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Abstract: This paper deals with timing jitter reduction in the timing recovery loop of a digital
QAM receiver. The main contribution, which is derived analytically, is an economical prefilter
to reduce the timing jitter in timing recovery loops containing either the early–late or the
Gardner timing-error detector (TED). The proposed prefilter has the advantage of being an infinite
impulse response filter that is placed inside the TED and runs at the symbol rate. For small roll off
factors, it is shown with a computer simulation that a single-pole filter placed inside either the
early–late or the Gardner detector is quite effective in reducing the timing jitter.

1 Introduction

Timing recovery is a critical component in a quadrature
amplitude modulation (QAM) receiver. In a digital QAM
receiver, the signal is typically sampled, digitised and
down-converted to baseband before it is synchronised. In
the synchronisation process, the signal is resampled [1] so
that a sample point coincides with the decision time. A
timing-error detector (TED) [2] is used to estimate the
timing offset, which corresponds to the difference in time
between the nearest sample point and the decision time.
The TED first renders the baseband signal to produce a

timing signal, which holds the timing information.
Normally, the TED squares the output of the matched
filter to produce the timing signal [3, 4]. It is shown in [4]
that the ensemble average of the squared signal has a con-
stant term and a sinusoid with frequency equal to the
symbol rate. It is also shown that the phase of the sinusoid
depends solely on the timing offset. The TED then generates
timing offset estimates from the timing signal.
Several algorithms exist to generate timing offset esti-

mates. The Oerder and Meyr algorithm computes the
Fourier coefficient for the component of the timing signal
at frequency 1/T, where 1/T denotes the symbol rate, to
estimate the timing offset [5]. This algorithm, which uses
four samples per symbol, is computationally more
complex than algorithms that use two samples per
symbol. Algorithms that take two samples per symbol are
the objects of this paper.
The most common two-sample-per-symbol algorithms

are the early–late [6, 7] and the Gardner [8] algorithms.
Both algorithms operate on a timing signal produced by
squaring.
The problem with the early–late and Gardner TEDs is

that their output is quite noisy. The timing signal exhibits
strong amplitude and phase jitters because of the random

nature of the QAM data [9] and the channel noise. Noise
at the output of the detector originating from the random
nature of the data is often referred to as self-noise. This is
the dominant noise. The self-noise introduces timing jitter
in the timing recovery loop. Most of this jitter can be
removed by operating the feedback loop with a small loop
bandwidth (e.g. about 1% of the symbol rate). Further
timing jitter reduction can be obtained by prefiltering the
input to the timing detector [4]. This technique is illustrated
in Fig. 1a. The prefilter is placed after the matched filter and
before the resampler of the timing recovery loop containing
the TED. The prefilter reshapes the QAM signal by introdu-
cing regular zero-crossings halfway between symbols. This
greatly reduces the self-noise at the output of the detector;
however, the QAM signal is distorted by this prefiltering
operation. As shown in Fig. 1a, a second resampler is
required to recover the data.
The prefilter [4] is a bandpass version of the matched

filter which makes it a long finite impulse response (FIR)
filter. It is assumed that the matched filter has a square-root
raised cosine frequency response with arbitrary roll off
factor, r. D’Andrea showed that the self-noise completely
vanished for the Gardnerþ prefilter combination after
timing had been acquired [10]. This result was obtained
assuming no other source of noise in the timing recovery
loop such as additive white Gaussian noise (AWGN). In a
later publication [11], D’Andrea recognised that the prefilter
was suboptimum in the presence of Gaussian noise and
suggested a way to iteratively refine the coefficients of the
filter to obtain better overall performance. D’Andrea also
suggested in [11] that a shorter suboptimal prefilter that
allowed some self-noise was more practical.
An approach different from D’Andrea’s is taken to reveal

an economical suboptimum filter that can be used to miti-
gate the self-noise produced by both the early–late and
the Gardner detectors. Here, the term economical means
less complex (i.e. less expensive to build). An analysis of
the early–late algorithm reveals that two simple high-pass
filters can be placed inside the early–late detector to signifi-
cantly reduce the self-noise. The proposed structure is
drawn in Fig. 1b. The high-pass filters are placed inside
the TED in the timing recovery loop. Placing the filter
inside the loop eliminates the need for a second resampler.
The high-pass filters do not require a linear phase response
and therefore can be infinite impulse response (IIR) filters.
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Furthermore, the filters run at the symbol rate, as opposed to
the sampling rate.
The Gardner detector can be viewed as an early–late

detector with a built-in prefilter [8]. The high-pass filters
devised for the early–late detector can also be placed
inside the Gardner detector to reduce the self-noise.
Simulation results are given for the two structures shown
in Fig. 1 with both the early–late and the Gardner detectors.

2 Early–late algorithm analysis

In the early–late algorithm, one sample is taken prior to the
decision sample (early sample) and the other after the
decision sample (late sample). The timing offset at
symbol n is estimated with jx(nT þ D þ 1T )j2�
jx(nT � D þ 1T )j2, where D specifies the difference in
time between the decision sample and the early/late
samples (e.g. D ¼ 0.25T in a system sampled at four
samples per symbol), 1T is a real variable in the interval
[20.5T, þ0.5T ] which denotes the timing offset, nT is the
decision time for symbol n and x(t) is the underlying base-
band continuous-time QAM signal at the output of the
matched filter. It is a complex signal equal to
xI(t)þ j � xQ(t), where xI(t) and xQ(t) are the respective
in-phase and quadrature components of the baseband signal.
Critical to the operation of the TED is its input–output

characteristic or S-curve [2]. In the case of the early–late
detector, the S-curve is given by

E{jx(nT þ D þ 1T )j2}� E{jx(nT � D þ 1T )j2} (1)

where Ef.g is the expectation operator.
A frequency-domain expression for E{jx(nT þ 1T )j2} is

derived. This expression reveals that there is a frequency
band in the early and late signals that contains no timing
information. This means that a filter can be used to
remove the noise in that band without affecting the S-curve.

In the derivation that follows, 1T is treated as a constant.
In terms of Fig. 1, this mean that the feedback to the resam-
pler is opened and the input controlling the resampler is held
constant so that the timing offset is constant. Also, the
early–late detector is quite insensitive to a small offset in
the carrier frequency. This is a necessary quality as the
fine tuning (correction of a small carrier offset) is often
done after timing recovery. For the analysis, it is assumed
that the carrier frequency offset has no significant effect
on the timing detector.
Expressions for the digital signals, xI(nT þ 1T ) and xQ(n

T þ 1T ), are required to determine an expression for
E{jx(nT þ 1T )j2}. The continuous time signal, xI(t), can
be expressed as [10]

xI (t) ¼
Xþ1

i¼�1

dI (i)h(t � iT ; r) (2)

where h(t; r) is the impulse response of a raised cosine filter,
dI(i) is the data sequence for the in-phase component of the
QAM signal. A similar expression is obtained for xQ(t),
where the data sequence is denoted by dQ(i). It is pointed
out that xI(t) and xQ(t) are normally corrupted with
AWGN. The derivation that follows only considers self-
noise. The Gaussian noise has been neglected.
Using (2) with t ¼ (n þ 1)T and a similar equation for

xQ((n þ 1)T ), E{jx((n þ 1)T )j2} can be written as

E{jx((n þ 1)T )j2}

¼ E
Xþ1

i¼�1

dI (i)h((n � i þ 1)T ; r)

" #2
8<
:

9=
;

þ E
Xþ1

i¼�1

dI (Q)h((n � i þ 1)T ; r)

" #2
8<
:

9=
; (3)

For a constant 1, xI ((n þ 1)T ) and xQ((n þ 1)T ) are station-
ary sequences [2]. Therefore the average power in these
sequences can be expressed as an expectation for any
value of n. Setting n ¼ 0 in (3) and expanding the sums
yields

E{jx((n þ 1)T )j2} ¼
Xþ1

i¼�1

Xþ1

l¼�1

[E{dI (i)dI (l)}

þ E{dQ(i)dQ(l)}]

� h((� i þ 1)T ; r)h((� l þ 1)T ; r)

(4)

Assuming that dI(i) and dQ(i) are zero mean, independent
sequences with the same variance, (4) simplifies to

E{jx((n þ 1)T )j2} ¼ 2s2
Xþ1

i¼�1

h
2((i þ 1)T ; r) (5)

where s2 is the variance of dI(i) as well as dQ(i).
From Parseval’s theorem [12], with the integration over

2p beginning at 2(12 r)p

E{jx((n þ 1)T )j2} ¼
2s2

2p

ð(1þr)p

�(1�r)p

jH(e jv; r, 1T )j2 dv ð6Þ

where H(e jv; r, 1T ) is the discrete-time Fourier transform
(DTFT) of h((n þ 1)T; r). A closed form expression for

Fig. 1 Timing recovery circuits for a digital QAM receiver

a Structure that utilises a prefilter
b Structure that utilises the proposed high-pass filters
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H(e jv; r, 1T ) is derived in the Appendix. Using (11) in the
Appendix, the integrand in (6) can be expressed as

jH(e jv; r, 1T )j2

¼

1, v � �(1� r)p

v � (1� r)p

cos2 (p1)þ sin2 (p1)

� sin2
p

2r

v

p
� 1

� �� �
, v � (1� r)p

v � (1þ r)p

8>>>>>><
>>>>>>:

(7)

Clearly from (7), jH(e jv; r, 1T )j2 does not depend on T and
only depends on 1 in the interval (1� r)p � v �

(1þ r)p rad/sample. The latter means that suppressing the
early and late signals in the frequency band from
2(12 r)p to (12 r)p rad/sample does not remove
timing information. It can be shown using (1), (6) and (7)
that the S-curve does not change if jH(e jv; r, 1T )j2 is set
to 0 for �(1� r)p � v � (1� r)p rad/sample.
From (7), the early and late signals, x(nT � D þ 1T ) and

x(nT þ D þ 1T ), can be filtered with a high-pass filter with
passband corner at (12 r)p rad/sample without removing
timing information. Two high-pass filters are required,
one for the early signal and one for the late signal. The high-
pass filters do not require a linear phase response if they run
at the sampling rate, since from (6), only the magnitude at
the output of the high-pass filters is used in the early–late
detection scheme.
A single-pole filter is an effective high-pass filter for

small bandwidths. Since the required bandwidth is r, a
single-pole filer is practical for small values of r. Two iden-
tical high-pass filters are required to process the early
signal: one for the in-phase signal and one for the quadra-
ture signal. Two more are required for the late signal.
Therefore a total of four single-pole high-pass filters are
needed. Fig. 2 shows where the filters are placed for both

the early–late and Gardner detectors. Only the ‘in-phase’
circuits are shown.

3 Performance

The performances of both the early–late and Gardner
timing detectors were evaluated in three different configur-
ations using Simulink/Matlab models. In the first configur-
ation, the detectors were simulated in their conventional
form (e.g. no prefilter and no high-pass filters). In the
second configuration, the proposed single-pole high-pass
filters were placed in the loop (see Fig. 2) in accordance
with the structure shown in Fig. 1b. In the third configur-
ation, the detectors were simulated with a FIR prefilter
placed in front of the resampler but without high-pass
filters in the loop. The structure of the third configuration
is shown in Fig. 1a. The FIR for the prefilter was that of
D’Andrea [10] and is referred to as D’Andrea’s prefilter.
D’Andrea’s prefilter was simulated with an 81 tap FIR
filter that was a least mean square fit to the frequency
response of that filter given in [10].
The timing recovery loop containing the timing detector

(see Fig. 1) was simulated with a critically damped phase-
locked loop with a closed-loop bandwidth of 1.25% of the
symbol rate. Such a loop bandwidth was obtained by
placing the pole of the loop filter at z ¼ 0.82 and setting
the loop gain to (1� 0:82

p
)2=g0(0), where g0(0) is the

slope of the S-curve detector when 1T ¼ 0. The S-curve
slope was determined for both the early–late and Gardner
detectors with a computer simulation.
The operation of the timing recovery loop is as follows.

The TED output is filtered by the loop filter and then used
to control the resampler. The closed-loop system forces
the resampler to sample at nearly the correct time. There
is some fluctuation, referred to as timing jitter, because of
self-noise produced by the TED.
The performance of the timing detector was evaluated by

measuring the variance of the timing jitter in the resampled
signal after the loop reached steady state. The resampler
was an interpolation filter of length 30 samples, which
was a truncated version of the impulse response [13],
hr(t) ¼ (sin(pt/T ))/(pt/T ).
A digital 64QAM signal of length 16 000 symbols was

generated with four samples per symbol. The roll off
factor was r ¼ 0.1. The 64QAM signal was corrupted
with AWGN, the level of which was determined by the
operating Eb/N0, where Eb is the signal energy in a bit
and N0 is the one-sided spectral density constant of the
noise. The ratio, Eb/N0, was varied in 2 dB steps from 0
to 20 dB. The QAM signal was generated with no timing
offset. A step function timing offset of 0.25T was introduced
at the time of the 1000th symbol to strain the detector. The
timing error of the resampled signal was recorded. Timing
jitter was estimated from the data obtained after the loop
reached steady state.
The timing jitter measurements were first performed with

the ‘bare’ detectors in the loop (first configuration). The
single-pole high-pass filters were then inserted in the loop
to simulate the second configuration. The pole of the high-
pass filters was placed at the same distance from the unit
circle as the pole of the loop filter (i.e. at z ¼ 20.82). The
single high-pass filters are not ideal, which means that
some timing information is lost in the filtering. This loss
was compensated by increasing the loop gain in proportion
to the decrease in the slope of the S-curve.
Curves of tracking mode timing jitter variances against

Eb/N0 are shown in Fig. 3 for the three configurations.
Six curves are plotted: three are associated with the

Fig. 2 Early–late and Gardner detectors with high-pass filters

a Early–lack detector
b Gardner detector
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early–late detector, three are associated with the Gardner
detector. The three curves associated with the early–late
detector have data points shown with a square. The three
curves associated with the Gardner detector have data
points shown with a diamond. The dotted line marked
with squares, which is the top curve, is the performance
of the ‘bare’ early–late detector (first configuration). It is
the noisiest circuit. At low signal-to-noise ratios, the
‘bare’ early–late detector is prone to symbol slips. A
symbol slip did occur in one of the simulations, which
caused the kink in the curve at Eb/N0 ¼ 4 dB. The solid
line marked with squares shows the performance of the
early–late detector augmented with the single-pole high-
pass filters (second configuration). The dashed line marked
with squares shows the performance when D’Andrea’s pre-
filter is used (third configuration). The three curves for the
Gardner detector illustrate its performance in the same
three scenarios used for the early–late detector.
From these curves, it can be seen that the ‘bare’ Gardner

detector outperforms the ‘bare’ early–late detector. With
the high-pass filters in the detectors, the performances of
both detectors significantly improve. In this case, the
early–late detector has a very slight advantage. With

D’Andrea’s prefilter, the performances of both detectors
are further improved. However, the performance improve-
ment comes at the cost of a long FIR prefilter clocked at
the sampling rate and an additional resampler for each of
the in-phase and quadrature signal streams.
Bit-error-rate (BER) curves for 64QAM are plotted

against Eb/N0 in Fig. 4 for Gardnerþ high-pass filter and
GardnerþD’Andrea’s prefilter along with the theoretical
BER curve. A closed-loop bandwidth of 0.25% of the
symbol rate was used to generate the BER curves. To
obtain this bandwidth, the pole of the loop filter was
placed at z ¼ 0.96. The pole of the high-pass filters was
placed at z ¼ 20.96. The performance degradation for the
range shown in Fig. 4 is less than 0.1 dB for
GardnerþD’Andrea’s prefilter and less than 0.52 dB for
Gardnerþ high-pass filter.

4 Conclusion

An analysis of the early–late algorithm revealed that
the timing information in the early and late signals is in
the frequency band ((12 r)p, (1þ r)p) rad/sample. The
frequency band (2(12 r)p, þ(12 r)p) rad/sample only
contributes self-noise and can be suppressed with a high-
pass IIR filter. For small values of r, a single-pole high-pass
filter is effective. This low-cost suboptimum filter, which is
placed inside the loop, does not affect the stability of the
loop, but significantly reduces the timing jitter in
steady-state operation. For a closed-loop bandwidth of
1.25% of a symbol and a signal-to-noise ratio, Eb/N0, of
20 dB, the addition of the single-pole filters reduces the
variance of the timing jitter by 8 dB.
Simulation also shows that the Gardner detector out-

performs the early–late detector when they are used without
enhancing filters, but looses its advantage when either the
single-pole high-pass filter or D’Andrea’s prefilter is used.
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7 Appendix

The Fourier transform of h(t; r) is the raised cosine response
denoted by HA( jV; r). The Fourier transform of h(t þ 1T; r)
is given by [14]

HA(jV; r, 1T ) ¼ HA(jV; r)e jV1T (8)

¼

Te jV1T , jVT j � (1� r)p

T

2
1þ cos

p

2r

jVT j

p

���
þr � 1

���
e jV1T , jVT j � (1� r)p

jVT j � (1þ r)p

0, jVT j � (1þ r)p

8>>>>>>>><
>>>>>>>>:

(9)

From HA( jV; r, 1T ) the Nyquist frequency is (r þ 1)/2T.
Since r is greater than zero, the symbol rate, 1/T, is
less than the Nyquist rate, so sampling h(t þ 1T; r) at
the symbol rate causes aliasing in the frequency domain.
The DTFT of h((k þ 1)T; r) can be defined for any 2p inter-
val of v, where v ¼ VT. For 2(12 r)p , v � (1þ r)p,

it is given by

H(e jv; r, 1T ) ¼
1

T

Xþ1

k¼�1

HA j
v� 2pk

T

� �
; r, 1T

� �

Since HA( jV; r, 1T ) is band limited to jVj , 2p/T, then

H(e jv; r, 1T ) ¼
1

T
(HA(e

jv=T ; r, 1T )

þ HA(e
j(v�2p)=T ; r, 1T )) (10)

for 2(12 r)p , v � (1þ r)p. The functions HA(e
jv/T; r,

1T ) and HA(e
j(v22p)/T; r, 1T ) overlap in the region

((12 r) p,(1þ r) p). Using (9) and (10) and trigonometric
identities cos(a + b) ¼ cos(a)cos(b) + sin(a)sin(b) with
a ¼ p/2r((v/p)2 1) and b ¼ p/(2r) r ¼ p/2, ejp1

þ

e2jp1 ¼ 2cos(p1) and (ejp12 e2jp1)/2 ¼ j sin(p1), the
DTFT of h((k þ 1)T ) can be written as

H(e jv; r, 1T )

¼

e jv1, v . �(1� r)p

v � (1� r)p

e j(v�p)1 cos (p1)
�

�j sin (p1)

� sin
p

2r

v

p
� 1

� �� �i
, v � (1� r)p

v � (1þ r)p

8>>>>>>>>><
>>>>>>>>>:

(11)
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