
i

∂j
V

(k)
i (m(k)

i )−1 + ∂2L
(k)
i

∂j2
U (k)

P, i

( )

− S
(k)
i m(k)

i

( )−1
U (k)

P, i

( )H
+J

(k)
i (m(k)

i )−1 V
(k)
i

( )H( )
∂L

(k)
i

∂j
U (k)

P, i

(58)

∂2L
(k)
i

∂j2
= P⊥

B v̂|k, i
( )

2DG(k)(G(k))HDH + DDG(k)(G(k))H + G(k)(G(k))HDHDH( )
P⊥
B v̂|k, i
( )

(59)

n(k)l, i

( )H∂Q(k)
i

∂j
n(k)l, i = 2< n(k)l, i

( )H
H

(k)
i (m(k)

i )−1n(k)l, i + n(k)l, iS
(k)
i

∂ m(k)
i

( )−1

∂j
n(k)l, i

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

+ 2< n
(k)
l, i

( )H
S
(k)
i E(k)

i + E(k)
i

( )H
S
(k)
i

( )
m(k)
i

( )−1
n
(k)
l, i

{ } (60)

n(k)l, i

( )H
Q

(k)
i

∂n(k)l, i

∂j
=
∑M
z=l

n(k)l, i

( )H
Q

(k)
i n(k)z, i

n
(k)
z, i

( )H
∂J

(k)
i /∂j

( )
n
(k)
l, i

l(k)l, i − l(k)z, i

n(k)z

( )H∂J(k)
i

∂j
n(k)l, i = l(k)l, i − l(k)z, i

( )
n(k)z, i

( )H
E(k)
i

( )H
n(k)l, i + n(k)z, i

( )H
Q

(k)
i n(k)l, i
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(see (63))

Note that (see equation at the bottom of the page)

where

M (k)
i = m(k)

i

( )−1
U (k)

P, i

( )H
∂L(k)

i /∂j
( )

U (k)
P, i m(k)

i

( )−1
( )
◦ (1M×1 − IM )

Then, we can rewrite ∂2G(k)
i /∂j2

( )
as (see (64))

By substituting H
(k)
i from (58) into (64), we can arrive at (39)

after some simple manipulations.
This completes the proof.

∑M
l=M−�L(k)+1

n(k)l, i

( )H
Q

(k)
i

∂n(k)l, i

∂j
+ ∂n(k)l, i

∂j

( )H

Q
(k)
i n(k)l, i

=
∑M

l=M−�L(k)+1

∑M−�L(k)

z=1

2
n
(k)
l, i

( )H
Q

(k)
i n

(k)
z, i

∣∣∣∣
∣∣∣∣2

l(k)l, i − l(k)z, i

+ 2< n
(k)
l, i

( )H
Q

(k)
i E(k)

i

( )H
n
(k)
l, i

{ }⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

(62)

∂2G(k)
i

∂j2
=

∑M
l=M−�L(k)+1
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( )H
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(k)
i m(k)

i
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i

∂ m(k)
i

( )−1

∂j
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⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

+ 2< n(k)l, i
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i
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i
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i
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i
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{ }

+
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∣∣∣ ∣∣∣2
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(63)
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S(k)
i E(k)
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i
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( )H
Q

(k)
i E(k)

i
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{ }
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S(k)
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i
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i
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i
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{ }
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i
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=
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i
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i
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i
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