
Computing (2014) 96:313–353
DOI 10.1007/s00607-013-0340-2

Enforcing spatio-temporal access control in mobile
applications

Ramadan Abdunabi · Wuliang Sun ·
Indrakshi Ray

Received: 30 November 2012 / Accepted: 25 July 2013 / Published online: 21 August 2013
© Springer-Verlag Wien 2013

Abstract Mobile application technology is quickly evolving and being progressively
utilized in the commercial and public sectors. Such applications make use of spatio-
temporal information to provide better services and functionalities. Authorization to
such services often depends on the credentials of the user and also on the location
and time. Although researchers have proposed spatio-temporal access control mod-
els for such applications, not much has been done with respect to enforcement of
spatio-temporal access control. Towards this end, we provide a practical framework
that allows one to enforce spatio-temporal policies in mobile applications. Our policy
enforcement mechanism illustrates the practical viability of spatio-temporal authoriza-
tion models and discusses potential challenges with possible solutions. Specifically,
we propose an architecture for enforcing spatio-temporal access control and demon-
strate its feasibility by developing a prototype. We also provide a number of protocols
for granting and revoking access and formally analyze these protocols using the Alloy
constraint solver to provide assurance that our proposed approach is indeed secure.

Keywords Spatio-temporal access control · Policy enforcement

Mathematics Subject Classification 68N30

R. Abdunabi ·W. Sun · I. Ray (B)
Computer Science Department, Colorado State University, Fort Collins, CO 80523, USA
e-mail: iray@cs.colostate.edu

R. Abdunabi
e-mail: rabdunab@cs.colostate.edu

W. Sun
e-mail: sunwl@cs.colostate.edu

123

314 R. Abdunabi et al.

1 Introduction

The growth of mobile device technology is spawning many new applications that
make use of location information. One such example application is the use of global
positioning systems (GPS) [47] to alert drivers for exceeding the speed limit in school
zones [49]. A second example is in the area of mobile-healthcare that detects and
alerts medical professionals of a patient’s fall [13]. We can think of a situation in
which a rogue user gets a hold of a military personnel’s hand held device and use it
in an unclassified environment to launch a missile. Although mobile applications can
benefit various application domains including e-commerce, electronic government,
healthcare, and power-control systems, security issues must be addressed before such
systems can be widely deployed. Mobile devices may fall into the hands of attackers
who may cause irreparable damage if adequate protection is not provided. Authenti-
cation and access control provide the first line of defense against any security attack.
Existing access control mechanisms do not take user’s mobility into account while
providing authorization to resources. Thus, existing access control models cannot
automatically disable access to a top secret resource when a user leaves the room.
Spatio-temporal access control models are needed that determine access based on
user’s credential, location of the user and time of access.

Researchers have extended traditional role-based access control (RBAC) [41] to
provide spatio-temporal access control [24,33,46]. In these models, access control
depends on three factors: role of the user, the time and location of access. Most of the
works on spatio-temporal RBAC associate two entities, namely, location and time with
users, roles, and permissions. The location and time associated with a user correspond
to his current time and his present location. The location and time associated with a role
designate when and where the role can be activated. The location and time associated
with a permission signify when and where a permission can be invoked. In addition,
researchers have also suggested how spatio-temporal constraints can be associated
with role hierarchy (RH) and separation of duties (SoD) constraints. Furthermore, a
number of studies have formally analyzed spatio-temporal RBAC policies [3,34].

Very little research appears in addressing the challenges raised by enforcing spatio-
temporal RBAC policies in practical applications. The enforcement mechanism needs
to integrate the access control component into a typical application architecture. Access
control models traditionally define policies from an abstract perspective and enforce-
ment mechanisms describe how the policies are actually implemented in the context
of the application [42]. The enforcement of spatio-temporal access control models
in mobile applications introduces a number of interesting implementation challenges
that have not been addressed successfully yet. Verifying the time and location of a
mobile user while he is accessing some authorized resources is non-trivial.

The research work described in the paper focuses on addressing a primary problem
of enforcing spatio-temporal access controls in a mobile environment. We demonstrate
our ideas through a very simple spatio-temporal access control model for mobile appli-
cations. We introduce a platform-independent architecture for our spatio-temporal
enforcement mechanism. Our model separates a security policy from the point of use,
and thus makes it possible to be integrated in many applications. We develop a num-
ber of fully automated protocols that securely control the communication exchanges

123

Enforcing spatio-temporal access control in mobile applications 315

for providing and maintaining access to application resources where the user may be
on-the-move.

The protocols for requesting access or maintaining access may be subject to security
breaches. Consequently, they must be analyzed to give assurance that security cannot
be compromised through these protocols. We identify some common threats and dis-
cuss the safeguards that we take to protect against such threats. However, providing
informal assurance for such complex protocols may not be adequate. Formal analysis
must be done to provide assurance of security properties. Manual analysis is tedious
and error-prone. Towards this end, we advocate the use of Alloy [8], which supports
automated analysis, for protocol verification. Alloy is a modeling language capable
of expressing complex structural constraints and behavior. It is supported by an auto-
mated constraint solver called Alloy analyzer that searches instances of the model to
check for satisfaction of system properties. We demonstrate how the protocol can be
modeled and the security properties verified in Alloy.

It is not enough to propose an architecture and a set of protocols for accessing
resources. In order to demonstrate the feasibility of our approach, we develop a proof-
of-concept prototype and show how spatio-temporal policies can be implemented for
a mobile application. We describe the implementation details. We also conduct some
experiments that give the delays incurred for performing authorization checks using
our model.

The remainder of this paper is organized as follows. Section 2 enumerates some
related work. Section 3 formally presents a simple spatio-temporal RBAC model.
Section 4 provides the proposed architecture model. Section 5 introduces the resource
access protocols. Section 6 discusses some potential attacks on our protocol. Section
7 formally analyzes the proposed protocols. Section 8 describes a prototype imple-
mentation and provides some performance results. Section 9 concludes the paper with
pointers to future directions.

2 Related work

RBAC [41] is the de-facto access control model used in the commercial sector. RBAC
is policy-neutral and can be used to express different types of policies [44]. In RBAC,
users are assigned to roles and roles are associated with permissions. In a session,
a user can activate a subset of roles assigned to her. The operations that a user can
perform in a session depend on the roles activated by the user and the permissions
associated with those roles. To simplify role management, roles are organized in the
form of a hierarchy. A senior role may inherit the permissions of a junior role or a
senior role may activate the junior role depending on whether the roles are connected
by permission inheritance hierarchy or role activation hierarchy. In order to prevent
fraud, RBAC allows one to specify separation of duty constraints. Static separation
of duty constraints prevent a user from being assigned to conflicting roles or to a role
being associated with conflicting permissions. Dynamic separation of duty constraints
prevent a user from activating conflicting roles.

Researchers have worked on extending RBAC with time and location. Bertino et al.
[12] proposed a temporal RBAC in which the concept of role enabling and disabling is
introduced. Roles can be enabled or disabled on the basis of temporal constraints. Roles

123

316 R. Abdunabi et al.

can be activated if they are enabled. Joshi et al. proposed a generalized temporal RBAC
(GTRBAC) [26] model that associates temporal constraints with the entities and the
relationships in an RBAC model. Researchers have also extended RBAC using location
information. Hansen and Oleshchuk [15] proposed the spatial RBAC (SRBAC) for
specifying location based access control policies for wireless networks. Bertino et
al. [11] proposed the GEO-RBAC model that allows role activation based on users’
locations and permission-role assignment. Ray et al. [23] proposed a location aware
RBAC model (LRBAC) that incorporates location constraints on user-role activation,
user-role assignment, and permission-role assignment.

The use of both spatial and temporal information for managing access control
has also been investigated by many researchers [3,24,29,33,45,46]. In these mod-
els, spatio-temporal constraints are applied to user-role assignment, permission-role
assignment, and user-role activation. Some of these models also consider the impact
of spatio-temporal constraints on role hierarchy and separation of duty. Various forms
of role-hierarchy and separation of duty constraints have been proposed that are selec-
tively enabled when spatio-temporal constraints are satisfied.

Researchers [3,34] have also investigated the use of Alloy for verifying spatio-
temporal RBAC policies. In order to make the analysis tractable, Alloy requires the
user to scope the problem. The results of the analysis are therefore applicable only
for the scope of the problem being verified. Modeling and analyzing concurrency in
Alloy is non-trivial. Towards this end, researchers [5,43] have investigated alternative
techniques based on coloured Petri Nets and Timed Automata for verifying temporal,
spatio-temporal and real-time RBAC policies. The major challenge in these works is
how to perform the analysis without causing the state explosion problem. However,
previous works do not address issues pertaining to enforcing spatio-temporal models
in a mobile environment; this we do in our current paper.

Enforcement of spatio-temporal RBAC policies has received little attention. Kirk-
patrick and Bertino [37] proposed protocols based on the GEO-RBAC model [11]
which supports spatially-aware role-based access control policy. The authors assume
that a number of location devices are incorporated in known physical spaces to pro-
vide location proof for users. The user presents the location proof together with other
relevant credentials in the access request. First, we do not require location devices to
be installed in given physical spaces and our approach provides more user mobility.
Second, we support the temporary suspension of the user’s access for a certain period
of time when the user is moving out of a valid zone; this feature is not supported
in the work of Kirkpatrick and Bertino. Third, for continuity of access, the authors
work mandates a user to initiate a conformation protocol periodically to prove her
location, even if she does not move. In our event-based approach, access termination
takes place only when user moves out of the valid zone. We are thus able to reduce the
communication overhead. Fourth, we provide a formal verification of our enforcement
mechanism compared with the informal analysis of Kirkpatrick and Bertino. Fifth, we
provide a more modular enforcement mechanism by separating a policy component
from the point of use—this simplifies understanding, analysis, and evolution of the
individual components.

In one of our previous works [40], we proposed a spatio-temporal role-based
access control model for mobile applications and discuss a simple centralized archi-

123

Enforcing spatio-temporal access control in mobile applications 317

tecture for enforcing policies adhering to this model. Our current work extends our
earlier enforcement work in several ways. First, our proposed software architecture
model is based on a distributed environment. Second, we discuss a number of issues
(efficiency, generality) that guided our architectural design. Third, we provide an algo-
rithm for generating an authorization token that is needed to access resources. Fourth,
we develop a threat model to identify possible attacks on our proposed design and
design countermeasures to tackle these attacks. Fifth, we provide a formal analysis
approach to uncover vulnerabilities in the protocol design. We resort to the use of model
finder Alloy that rigorously checks whether some attackers can break our protocol.

Enforcement has also been discussed in the context of XACML (eXtensible Access
Control Markup Language) [31]. In a usage scenario of XACML, a subject sends a
resource access request to the Policy enforcement point (PEP), which is the entity
protecting that resource. The PEP creates a request based on the subject’s credentials
and other relevant information and sends it to the policy decision point (PDP). The
PDP forms a request to the policy information point (PIP) for retrieving information
relevant to that request. Once the PDP has determined the access decision, the decision
is returned to the PEP, which then allows or denies access to the requester. We were
inspired by the XACML principles, but deviated from some recommendations for
reasons of efficiency.

Note that, existing XACML formulation of RBAC policies termed as XACML
RBAC profiles (RB-XACML) [2,38] do not support the impact of spatio-temporal
information on RBAC entities and relations. These RB-XACML profiles only consider
the contextual information associated with subjects making resource access requests.
Associating spatio-temporal information with RBAC components in RB-XACML
profiles is a non-trivial task and there is no clear approach for formally verifying the
modified RB-XACML profiles before deploying such policies.

3 Spatio-temporal access control model

Our spatio-temporal access control is based on RBAC [41]. In RBAC, users are
assigned to roles and roles are associated with permissions. In a session, a user can
activate a subset of roles assigned to her. The operations that a user can perform in
a session depend on the roles activated by the user and the permissions associated
with those roles. To simplify role management, roles are organized in the form of a
hierarchy. A senior role may inherit the permissions of a junior role or a senior role
may activate the junior role depending on whether the roles are connected by per-
mission inheritance hierarchy or role activation hierarchy. In order to prevent fraud,
RBAC allows one to specify separation of duty constraints. Static separation of duty
constraints prevent a user from being assigned to conflicting roles or to a role being
associated with conflicting permissions. Dynamic separation of duty constraints pre-
vent a user from activating conflicting roles.

Figure 1 shows our spatio-temporal RBAC model (STRBAC) which is adapted
from our earlier proposed model [40]. Since the model is not central to this paper, we
only present those aspects that are needed to understand this work. The entire model
specified in the unified modeling language (UML) with object constraint language
(OCL) constraints appears in Appendix C. The model allows one to expresses policies

123

318 R. Abdunabi et al.

Users UA PA

STZones

Time

Location

currentzone

rzones

Spatio-Temporal
Constraints

SoDRH

pzones

Roles

SoD

Permissions

Fig. 1 A spatio-temporal RBAC model

where access depends on the role and location of the user and time of access. We
assume that a location device is attached to a user that transmits his spatial coordinates
at any given point of time. These devices are tamper-proof, so that malicious programs
cannot spoof location or time information. The correct behavior of an application is
ensured by the satisfaction of model predicates.

The essence of STRBAC is to permit access only when a user is in designated
locations at specified times; when the user moves or the time of access expires then
the access is revoked. Although our original model [40] supports spatio-temporal
constraints on user-role assignment, permission-role assignment, user-role activation,
role hierarchy, and separation of duties, we do not consider role hierarchy in this
paper. Note that, adding role hierarchy will not add anything new from the research
perspective, but it will make the presentation more complex. At the heart of our model
is the concept of spatio-temporal zone that is a logical and abstract entity encapsulating
location and time. The spatio-temporal zone zi is represented as a pair: < li , di >

where li represents a spatial component and di represents a temporal one.
The set of spatio-temporal elements that are of interest to a mobile application

is denoted as STZones. Model entities are associated with STZones in order to
define where and when these entities are accessible. It defines a number of func-
tions that associate each model entity with a subset of STZones. The rzones function
(r zones : Roles → 2ST Zones) determines a unique subset of role zones that sig-
nifies the spatio-temporal coordinates where a given role can be assigned or acti-
vated. For example, the role of on-campus students can be activated or assigned
only when the student is on-campus during a given semester. The function pzones
(pzones : Permissions → 2ST Zones) defines the permission zones which are the
set of spatio-temporal coordinates where the permission can be invoked. For exam-
ple, the system administrator is allowed to perform backups at 10 pm on Fridays at
the lab. The currentzone (currentzone : Users → ST Zones) identifies the current
spatio-temporal zone of a user at the access time. The model defines the following
relationships in the context of STZone:

123

Enforcing spatio-temporal access control in mobile applications 319

Role-assignment (UA): In order to activate a role, the user must be assigned to the
role. For example, a student can activate on-campus role during a semester only if
he is assigned the role of an on-campus student. This spatio-temporal assignment
constraint is formalized in this model using an assign Role(u, r, z) predicate. The
predicate assign Role(u, r, z) holds when the current user zone z is one of the zones
in which role r is available. The predicate returns true if user u can be assigned role r
in zone z, if z belongs to the zone in which r can be assigned.

– assign Role(u, r, z)⇒ z = currentzone(u) ∧ z ∈ r zones(r)

Permission-assignment (PA): The predicate assign Perm(r, p, z) expresses the
spatio-temporal constraints on permissions assignment. This predicate is true if zone
z is one of the zones where permission p can be invoked and role r is available.

– assign Perm(r, p, z)⇒ z ∈ (r zones(r) ∩ pzones(p))

Role-activation: In order for a user to access some resource, he needs to activate some
role that gives her the permission to access it. Note that, a user can only activate those
roles that have been assigned to her. A person to enter conference reviews must activate
a program committee member role. She can do this only if she has been assigned the
role of program committee member. In order for a user to activate a role, the predicate
activateRole(u, r, z) should be satisfied. This predicate holds if the current user zone
is z and role r is available to user u in zone z.

– activateRole(u, r, z) ⇒ z = currentzone(u) ∧ r ∈ assigned_roles(u, z),
where assigned_roles(u, z) returns the assigned roles to user u in zone z.

STRBAC model also specifies separation of duties (SoD) principle between roles
and permissions to prevent fraud. SoD constraints are applied to conflicting roles or
permissions in some spatio-temporal zones. We look at two such relations RSoD and
P SoD in this paper. RSoD prevents the same user from activating conflicting roles
in certain spatio-temporal zone. For example, the same person cannot activate both
the student role and the teaching assistant role during a lab session. P SoD prevents
the same role from invoking conflicting permissions in certain spatio-temporal zones.
For example, the same role cannot be given the permission of chairing the session and
presenting the paper in the same session in a conference. These relations are formally
defined as follows:

– RSoD ⊆ Roles × Roles × ST Zones
– P SoD ⊆ Permissions × Permissions × ST Zones

Role SoD: A pair of mutual exclusive roles related by RSoD are not allowed to
be activated by the same individual in some spatio-temporal zones. The constraint is
given below:

– ∀u ∈ Users • (r, r
′
, z) ∈ RSoD ⇒ ¬(r ∈ active_roles(u, z) ∧ r

′ ∈
active_roles(u, z)), where active_roles(u, z) gives the current roles activated
by user u in zone z.

Permission SoD: Mutual exclusive permissions defined by P SoD cannot be assigned
to the same role in some zones. This requirement is expressed is follows:

– ∀r ∈ Roles • (p, p
′
, z) ∈ P SoD ⇒ ¬(p ∈ assigned_perms(r, z) ∧ p′ ∈

assigned_perms(r, z)), where assigned_perms(r, z) defines the set of permis-
sions associated with role r in zone z.

123

320 R. Abdunabi et al.

4 Software architecture model

In this section we describe a platform-independent implementation architecture of our
model, which maps the high-level policy definition to the enforcement mechanism
in mobile applications. The design is developed with aim of having a feasible trade
off between security, functionality, and ease-of-use. In keeping with the principles of
the usage control model UC O NABC [25], we do both pre-authorization and ongo-
ing authorizations. Pre-authorization in UC O NABC requires that the resource access
verification must be performed before the requested resource is accessed. Ongoing
authorizations in UC O NABC requires that a system continue to enforce access con-
trol while the resource is being accessed. In spatio-temporal access control, both of
these require the authenticity of the location and temporal information associated
with the access. Since users are on the move in a mobile environment, this imposes
additional challenges.

4.1 Architectural considerations

We first present some of the issues that we considered before designing our architec-
ture.

• We decoupled the policy components from the application functionality com-
ponents of the architecture. This decoupled approach allows one to change one
component without affecting the other so long as the interface is not changed.
• We wanted to have a distributed architecture for reasons of performance and

minimizing single point of failure. Specifically, different servers are involved in
processing various aspects of the access control requests. Use of multiple servers
and division of tasks among them help in improving the performance. In the sub-
sequent sections, we describe the components of the architecture and demonstrate
how they are distributed.
• We wanted to minimize the involvement of a trusted third party.
• We do not place any restrictions on the security of the communication channels.
• Users in our model are not confined to any specific locations.
• We tried to minimize computation and communication costs to the extent possible.

For instance, policy enforcement point and policy decision point are done at the
same server.
• We focused on minimizing the computations and communications performed on

the client side to accommodate the resource constraints associated with the mobile
devices. Major computations are performed on the server side.

4.2 Assumptions

Here we discuss our assumptions.

• Modules enforcing spatio-temporal access control are implemented by tamper-
proof and trusted software.
• Identical public key cryptography and hash algorithms MD5 should be installed

at the client and server sides.

123

Enforcing spatio-temporal access control in mobile applications 321

Authorization Control Module (ACM)

Request Composition Module (RCM)

Mobile User

Server

Policy Base

STZone Reader

GPS

STZone Listener

Request Builder

STZone
Extractor

Role
Activation

Authorization-
Token Granter

Wireless Access

Application
Base

Authorization-
Token Requester

Resource
Provider

Credential
Evaluator

Resource Access Module (RAM)

Server

Fig. 2 Architecture of the spatio-temporal enforcement mechanism

• The strength of public key cryptography, hash algorithms, and password are chosen
such that they cannot be compromised taking into account the resources of the
attacker.
• In public key cryptosystem, a public and private key pair is associated with an

entity. In our case, the entity consists of the user-device pair, given by (user id,
device id). Public key certificates are issued for each such pairs by the certificate
authority. This ensures that a user cannot use his colleague’s cell-phone to access
an application. The certificate is issued by an authority trusted by all the entities.
• A tamper-proof location system such as GPS or WLAN-based systems [47] is

installed in a user mobile device. Note that, smartphones with tamper-proof GPS
receivers [18] onboard are becoming increasingly common. Most of today’s smart-
phones, such as the iPhone/iOS, Bada, Windows Mobile 7, and Android, are fully
GPS-enabled.
• The clocks present in the various modules are synchronized.
• The data consistency at all architecture components is guaranteed by applying

some underlying protocols for consistent data services [6,9,32]. These protocols
support the data integrity, concurrency control, and recovery from crashes and
communication failures across interconnected databases.

4.3 Architecture modules

Figure 2 depicts the implementation architecture for enforcing spatio-temporal policies
in a mobile application. The architecture in Fig. 2, consists of three core components:
request composition module (RCM), resource access module (RAM), and authorization

123

322 R. Abdunabi et al.

control module (ACM) which are stand alone programs. RCM is installed in the user’s
mobile device while the RAM and ACM are implemented in servers which are not
required to be co-located. The application data and policy data can be kept in distributed
servers. In case the relevant data is not stored locally, the module must communicate
with the remote servers.

We describe the proposed architecture modules in more details.

• RCM is responsible for forming a user access request and maintaining the access
while the rights are being exercised. The Request Builder component in RCM
creates a resource access request package that includes the current user STZone
and user’s access credentials (user identifier, password, timestamp, and device
identifier) with the request and sends it to one of the available RAM servers. The
Request Builder gets the current user’s STZone from the STZone Reader which
has access to the GPS location information and mobile device time information.
STZone Reader tracks current user’s STZone and sends notifications of invalid
STZone to the STZone Listener. On receiving invalid zone information, STZone
Listener sends an access termination request to the server.
• RAM is an intermediate server between a user’s mobile and the ACM server. It

receives the user’s request and consults with the ACM to decide whether the user
will get access to the resource. The Credential Evaluator component checks user
credentials stored in the Application Base. The Authorization-Token Requester
component requests an authorization-token from one of the available ACM servers.
The Resource Provider component provides access to some object requested by
users. It acts as the policy enforcement point (PEP) as it is responsible for handling
the application resources accessed by the users.
• ACM is responsible for the policy evaluation and issuing a new authorization-token

for every user request. ACM communicates with the Policy Base in order to issue
users’ authorization-tokens. The Role Activation maps a user to an appropriate set
of roles and permissions based on its STZone provided by the STZone Extractor
component. Furthermore, the Role Activation updates the policy state for each
activated role. The Authorization-Token Granter is responsible for granting the
authorization-token for a given role. An authorization-token can be granted only
if the given role can be activated. Note that, a user’s role can be activated if all the
following conditions are satisfied: (a) the role is not already active, (b) the role can
be activated in the given STZone, and (c) no conflicting roles are active. ACM acts
as the Policy Decision Point (PDP) because it makes access decisions. It also acts
as the Policy Implementation Point (PIP) because it issues authorization-tokens
that identifies which resources can be accessed.

The authorization-tokens are tickets that allow client applications access to
resources. An authorization-token is denoted as AT = (I Du, I Dut , r, P, ST Zone)
where I Du refers to a user identifier, I Dut is a token’s identifier, r is the activated
role, P is the set of permissions associated with role r , and STZone defines where and
when these privileges are valid.

ACM grants or denies authorization-tokens using Algorithm 1. The algorithm takes
in three inputs: user u, role r , and STZone z: u is the user who wants to activate role r
in zone z. Line 1 initializes the permission P to the null set. In Lines 2 and 3 we check

123

Enforcing spatio-temporal access control in mobile applications 323

if r has already been activated by u in zone z or u is not assigned to role r in zone z.
If these conditions are true, then authorization tokens are not issued and a message
is sent to the user in Line 32. If the user already has authorization tokens, a check is
made to ensure that no conflicting roles or permissions are activated—this is done in
Lines 5—25. If these conditions are satisfied, the role r can be activated for user u in
zone z. The set of active roles for user u in zone z is updated in Line 26 to include the
role r . In Line 27, P is set to the permissions associated with role r in zone z. Lines
28 and 29 generate the authorization-token AT . The algorithm produces as output the
AT if the role can be activated, otherwise a reject message is sent to the user.

input : User u, STZone z, and Role r
output: authorization-token AT or Reject

1 P ←− φ;
2 if r �∈ active_roles(u, z) // r is already activated by u in zone z
3 and r ∈ assigned_roles(u, z) // r is assigned to u in zone z
4 then
5 if userT oken(u) �= φ // u has some authorization-token
6 then

7 foreach r
′ ∈ active_roles(u, z) // checks conflicting roles

8 do

9 if r
′ ∈ RSoD(r, r

′
, z) // a role conflict is exist

10 then
11 print(Request is Rejected + Details);
12 exit;

13 end
14 end
15 foreach p ∈ assigned_ perms(r, z) // checks conflicting permissions
16 do

17 foreach p
′ ∈ assigned_ perms(r, z) do

18 if p
′ ∈ P SoD(p, p

′
, z) // a permission conflict exists

19 then
20 print(Request is Rejected + Details);
21 exit;

22 end
23 end
24 end
25 end
26 active_roles(u, z)←− active_roles(u, z) ∪ {r}; // updates role r state
27 P ←− assigned_ perms(r, z) ;
28 I Dut = generateI D(AT); // generate a sequence number of user’s token
29 AT ←− (u, I Dut , r, P, z); // creates authorization-token AT
30 end
31 else
32 print(Request is Rejected + Details);
33 end

Algorithm 1: Generate authorization-token AT

With distributed and replicated RAM and ACM servers, ACM broadcasts the new
authorization-token to all the RAM and ACM servers to keep the access control con-
sistent.

4.4 Computational capabilities and storage space

The user’s mobile device has less processing and storage capacity compared to that of
the servers. However, today’s mobile devices have adequate processing and storage
capacity to execute our protocols. Our enforcement mechanism assumes that users’
mobile devices can execute public key cryptography algorithms as well as hashing
algorithms, such as MD5. Users’ mobile devices must be able to store their own
private key Pr Ku , the RAM’s public key, and a list of authorization-tokens. Such data
should be stored in a secure component of the user’s smartphone; it should only be
accessible by licensed applications.

123

324 R. Abdunabi et al.

RAM servers should also have the processing capability needed to do public key
cryptography and hashing. A RAM server maintains a list of users’ public key cer-
tificates denoted by UCerts. It also maintains a list of authorization-tokens that is
referred to as the UATokens list. When an authorization-token expires, it must be
removed from UATokens list. Since the enforcement mechanism may involve a dis-
tributed environment, RAM also stores a list of public keys certificates of the ACM
servers referred to by the ACCert list; these are needed to securely communicate
with the various ACM servers. Each ACM server only stores its private key and a list
of public keys certificates for distributed RAM servers. Note that, all such sensitive
information must be stored in a secure and tamper-proof component.

5 Resource access protocols

We define a number of protocols for ensuring that resources are accessed with the
correct authorization. We start with discussing how the initial access is granted and
how the access is revoked when the environment changes.

5.1 Protocols prelude

The client and the servers must agree on the public key cryptography and hash algo-
rithms used in the protocol. The clocks of the various entities must be synchronized
before the start of the protocol.

We expect the user to register with the system and to create a password before
the execution of the protocol. When a user registers in a system, a trusted Certificate
Authority (CA) issues a pair of public and private keys for that user. A user’s certificate
has a user’s public key PuKu , a user’s smartphone identifier I Ds , user identifier I Du ,
and user password Pu . Prior to the start of the protocol, we assume that the RAMs’,
ACMs’ public key certificates have already been distributed by the CA to RCMs, RAMs,
and ACMs.

Figure 3 describes the communication exchanges of the resource access protocols
implemented by a single RCM client, RAM server, and ACM server. Suffixes associ-

Fig. 3 Communication steps of
the resource access protocols

M3

M1

M4

M2

M6

M5

M7

M8

RCM
Client
(RC)

RAM
Server
(RS)

ACM
Server
(AS)

123

Enforcing spatio-temporal access control in mobile applications 325

Table 1 The notations of the
resource access protocols

Symbols Interpretation

I Dx Identifier of party x

I Ds User’s device identifier

PuKx Public key of party x

Pr Kx Private key of party x

T sx Timestamp computed by party x

Pu User password

P∗u One-time password

H(Pu , T sx) Computes P∗u
Mx Package payload created by party x

Ex {S} Encryption of sequence S by PuKx

M∗x Checksum on message M generated by party x

H(Mx , T sx) Computes M∗x
Sx {M∗x } Signing M∗x by Pr Kx

A
Mi−−→ B Party A sends package Mi to party B

T w Time window

AT Authorization-token

I Dut Authentication-token identifier

“Close” Keyword indicates deletes user’s AT

“Freeze” Keyword indicates suspends user’s AT

ated with the communication messages indicate the order of steps in the protocols.
Message Mi indicates step i of the protocol. Table 1 enumerates the notations used
in the description of the protocols. The RAM and ACM servers are implemented as
two distinct centralized servers. The server hosting the RAM also houses the Applica-
tion Base and is referred to as the Resource Server (RS). ACM along with the Policy
Base are housed in a server called the Authorization Server (AS). RCM is imple-
mented in a mobile device referred to by (RC). The channel between user mobile
phone and RAM server is connected through a wireless network (GPRS, UMTS,
WLAN, Internet WAP 2.0). We do not put any assumptions about the communica-
tion channels between the RAM servers and ACM servers: they can be either wired or
wireless.

5.2 Initial access protocol

The steps of the basic resource access protocol for handling users’ requests are per-
formed as following:

– Resource usage request [RC M
M1−→ R AM]: a user’s mobile sends an encrypted

and digitally signed access request package M1 to RAM as shown in Fig. 3.
RCM creates an access request payload Mrc = (I Du, I Ds, P∗u , ST Zone, r, T src),
where I Du is the user identifier, I Ds is the device identifier, P∗u = H(Pu, T src)

is the user one-time password, ST Zone is the current user zone, r is the requested

123

326 R. Abdunabi et al.

role, and T src is the timestamp at which Mrc is created. RCM computes the hash
value M∗rc = H(Mrc, T src) and signs it using user’s private key Pr Ku , i.e.,
Src{M∗rc}. RCM composes the package M1 which has I Du and I Ds in clear. At
the resource server, RAM uses I Du and I Ds to lookup for the corresponding user’s
certificate. RAM decrypts M1 using its private key and verifies the digital signature
using user public key PuKu ; it recomputes the message checksum and compares
it with the one in M1. Then, RAM validates I Du and Pu using the information in
the certificate.

– User AT request [R AM
M2−→ AC M]: if the user is authenticated, RAM for-

wards an encrypted and signed request package M2 to the ACM server in order to
issue the user’s authorization-token AT . RAM forwards the AT request payload
Mrs = (I Drs, I Du, ST Zone, r, T srs), where T srs is the payload’s timestamp.
RAM computes the hash value and signs it using its private key Pr Krs . Then,
RAM encrypts the Mrs which is digitally signed Srs{M∗rs} using ACM public
key PuKas . At the Authorization Server, ACM decrypts package M2 and val-
idates the digital signature using the public key of RAM PuKrs . Nevertheless,
if the user authentication fails, RAM sends access rejection response M6 to the
user without communicating with the ACM in order to reduce communication
costs.

– User AT response [AC M
M3−→ R AM]: once message M2 is authenticated, ACM

issues the user’s AT as requested in the M3 package only if the user is authorized
to activate the requested role. ACM maps the user I Du and his/her current user
ST Zone with appropriate rights in the policy. Once the user’s request is approved,
ACM sends an encrypted and signed response acceptance package M3 to RAM,
which includes Mas payload as well as a digital signature Sas{M∗as} signed by
ACM private key Pr Kas . Payload Mas = (I Das, I Dut , I Du, AT, T sas), has
user’s identifier I Du , user’s authorization-token AT , token identifier I Dut , and
timestamp T sas . However, if the requested role is not approved by the policy, then
an access rejection response M5 is sent to the RAM server.

– Forwarding user AT [R AM
M4−→ RC M]: after authenticating message M3

from ACM, RAM stores a copy of the user’s authorization-token AT in the
UATokens list along with the token identifier I Dut , user identifier I Du , and
device identifier I Ds . Subsequently, RAM forwards a signed and encrypted
response package M4 to RCM. The response package has payload Mrs =
(I Drs, I Du, I Ds, I Dut , AT, T srs) as well as a digital signature Srs{M∗rs}
signed by the private key Pr Krs . Note that the user’s authorization-token is bound
to particular user I Du and device I Ds . At user side, if M4 package from RAM is
authenticated, RCM stores the authorization-token AT in a secure element of the
user’s cell-phone. However, in case the access request is rejected by ACM, RAM
directly forwards rejection response M6 to RCM.

The basic resource access protocol thwarts a user from having conflicting roles or
permissions. The SoD constraints are enforced by ACM. As shown in Algorithm 1, a
user is not granted a new token for role r if it conflicts with at least one of the current
user’s active roles or if the current role has conflicting permissions.

123

Enforcing spatio-temporal access control in mobile applications 327

5.3 Ongoing access protocol

The ongoing access protocol is responsible for revoking access once a user moves out
of a valid STZone.

One choice was for the STZone information being periodically pushed to the RAM
server, or the RAM server pulling the information from the users’ mobile device. This
incurs significant communication overhead, so we rejected this option. We adopted an
alternative choice in which the user’s device notifies the RAM server when the user fails
to satisfy the STZone conditions specified in the authorization-token. In our solution,
the STZone Listener component gets periodic updates by the STZone Reader compo-
nent about the spatio-temporal coordinates of the user. Whenever the current user loca-
tion or time does not satisfy the information in a user’s authorization-token, the STZone
Listener component revokes the user’s authorization-token and requires Request
Builder to send an access termination message to the RAM server. In order to implement
the ongoing access protocol, two communications steps must be added to the protocol
that we have described earlier. In Fig. 3, the communications messages M7 and M8
describe the additional exchanges needed to implement the ongoing access protocol.

– Terminating user access [RC M
M7−→ R AM]: RCM sends the termination access

request M7 to RAM at the time the current user STZone becomes invalid. It creates
a termination message payload Mrc = (I Du, I Ds, I Dut , Pu, Close, T src) where
the keyword “Close” indicates the termination of access. RCM concatenates Mrc

with the user digital signature Src{M∗rc} and encrypts M7 with RAM public key
PuKrs . The user’s authorization-token is deleted at the client side in order to
terminate the user access.

– Revoking user privileges [R AM
M8−→ AC M]: after authenticating the sender of

M7 package, RAM reads the keyword “Close” and then uses I Du , I Ds , and I Dut

to lookup for the user’s authorization-token in the U AT okens list and removes it.
Therefore, if a user subsequently requests an access to a resource via deleted I Dut ,
this request will be denied. RAM forwards an encrypted and signed termination
request M8 to ACM in order to update the current user’s authorizations. The M8
request has payload Mrs = (I Drs, I Du, I Dut , Close, T srs) as well as the digital
signature Srs{M∗rs} signed by RAM private key. At the authentication server, after
authenticating the sender of M8, the keyword “Close” indicates ACM to revoke
the current user’s active role and authorized permissions associated with user’s
authorization-token I Dut .

5.4 Access suspension protocol

Since users are mobile, a user may momentarily depart the authorized location from
which she is currently accessing some resources and come back after a short period of
time. To maintain our design efficiency and ease of use, the user’s privileges should not
be permanently revoked, instead, these privileges must be frozen or suspended for the
short period of time the user is off-site and reinstated after the user comes back on-site.

We achieve this design goal by modifying the communication steps M7 of the
ongoing resource access protocol in order to define the suspending resource access

123

328 R. Abdunabi et al.

protocol. In this protocol, RCM suspends user access and sends a resource access
deferral package M

′
7 at the time a user unexpectedly leaves a current valid position.

This message has format similar to M7 except that the keyword “Close” is changed to
“Freeze” to indicate that the user’s privileges should be frozen for a certain time period.

A time window T w is appended to M
′
7 package to determine the freezing time

through which a user cannot exercise previously granted access rights. Once a user
crosses back the boundary of the user’s valid location and prior to the T w expiration,
she can automatically invoke earlier activated roles with no need to resend an activation
request. At the resource server side, RAM reads the key word “Freeze” and instead of
deleting user’s AT, it prevents the user from exercising rights for the duration defined
by the time T w.

If RAM gets a resource access request from the user within the time window T w,
it gives the requested resource to the user and deletes T w from the user’s record. In
case RAM does not hear anything from the user during the time period T w, it forwards
package M8 to ACM in order to revoke the current user’s active role and the authorized
permissions combined with the user’s authorization-token I Dut .

6 Securing against some common attacks

Having defined our protocols, we must ensure that they are immune against some
common attacks. Our attack analysis was inspired by some studies on threat models
[14,36]. In the analysis of our system, we consider three types of attacks: the first
one focuses on the software implementing the architecture components, the second
one examines attacks on the messages exchanged between those components, and the
third analyzes malicious entities pertaining to the protocol.

Attacks on software components
We assume that RAM and ACM components are implemented in computing

machines equipped with appropriate software protection. For example, the servers
must be protected by an appropriate firewall configuration and have malware pro-
tection. We also assume that the RCM component is installed in a phone’s secure
component, which can be accessed through proper access control. This is not unusual
nowadays; Android platform provides a number of access control mechanisms, based
on a Linux kernel, that protect access to shared data and functionality across multiple
applications [4].

RAM and ACM may be targeted to denial-of-service attacks (DoS). Distribution and
replication somewhat alleviate with this attack. We can counter these attacks somewhat
by multicasting messages to multiple RAM and ACM servers. Thus, if one server is
down, some other server can take over. However, with the distributed denial-of-service
attack (DDoS attack), an attacker may succeed in compromising multiple servers. We
assume the existence of sophisticated DDoS attack detection and mitigation techniques
to counter such attacks.

Attacks on protocol messages
We are concerned about message confidentiality, message integrity, message

authenticity, and message non-repudiation. Message confidentiality is provided by

123

Enforcing spatio-temporal access control in mobile applications 329

encrypting each message with the public key of the recipient—this ensures that only
the recipient can decrypt the message and read its contents. Message integrity is main-
tained by concatenating each message with the message digest and signing the message
digest. Thus, even if an intruder modifies a message, he will not be able to change the
digest. Consequently, any modification by an intruder can be detected. Each message
is signed by the sender—this provides message authenticity.

Malicious entities
We are concerned about attackers impersonating as RCM, RAM and ACM servers.

We are also concerned about the misuse caused by legitimate RCMs who may be over
extending their privileges. We refer to these entities as Malicious RCM, Malicious
RAM, and Malicious ACM.

Malicious RCM A Malicious RCM may want to perform various illegitimate activities
in order to get unauthorized access to some resources. These are described below.

• Eavesdropping: An adversary may eavesdrop to get access to some sensitive infor-
mation, such as, passwords and identifiers, in order to access some resource. All
sensitive information is encrypted with the recipient’s public key. Consequently,
an adversary will not be able to eavesdrop on such information.
• Modifications: A modification attack occurs when an attacker intercepts and modi-

fies the contents of communication messages in order to impersonate others to gain
access. This attack is not applicable to our protocol because messages between
RCM and RAM servers include a checksum that is digitally signed. Thus, any
modification on messages can be easily detected.
• Replay attacks: In this attack, an eavesdropper intercepts authentication exchanges

coming from a legitimate RCM and later replays that exchange in order to get
access. Since the communication messages sent from RCM clients are encrypted
and associated with unique timestamps, replay attacks will be detected. Moreover,
the use of one-time passwords prevents an adversary from reusing passwords in
the replayed messages.
• Reflection attacks: We assume that the various entities must first register themselves

with a trusted Certificate Authority. The entities send messages to each other
encrypted by the corresponding public keys. Moreover, messages contain nonce
as well. Consequently, reflection attacks do not occur in our scheme.
• Man-in-the-middle (MITM) attacks: the use of public keys together with message

specific timestamps and digital signatures prevents this from happening.
• Illegitimate use: A user cannot use the mobile device of another legitimate user

to access resources. This is because the user needs to send his id, device id, and
password to the RAM to request access. Clearly, an illegitimate user of the mobile
device will not be able to provide them in order to be issued an authorization-
token. Consequently, illegitimate users cannot make requests to get authorization-
tokens.
• Reusing authorization-tokens: A user may want to access a resource using

his previous authorization-token. However, when the STZone specified in the
authorization-token expires, it gets deleted from the RCM and cannot be used.

123

330 R. Abdunabi et al.

• Modifying authorization-tokens: A user cannot modify the parameters in his
authorization-tokens as they are stored in a secure tamper-proof component at
the user’s mobile device.
• Separation of duty violations: Separation of duty constraints prevents a user from

activating two conflicting roles. Note that, authorization token is issued to the user
only if he has no other conflicting roles activated by other authorization tokens.
A user cannot obtain an authorization-token for a conflicting role from his friend
either. This is because the authorization token is tied to a device as well as a user,
so an authorization-token issued to his friend cannot be used on the user’s device.

In order to violate a separation of duty constraint, a user may try to request
authorization-tokens for conflicting roles from two RAM servers. The RAM servers
forward the request to the ACMs who are responsible for issuing the authorization-
tokens. Since the ACMs are in a consistent state, authorization-tokens for conflict-
ing roles will not be issued.

Impersonating RAM and ACM Since the entities are authenticated prior to the start
of the protocol, an attacker cannot impersonate himself as a RAM or an ACM server.
Moreover, all communications are encrypted with the public key of the recipient, so
an attacker impersonating as RAM or ACM cannot decrypt those messages. Moreover,
any message that is sent to the RCM must be digitally signed by the sender, so an
attacker will not be able to send false messages to the RCM.

Our protocol also assumes that the sensitive data and algorithms are executed in a
secure and tamper-proof component of the RAM or ACM servers. Thus, false generation
and modification of authorization-tokens cannot happen in our protocol.

7 Formal analysis

In the previous section we made some informal arguments to demonstrate that our
protocol is free from attacks. However, manual analysis is tedious and error-prone.
Towards this end, we show how our protocol can be formally analyzed to give assurance
that the attacks mentioned actually do not occur. We do not analyze all the attacks due
to lack of space. We formalize and analyze only the man-in-the-middle attack.

Typically, the application is specified in UML [19] which is the de facto spec-
ification language used in the software industry. Recent works have advocated for
using UML to specify access control policies [7,35] because it makes integration with
the application and subsequent analysis easier. Unfortunately, UML does not have
much tool support for checking behavior of systems. Consequently, security proto-
cols cannot be verified directly using UML tools. Towards this end, we use Alloy [8]
to check whether the resource access protocol described in the paper is vulnerable
to the man-In-the-middle (MITM) attack. Alloy is a modeling language capable of
expressing complex structural constraints and behavior. It has been successfully used
to rigorously analyze security policies [1,3,50]. Researchers have also used Alloy for
analyzing protocols and security properties [20,30,48]. Alloy is supported by an auto-
mated constraint solver called Alloy analyzer that searches instances of the model to
check for satisfaction of system properties. The model is automatically translated into

123

Enforcing spatio-temporal access control in mobile applications 331

a Boolean expression, which is analyzed by SAT solvers embedded within the Alloy
analyzer. A user-specified scope on the model elements bounds the domain, making
it possible to create finite Boolean formulas that can be evaluated by the SAT-solver.
When a property does not hold, a counter example is produced that demonstrates how
it has been violated.

In order to perform our analysis, the behavior specified in the UML design class
model must be converted to an Alloy model that specifies behavioral traces. The
UML-to-Alloy model transformation uses an intermediate model, namely, the snapshot
transition model that provides a static description of behavior in terms of sequences of
state transitions, where a transition represents an invocation of an operation described
in the class diagram.

Yu et al. [51,52] describe how a software design class model with operation speci-
fications can be transformed to a static model of behavior, called a snapshot transition
model (STM). A snapshot represents a system object configuration at a particular time
(i.e., a system state). A snapshot transition describes the behavior of an operation in
terms of how system state changes after the invoked operation has completed its task.
It consists of a before state, an after state, and the operation invocation that triggers the
transition. An operation invocation is described by the operation name and the para-
meter values used in the invocation. Note that, protocol behavior can be represented as
a sequence of state transitions, where each transition is triggered by an operation invo-
cation. The snapshot transition model (STM) developed by Yu et al. is the intermediate
model that we use in the UML-to-Alloy transformation. Once we have the translated
Alloy specifications, it can be checked using the Alloy analyzer to check for attacks.

An Alloy model consists of signature declarations, fields, facts and predicates. Each
signature consists of a set of atoms which are the basic entities in Alloy. Atoms are
indivisible (they cannot be divided into smaller parts), immutable (their properties do
not change) and uninterpreted (they do not have any inherent properties). Each field
belongs to a signature and represents a relation between two or more signatures. A
relation denotes a set of tuples of atoms. Facts are statements that define constraints
on the elements of the model. Predicates are parameterized constraints that can be
invoked from within facts or other predicates.

Figure 4 shows a fragment of an Alloy model for the resource access protocol shown
in Fig. 3. The entire Alloy specification is given in Appendix A. Our communication
protocol involves a set of types, namely, ID, STZone, Role, Password, OnePassword,
Timestamp, Module, Client, Server, Attacker, Key, PubKey, PriKey, that are repre-
sented as signatures. Note that Key denotes an abstract type; we derive concrete types
PubKey and PriKey from this basic type. Signature Module represents the participants
and consists of an identifier id (instance of ID), public key pubkey (instance of Pub-
Key), and private key prikey (instance of PriKey). Client, Server, and Attacker can be
specialized from the base type Module. Client, derived from Module, has additional
components, namely, role r (instance of Role), password pwd (instance of Password),
one time password onepwd (instance of OnePassword), device identifier ids (instance
of ID), and user’s current spatio temporal zone stzone (instance of STZone). The type
Snapshot, also represented as an Alloy signature, captures the state of the system at
a given time and consists of rcmclient (instance of Client), ramserver (instance of
Server), acmserver (instance of Server), and attacker (instance of Attacker).

123

332 R. Abdunabi et al.

Fig. 4 Fragment of an Alloy model for the resource access protocol

Fig. 5 Alloy message predicates

123

Enforcing spatio-temporal access control in mobile applications 333

Fig. 6 Alloy simulation predicates

A communication protocol involves sending and receiving messages. We specify
messages in our model using Alloy predicates. Figure 5 shows an example of an Alloy
predicate that specifies the message M1 shown in the resource access protocol (see
Fig. 3). In a communication protocol, we need to reason about the different states of the
system resulting from sending and receiving messages. Recall that the state of a system
is specified by the Alloy signature Snapshot. M1 predicate takes several parameters.
The parameter before snapshot describes the system state before the message is sent
and the parameter after snapshot describes a system state after the message has been
sent. Parameter senderPre represents a message sender in the before snapshot while
senderPost represents a message sender in the after snapshot. Similarly, receiverPre,
stzonePre, rPre, iduPre, idsPre, and pubkeyPre represent states of objects accessed
by the predicate in the before snapshot while receiverPost, stzonePost, rPost, iduPost,
idsPost, and pubkeyPost represent states of objects in the after snapshot. The predicate
specifies that the message sender must be a RCM Client and the message receiver must
be a RAM Server. The sender’s attributes must have the same value with the parameters
of the predicate. For example, the value of the sender’s current zone must be equal to the
value of the st zonePre parameter. The frame condition in the predicate specifies that
the participants of the protocol must remain the same after the message has been sent.

Since it is assumed that RAM and ACM are trusted in the protocol, only the network
communications between an RCM Client and a RAM Server are analyzed using the
Alloy analyzer. In short, we analyze only messages M1 and M4 in Fig. 3. Figure 5
shows an Alloy predicate that specifies the M4 message from a RAM Server to a RCM
Client.

Figure 6 shows an Alloy predicate that specifies a scenario without the MITM
attack in which RCM Client sends M1 to RAM Server and then receives M4 from
the RAM Server. The set of state transitions that occur due to these messages are
captured through a sequence of snapshots, which we define as SnapshotSequence.
Note that signature SnapshotSequence is predefined using an Alloy clause (i.e., “open
util/ordering[Snapshot] as SnapshotSequence”). util/ordering is an Alloy utility func-
tion that takes as input a signature and declares a sequence of objects that are instances
of the input signature. first is an Alloy function used to return the first element of a

123

334 R. Abdunabi et al.

Fig. 7 A partial Alloy instance for the ScenarioWithAttack predicate shown in Fig. 6

sequence. next is an Alloy function that takes as input an element and returns the ele-
ment next to the input element. Thus SnapshotSequence/first returns the first snapshot
in the sequence. Thus SnapshotSequence/next[first] returns the second snapshot in the
sequence. f irst represents a system state before M1 has been sent, second represents
a system state after M1 has been sent and before M4 has been sent, and third rep-
resents a system state after M4 has been sent. The Alloy analyzer uses the predicate
in Fig. 6 to query whether there exists an instance that satisfies the predicate. For
this scenario, the Analyzer did return an instance, indicating that the communication
protocol between the RCM Client and the RAM Server was successfully simulated.

To verify whether the protocol is immune from an MITM attack, we introduce an
attacker between a RCM Client and a RAM Server. The attacker makes independent
connections with the RCM Client and the RAM Server respectively, and relays mes-
sages between them. In an MITM attack scenario, message M1 is replaced by two mes-
sages, Client2Attacker and Attacker2R AM , where Client2Attacker is a message
from the client to the attacker and Attacker2R AM is a message from the attacker to the
server. Similarly, M4 is replaced by R AM2Attacker and Attacker2Client , where
R AM2Attacker is a message from the server to the attacker and Attacker2Client
is a message from the attacker to the client. Figure 6 shows an Alloy predicate that
simulates an MITM attack scenario. The Alloy analyzer uses the predicate in Fig. 6
to query whether there exists an instance that satisfies the predicate. For this MITM
attack scenario, the Analyzer returned no instance, indicating that the MITM attack
was not successfully simulated under the protocol described in the paper. Thus, the
proposed protocol is immune from an MITM attack.

In order to test our protocol, we eliminated senderPre.id = idrsPre from
Attacker2Client . The Alloy specification for this case is given in Appendix B. With-
out this statement, we can no longer verify the identity of the sender. The attacker
can pose as the RAM Server causing the MITM attack to succeed. The Alloy analyzer
in this case would return an instance, shown in Fig. 7, that demonstrates the MITM
attack scenario. The Alloy instance consists of five snapshots, associated with the Sce-
narioWithAttack predicate. The first snapshot (Snapshot0) specifies an initial state
before the Client2Attacker message has been sent, the second (Snapshot1) repre-

123

Enforcing spatio-temporal access control in mobile applications 335

sents the state after the Client2Attacker message has been sent, the third snapshot
(Snapshot2) specifies the state after the Attacker2R AM message has been sent,
the fourth snapshot (Snapshot3) represents a system state after the R AM2Attacker
message has been sent, and the fifth snapshot (Snapshot4) represents a system state
after the Attacker2Client message has been sent. The scenario provides an instance
demonstrating MITM attack. Other attacks such as replay, reflection, etc, can also be
analyzed using similar approaches.

8 Prototype implementation

We develop a proof-of-concept prototype for our architecture enforcing a spatio-
temporal policy in mobile application. The prototype implements our design in a
distributed system with multiple autonomous virtual servers. We implemented our
clients and servers using Android.

We used Android because it is open source. Moreover, Google Android is built on
the top of a Linux distribution that includes a Java virtual machine (JVM) designed to
run on mobile devices [22]. Google Android platform has also many features for incor-
porating a GPS receiver package into mobile application code. Android has a powerful
software development Kit (SDK) [21] that is easy-to-use in building mobile applica-
tions run on a variety of smartphones’ technologies. The Android SDK provides a
debugger, libraries, and a handset emulator that are necessary to write and test Android
platform applications. The Android emulator allows us to simulate mobile applica-
tions before actual use. The development environment of our prototype is Eclipse
IDE integrating the Android development tools (ADT) plug-in. For the first run of the
Android application, we utilize the AVD manager in Eclipse to create a new Android
device enhanced with a GPS receiver.

In order to implement our protocols, we used the source code from the FlexiProvider
Toolkit [10] that has Java based cryptographic modules, including public key, digital
signature, and MD5 message digest. Prior to running the experiment, each entity
should have its private key and the public keys of the entities that it will communicate
with. We used the KeyPairGenerator class to produce a pair of public and private keys
for each entity. The public keys are securely distributed using AES symmetric-key
encryption. For the message authentication code, RCM, RAM, and ACM use the MD5
that is supported in FlexiProvider.

In order to incorporate the location capabilities of Android into our prototype,
we used the LocationManager package [21] to track the current user position and
to capture the local time at which the location is retrieved. The LocationMan-
ager.requestLocationUpdates method revises the user’s device’s location periodically.
A class implementing the LocationListener interface handles changes in the device
location. The LocationManager.getLastKnownLocation method in the LocationLis-
tener implementer gets the last known location object which has the altitude, latitude,
and longitude information.

The mobile application components are tested via the Android emulator and the
test showed that our prototype works as expected. Our Android handset emulator in
Fig. 8 displays the Android app component running in a user’s mobile device. This

123

336 R. Abdunabi et al.

Fig. 8 Android handset
emulator

handset emulator prompts a user to select his/her role and enters the user’s identifier
and password. Once the user enters these information and hits the connect button, the
Android application software retrieves the last known user location and the local time.
Then, it composes an access request package and sends it to one of the available RAM
Servers.

In the experiment setup, only one machine is used to measure the back-end servers’
overhead for processing access requests. The experiment is performed in one machine
in order to eliminate the network delay. Furthermore, the time needed for the GPS
receiver to get the location coordinates from the base station varies greatly and we
wanted to eliminate this factor as well. The experiment is carried out in a machine
with a Windows 7 platform running on Intel(R) Core(TM) 2 Duo CPU at 2.20 GH
with 4.00 GB RAM.

The experiment evaluates the architecture performance on three virtual handset
Android emulators, three RAM virtual servers, and three ACM virtual servers. These
virtual machines communicate via traditional sockets. A virtual server running a local
centralized MySQL database [39] is also instantiated on the same machine. The data-
base server is accessible by the RAM and ACM servers in order to process users’
requests. For each request, the handset emulator opens a new connection with one of
the virtual RAM servers and closes the connection at the time it receives a response.
The RAM server in turn opens a new connection with one of the ACM servers if the
user login information is correct. The RAM server closes the connection when it gets
a response from the endpoint ACM server.

To evaluate different spatio-temporal access scenarios, we have stored the logical
locations and role names in two local files. Thus, for each request, the handset emulator
randomly selects a location name and a role name from these files and sends them
along with other information in the request package. This approach allows us to test

123

Enforcing spatio-temporal access control in mobile applications 337

73.66

29.56

67.5

81.43

63.04

Approved Rejected (Improper login
data)

Rejected (Improper role) Rejected (Improper zone) Total Average Delay

Time in Miliseconds

Fig. 9 Back-end average response delay plot

whether our application works as anticipated and ensures that correct policies have
been specified. We measure the total time that elapses between issuing a new access
request and getting the response. The response delay is evaluated using 150 requests
sent simultaneously from three Android handset emulators. Each emulator sends 50
requests. The responses vary based on the information in the request packages. For
example, a request is approved if and only if the login information is correct, the
requested role can be authorized, and the current user’s zone is acceptable. Otherwise,
the request is rejected.

The results in Fig. 9 show the average response delay for each response type as
well as the total average delay in milliseconds. The overall delay yielded by the basic
resource access protocol is 63.04 ms. Consequently, implementing our architecture
for enforcing spatio-temporal policies is indeed viable. The rejected requests due to
invalid login information yields 29.56 ms, which is the smallest response delay because
RAM servers send these responses immediately without consulting the ACM servers.

9 Conclusion and future work

In this work we proposed an enforcement mechanism of a spatio-temporal RBAC
in mobile applications. We proposed an architecture for a mobile system enforc-
ing our spatio-temporal model. We developed a number of protocols that consider
spatio-temporal information for initiating and maintaining access under different cir-
cumstances. We also demonstrated how our protocols can be analyzed using Alloy to
provide assurance that they are indeed free from attacks. We also implemented our
protocol and gave some results indicating the performance penalty of our approach.

A lot of work remains to be done. Before such a technology can be deployed, we
need to do experiments to measure the impact of GPS devices on battery consumption.
We also need to accurately measure the delays in the various types of networks. Our
promising direction of a future work is to extend our spatio-temporal access control
model for workflows which consists of a set of tasks that are coordinated by control-
flow, data-flow and temporal dependencies. It would be interesting to see how these
various dependencies interact with the spatio-temporal constraints of the workflow.

123

338 R. Abdunabi et al.

Our future work also includes deploying this model for a real-world healthcare dengue
decision support system (DDSS). We also plan to provide a more flexible spatio-
temporal access control that is able to make authorization decisions in the presence of
uncertainty, which is possible if the user’s location cannot be accurately determined.
Such a scenario can occur when a user is on the move and his trajectory is used to
make access control decisions.

Appendix A

Alloy specification of the access control protocol

module SecurityProtocol

open util/ordering[Snapshot] as SnapshotSequence

abstract sig Key{}
sig PubKey, PriKey extends Key{}

sig ID{}
sig STZone{}
sig Role{}
sig Password{}
sig OnePassword{}
sig Timestamp{}

sig Snapshot {

rcmclient: one User,
ramserver: one Module,
acmserver: one Module,

attacker: one Module,
}

sig Module{
id : one ID,
pubkey: one PubKey,
prikey: one PriKey,
}

sig User extends Module{
stzone: one STZone,
r: one Role,
pwd: one Password,
onepwd: one OnePassword,
ids: one ID
}

sig Attacker extends User{}

pred M1[disj before, after: Snapshot, senderPre, senderPost: User,
receiverPre, receiverPost: Module,
stzonePre, stzonePost: STZone, rPre, rPost: Role,

123

Enforcing spatio-temporal access control in mobile applications 339

iduPre, iduPost: ID, idsPre, idsPost: ID,
pubkeyPre, pubkeyPost: PubKey]{

senderPre = before.rcmclient
receiverPre = before.ramserver

senderPre.stzone = stzonePre
senderPre.r = rPre
senderPre.id = iduPre
senderPre.ids = idsPre

receiverPre.pubkey = pubkeyPre

senderPost = after.rcmclient
receiverPost = after.ramserver

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver
before.attacker = after.attacker
}

pred Client2Attacker[disj before, after: Snapshot,
senderPre, senderPost: User, receiverPre, receiverPost: Attacker,
stzonePre, stzonePost: STZone, rPre, rPost: Role,
iduPre, iduPost: ID, idsPre, idsPost: ID,
pubkeyPre, pubkeyPost: PubKey]{

senderPre = before.rcmclient
receiverPre = before.attacker

senderPre.stzone = stzonePre
senderPre.r = rPre
senderPre.id = iduPre
senderPre.ids = idsPre

receiverPre.pubkey = pubkeyPre

senderPost = after.rcmclient
receiverPost = after.attacker

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver
before.attacker = after.attacker
}

pred Attacker2RAM[disj before, after: Snapshot,
senderPre, senderPost: Attacker, receiverPre, receiverPost: Module,
stzonePre, stzonePost: STZone, rPre, rPost: Role,
iduPre, iduPost: ID, idsPre, idsPost: ID,
pubkeyPre, pubkeyPost: PubKey]{

senderPre = before.attacker
receiverPre = before.ramserver

senderPre.stzone = stzonePre
senderPre.r = rPre
senderPre.id = iduPre

123

340 R. Abdunabi et al.

senderPre.ids = idsPre

receiverPre.pubkey = pubkeyPre

senderPost = after.attacker
receiverPost = after.ramserver

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver
before.attacker = after.attacker
}

pred M4[disj before, after: Snapshot, senderPre, senderPost: Module,
receiverPre, receiverPost: User,
idrsPre, idrsPost: ID, iduPre, iduPost: ID, idsPre, idsPost: ID,
pubkeyPre, pubkeyPost: PubKey]{

senderPre = before.ramserver
receiverPre = before.rcmclient

senderPre.id = idrsPre

receiverPre.id = iduPre
receiverPre.ids = idsPre

receiverPre.pubkey = pubkeyPre

senderPost = after.ramserver
receiverPost = after.rcmclient

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver
before.attacker = after.attacker
}

pred RAM2Attacker[disj before, after: Snapshot, senderPre,
senderPost: Module, receiverPre, receiverPost: Attacker,
idrsPre, idrsPost: ID, iduPre, iduPost: ID, idsPre, idsPost: ID,
pubkeyPre, pubkeyPost: PubKey]{

senderPre = before.ramserver
receiverPre = before.attacker

senderPre.id = idrsPre

receiverPre.id = iduPre
receiverPre.ids = idsPre

receiverPre.pubkey = pubkeyPre

senderPost = after.ramserver
receiverPost = after.attacker

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver

123

Enforcing spatio-temporal access control in mobile applications 341

before.attacker = after.attacker
}

pred Attacker2Client[disj before, after: Snapshot,
senderPre, senderPost: User, receiverPre, receiverPost: Attacker,
idrsPre, idrsPost: ID, iduPre, iduPost: ID,

idsPre, idsPost: ID, pubkeyPre, pubkeyPost: PubKey]{

senderPre = before.attacker
receiverPre = before.rcmclient

senderPre.id = idrsPre

receiverPre.id = iduPre
receiverPre.ids = idsPre
receiverPre.pubkey = pubkeyPre

senderPost = after.attacker
receiverPost = after.rcmclient

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver
before.attacker = after.attacker
}

pred Scenario1{
let first = SnapshotSequence/first|let second = SnapshotSequence/next[first] |
let third = SnapshotSequence/next[second]| some rcmclient: User|
some ramserver: Module| some disj idu, ids, idrs: ID|
some r: Role| some stzone: STZone| some disj pubkeyrcm, pubkeyram: PubKey|
M1[first, second, rcmclient, rcmclient, ramserver,
ramserver, stzone, stzone, r, r, idu, idu, ids, ids, pubkeyram, pubkeyram] and
M4[second, third, ramserver, ramserver, rcmclient,
rcmclient, idrs, idrs, idu, idu, ids, ids, pubkeyrcm, pubkeyrcm]
}

run Scenario1 for 3

pred Scenario2{
let first = SnapshotSequence/first|let second = SnapshotSequence/next[first]|
let third = SnapshotSequence/next[second]|
let fourth = SnapshotSequence/next[third]|
let fifth = SnapshotSequence/next[fourth]| some rcmclient: User|
some ramserver: Module| some attacker: Attacker|
some disj idu, ids, idrs: ID| some r: Role| some stzone: STZone|
some disj pubkeyrcm, pubkeyram, pubkeyattacker: PubKey|
Client2Attacker[first, second, rcmclient, rcmclient,
attacker, attacker, stzone, stzone, r, r, idu, idu, ids, ids,
pubkeyattacker, pubkeyattacker] and
Attacker2RAM[second, third, attacker, attacker,
ramserver, ramserver, stzone, stzone, r, r, idu, idu, ids, ids,
pubkeyram, pubkeyram] and
RAM2Attacker[third, fourth, ramserver, ramserver,
attacker, attacker, idrs, idrs, idu, idu, ids, ids, pubkeyattacker,
pubkeyattacker] and

Attacker2Client[fourth, fifth, attacker, attacker,
rcmclient, rcmclient, idrs, idrs, idu, idu, ids, ids, pubkeyrcm, pubkeyrcm]

123

342 R. Abdunabi et al.

}

run Scenario2 for 5
run Attacker2Client

Appendix B

Alloy specification of successful MITM attack

module SecurityProtocol

open util/ordering[Snapshot] as SnapshotSequence

abstract sig Key{}
sig PubKey, PriKey extends Key{}

sig ID{}
sig STZone{}
sig Role{}
sig Password{}
sig OnePassword{}
sig Timestamp{}

sig Module{
id : one ID,
pubkey: one PubKey,
prikey: one PriKey,
}

sig Server extends Module{}

sig Client extends Module{
r: one Role,
pwd: one Password,
onepwd: one OnePassword,
ids: one ID,
stzone: one STZone
}

sig Attacker extends Client{}

sig Snapshot {
rcmclient: one Client,
ramserver: one Server,
acmserver: one Server,
attacker: one Attacker,
}

pred Client2Attacker[disj before, after: Snapshot,
senderPre, senderPost: Client, receiverPre, receiverPost: Attacker,
stzonePre, stzonePost: STZone, rPre, rPost: Role,
iduPre, iduPost: ID, idsPre, idsPost: ID,
pubkeyPre, pubkeyPost: PubKey]{

senderPre = before.rcmclient

123

Enforcing spatio-temporal access control in mobile applications 343

receiverPre = before.attacker

senderPre.stzone = stzonePre
senderPre.r = rPre
senderPre.id = iduPre
senderPre.ids = idsPre

receiverPre.pubkey = pubkeyPre

senderPost = after.rcmclient
receiverPost = after.attacker

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver
before.attacker = after.attacker
}

pred Attacker2RAM[disj before, after: Snapshot,
senderPre, senderPost: Attacker, receiverPre, receiverPost: Module,
stzonePre, stzonePost: STZone, rPre, rPost: Role,
iduPre, iduPost: ID, idsPre, idsPost: ID,
pubkeyPre, pubkeyPost: PubKey]{

senderPre = before.attacker
receiverPre = before.ramserver

senderPre.stzone = stzonePre
senderPre.r = rPre
senderPre.id = iduPre
senderPre.ids = idsPre

receiverPre.pubkey = pubkeyPre

senderPost = after.attacker
receiverPost = after.ramserver

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver
before.attacker = after.attacker
}

pred RAM2Attacker[disj before, after: Snapshot,
senderPre, senderPost: Module, receiverPre, receiverPost: Attacker,
idrsPre, idrsPost: ID, iduPre, iduPost: ID, idsPre, idsPost: ID,
pubkeyPre, pubkeyPost: PubKey]{

senderPre = before.ramserver
receiverPre = before.attacker

senderPre.id = idrsPre

receiverPre.id = iduPre
receiverPre.ids = idsPre

receiverPre.pubkey = pubkeyPre

senderPost = after.ramserver

123

344 R. Abdunabi et al.

receiverPost = after.attacker

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver
before.attacker = after.attacker
}

pred Attacker2Client[disj before, after: Snapshot,
senderPre, senderPost: Client, receiverPre, receiverPost: Attacker,
idrsPre, idrsPost: ID, iduPre, iduPost: ID,
idsPre, idsPost: ID, pubkeyPre, pubkeyPost: PubKey]{

senderPre = before.attacker
receiverPre = before.rcmclient

// This is a key to fix the MITM attack because the
// client expects a message containing the server’s identity, while
// senderPre.id = idrsPre in the predicate ensures that
// the client will receive an identity from the sender, which is
// the attacker in the MITM attack scenario.
// senderPre.id = idrsPre

receiverPre.id = iduPre
receiverPre.ids = idsPre

receiverPre.pubkey = pubkeyPre

senderPost = after.attacker
receiverPost = after.rcmclient

before.rcmclient = after.rcmclient
before.ramserver = after.ramserver
before.acmserver = after.acmserver
before.attacker = after.attacker
}

pred ScenarioWithAttack{
let first = SnapshotSequence/first|let second = SnapshotSequence/next[first]|
let third = SnapshotSequence/next[second]|let fourth =
SnapshotSequence/next[third]|
let fifth = SnapshotSequence/next[fourth]| some rcmclient: Client|
some ramserver: Module| some attacker: Attacker|
some disj idu, ids, idrs: ID| some r: Role| some stzone: STZone|
some disj pubkeyrcm, pubkeyram, pubkeyattacker: PubKey|
Client2Attacker[first, second, rcmclient, rcmclient,
attacker, attacker, stzone, stzone, r, r, idu, idu, ids,
ids, pubkeyattacker, pubkeyattacker] and
Attacker2RAM[second, third, attacker, attacker, ramserver,
ramserver, stzone, stzone, r, r, idu, idu, ids, ids, pubkeyram, pubkeyram] and
RAM2Attacker[third, fourth, ramserver, ramserver,
attacker, attacker, idrs, idrs, idu, idu, ids, ids,
pubkeyattacker, pubkeyattacker] and
Attacker2Client[fourth, fifth, attacker, attacker,
rcmclient, rcmclient, idrs, idrs, idu, idu, ids, ids, pubkeyrcm, pubkeyrcm]
}

run ScenarioWithAttack for 5

123

Enforcing spatio-temporal access control in mobile applications 345

Appendix C

Spatio-temporal access control model specification

We present our complete model and formalize its specification using the unified mod-
eling language (UML) and the object constraint language (OCL).

Effect of spatio-temporal constraints on RBAC entities

The RBAC entities: users, roles, permissions, and objects are associated with spatio-
temporal zones.
Users We assume that each valid user, interested in doing some location-sensitive
operations, carries a locating device that is able to track his location. The location of
a user changes with time. The spatio-temporal zone associated with a user gives the
user’s current location and time.

Note that, time and location can have different levels of granularity. For example,
the current time can be expressed as 12:00:05 or 12:00 pm. Similarly, a user’s current
location can be Fort Collins or it can be Colorado. The user’s current location and time
information will be used for making access decisions. Consequently, we require the
minimal temporal and location be used to express the spatio-temporal zone associated
with a user. We define the function currentzone that returns the minimal spatio-
temporal zone associated with a user. This function is formally defined as follows:

– currentzone : Users → ST Zones

Objects Objects may also be mobile like the user. Here again, we have locating devices
that track the location of an object. Moreover, an object may not be accessible every-
where and anytime. For example, tellers can only review customer information at a
teller office during working hours. The ozones function returns the spatio-temporal
zones that determine where and when every object is available.

– ozones : Objects → 2ST Zones

Roles Role can be assigned or activated only in specific locations and time. The role
of on-campus student can only be assigned/activated inside the campus during the
semester. The spatio-temporal zone associated with a role gives the location and time
from which roles can be assigned or activated. The r zones function gives the set of
spatio-temporal zones associated with a given role.

– r zones : Roles → 2ST Zones

Permissions Permissions are also associated with a spatio-temporal zone that indicate
where and when a permission can be invoked. For example, a permission to perform
a backup of servers can be executed only from the department after 10 pm on Friday
nights. The function pzones gives the zones in which a specific permission can be
accessed.

– pzones : Permissions → 2ST Zones

123

346 R. Abdunabi et al.

+assignRole(in r : Role, in z : STZone)
+activateRole(in r : Role, in z : STZone)
+getAssignedRoles(in z : STZone)
+getActivatedRoles(in z : STZone)
+getAuthorizedRoles(in z : STZone)
+checkAccess(in o : Object, in a : Activity, in z : STZone)

User

+inheritsAH(in r : Role, in z : STZone) : bool
+getAuthorizedPermissions(in z : STZone)
+getAHJuniorRoles(in z : STZone)
+getAllAHInheritedRoles(in z : STZone)
+addAHJuniorRole(in r : Role, in z : STZone)
+getAssignedPermission(in z : STZone)

Role

+addSoDPermission(in p : Pemission, in z : STZone)
+deleteSoDPermission(in p : Pemission, in z : STZone)
+getSoDPermissions(in z : STZone)

Pemission

1

-uRelations

*

-rRelations

* 1

-role

1

-permAssig

*

-PermAssig*
1

-users*

-currentzone 1

-roles1..*

-rzones1..*

-relation*

-zone

1

-permAssig*

-zone1

1..*

-object1

1..*

-activity1

+getInvolvedRoles()

SOD

+containedZones()

STZone

-zone1 -rh

1

-sod * -zone 1

+getInvolvedPermissions()

PSSOD

-zone

1

-pssod*

-pssod*

-firstPerm1

-pssod*

-secondPerm1

-rh*

-seniorRole1

-RH

*

-juniorRole1

-sod

*

-secondRole

1

-sod

*

-firstRole1

-pzones

1..*

-pemissions *

-ozones1..*

-object 1..*

*

-zcontainment*

1

-interval1

-preqPerm

*
*

*
-preqAssRole

*

STZone

-location1

TimeInterval Location

RSSoD DSoD

UserRoleAssignment UserRoleActivation

UserRoleRelation

Object Activity

PermissionRoleAssign
ment

A_Hierarchy I_Hierarchy

RoleHierarchy

*

-preqActRole *

Fig. 10 UML class model for STRBAC

Figure 10 shows the class diagram of GSTRBAC. Therefore, a security policy of
a mobile application can be specified as one possible instance of this GSTRBAC
class diagram. The GSTRBAC entities: User, Role, Permission, Object, Activity, and
STZone, are represented by classes. Permission is represented in the GSTRBAC class
diagram as an aggregation of the classes Object and Activity. The STZone class aggre-
gates the location and time subclasses. In STZone class, zcontainment is a reflex-
ive association specifying that a zone can contain other zones. Different relation-
ships between entities including UserRoleAssignment, UserRoleActivation, Permis-
sionRoleAssignment, RoleHierarchy, and SoD are modeled using association classes
which are transformed to normal classes following the modeling guidelines in [19,28].
These association classes have binary relationships with STZone class to enforce the
spatio-temporal constraints.

Effect of spatio-temporal constraints on RBAC operations

User-role assignment A user-role assignment is location and time dependent. That is,
a user can be assigned to a role provided the user is in specific locations. For example,
a person can be assigned the on-campus student role only when he is in the campus
during the semester. This requirement is expressed using the zone concept:

– UserRoleAssignment ⊆ users × roles × STZones

This relationship is depicted in the GSTRBAC class diagram as association class
UserRoleAssignment. The OCL operation assignRole assigns role r to user u in zone z
if z is in the set of rzones, user u is present in zone z, and role r is not already assigned
to user u in zone z. For the lack of space, we omit the descriptions of the OCL queries
used in the assignRole operation.

context User::assignRole(r: Role, z:STZone):
UserRoleAssignment
pre: r.rzones->includes(z)

123

Enforcing spatio-temporal access control in mobile applications 347

pre: z.containedZones()->includes(self.
currentzone)
pre: self.getAssignedRoles(z)->excludes(r)
post: self.getAssignedRoles(z)->includes(r)

User-role activation A user can activate a role if the role can be activated on the
specific zone and it is already assigned to that user. For example, the role of doctor
trainee can only be activated in a hospital during the training period. We define the
UserRoleActivation relation to determine the current active roles based on zones:

– UserRoleActivation ⊆ users × roles × STZones

In GSTRBAC class diagram, UserRoleActivation class is specified in a manner
similar to UserRoleAssignment. The only difference is that the activateRole operation
ensures that a user is already assigned to a role before the role is being activated.

Check access This operation checks whether a user is authorized to perform some
operation on an object during a certain time and from a certain location. A user is
allowed to fire a missile if he is assigned the role of top secret commander and he is in
the controller room of the missile during a severe crisis period. Thus, a user can access
an object in a certain zone if that user has activated a role which has an appropriate
permission for that object in that zone.

context User::checkAccess(o:Object,a:
Activity,z:STZone):Boolean
post: result = getActivatedRoles(z)->
collect(r | r.getAuthorizedPermissions(z))
->asSet()->
exists(p | p.object=o and p.activity=a and
o.ozones->includes(z))

Permission-role assignment Permissions can only be assigned to a role during specific
time and locations. For example, the permission of opening a cashier drawer in a store
should be only assigned to a salesman role during the day time. The assignment of
permissions to roles is specified based on zones.

– PermissionRoleAssignment ⊆ permissions × roles × STZones

The following OCL operation assigns permission p to role r in zone z if z is in the
set of pzones and r zones.

context Role::assignPermission(p:Permission,
z:STZone): PermissionAssignment
pre: p.pzones->includes(z) and self.rzones->
includes(z)
pre: self.getAssignedPermissions(z)->excludes(p)
post: self.getAssignedPermissions(z)->includes(p)

Spatio-temporal role hierarchy

The permission-inheritance hierarchy (I-Hierarchy) and the role-activation hierarchy
(A-Hierarchy) are two variations of role hierarchy (RoleHierarchy) in RBAC [41,27].

123

348 R. Abdunabi et al.

In our model, a senior role could have a subset of junior roles in a particular zone. The
spatio-temporal role hierarchies are formally defined as follows:

– RoleHierarchy ⊆ Roles × Roles × STZones
– I-Hierarchy ⊆ RoleHierarchy, A-Hierarchy ⊆ RoleHierarchy, and I-Hierarchy ∩

A-Hierarchy = φ

The subtypes of RoleHierarchy are represented in the GSTRBAC class diagram by
the subclasses I-Hierarchy and A-Hierarchy, which are connected to STZone class to
restrict the roles associations.

Permission-inheritance hierarchy In permission-inheritance hierarchy, a senior role
r can only inherit junior role r ′ permissions in zone z if both roles are available in
zone z. A project manager inherits the permissions of a developer when he is at the
customer site giving a demo. The following OCL expression specifies the spatio-
temporal constraint on I-Hierarchy for adding new junior role.

context Role::addIHJuniorRole(r:Role,z:STZone):
I_Hierarchy
pre: self.rzones->includes(z) and r.rzones->
includes(z)
pre: self.getIHJuniorRoles(z)->excludes(r)
post: self.getIHJuniorRoles(z)->includes(r)

The delete operation of a junior role in I-Hierarchy can be defined in the simi-
lar manner. The I-Hierarchy relationship is acyclic as shown by the following OCL
constraint.

context r1,r2: Role
inv IHierarchy_Cycle_Constraint: not
STZone.allInstances-> exists(z|r1.inheritsIH(r2,z)
and r2.inheritsIH(r1,z)and r1<>r2)

The boolean operation inheritsIH(r,z) returns true if role r is directly or indirectly
a junior role of the context role in particular zone, otherwise it returns false.

inheritsIH(r:Role,z:STZone): Boolean =
if (self.getIHJuniorRoles(z)->includes(r))
then true
else self.getIHJuniorRoles(z)->
exists(j | j.inheritsIH(r,z)) endif

We define the OCL query operation getAuthorizedPermissions(z) to get the autho-
rized permissions for a given role at zone z through direct assignment or indirect
I-Hierarchy.

context Role::getAuthorizedPermissions(z:STZone):
Set(Permission)
Post: result= self.getAssignedPermissions(z)->
union(self.getAllIHInheritedRoles(z)->collect(r |
r.getAssignedPermissions(z)))->asSet()

123

Enforcing spatio-temporal access control in mobile applications 349

Role-activation hierarchy Restricted spatio-temporal A-Hierarchy allows members of
senior roles to activate junior roles in predefined spatio-temporal zones. For example,
a department chair can activate a staff role during the semester inside the department
building. The OCL operations of adding and deleting junior roles to the A-Hierarchy
are defined in similar manner to I-Hierarchy. Further, the acyclic constraints on A-
Hierarchy is enforced in the same way of the I-Hierarchy.

The only differences are that, the OCL query operation getAHJuniorRoles(z) returns
all the junior role in A-Hierarchy of the context role in particular zone. Moreover, the
OCL query operation getAuthorizedRoles(z) gives the authorized activation roles for
the context user that are either explicitly assigned or implicitly obtained through A-
Hierarchy in certain zones.

context User:: getAuthorizedRoles(z:STZone):
Set(Role)
post: result= self.getAssignedRoles(z)->
union(self.getAssignedRoles(z)->collect(r|
r.getAllAHInheritedRoles(z))->
asSet())

Spatio-temporal separation of duty

The static SoD (SSoD) and dynamic SoD (DSoD) are two special classes of the SoD
constraints in RBAC [17]. Further, the role SSoD (RSSoD) constraints are defined
on roles assignment, while the permission SSoD (PSSoD) constraints are defined on
permissions assignments.

In our model, the conflicting roles and permissions in SoD are defined over some
zones. The spatio-temporal RSSoD, PSSoD, and DSoD relations are formally defined
as follows:

– RSSoD ⊆ Roles × Roles × STZones
– DSoD ⊆ Roles × Roles × STZones, and RSSoD ∩ DSoD = φ

– PSSoD ⊆ permissions × permissions × STZones

The static and dynamic SoD relations are represented in the GSTRBAC class dia-
gram using the associations classes RSSoD, PSSoD, and DSoD, which connect the
conflicting entities with certain zones.

Role SSoD The same individual should not be assigned to specific roles in specific
location for some duration. For example, the same user should not be assigned to billing
clerk and account receivable clerk roles in the same time at specific trade corporation.
The following OCL invariant forbids the assignment of conflicting roles in a particular
zone.

context User
inv RSSOD_Constaint: STZone.allInstances->forAll(z |
not self.getAssignedRoles(z)->
exists(r1,r2 | r1.getSSoDRoles(z)->includes(r2)))

123

350 R. Abdunabi et al.

However, the above constraint might be violated through role hierarchy relation.
For example, a billing supervisor role might be a senior role of the two conflicting
roles billing clerk and account clerk at the same time and in the same accounting
department. The following OCL constraint prevents such situation.

context User
inv RSSOD_RH_Constraint: STZone.allInstances->
forAll(z | not self.getAuthorizedRoles(z)->
exists(r1,r2 | r1.getSSoDRoles(z)->includes(r2)))

Permissions SSoD PSSoD prevents the assignment of conflicting permissions to a role.
For example, a loan officer is not permissible to issue loan request and approve it in
the bank building during the day-time. The following OCL invariant expresses the
PSSoD requirement in our model.

context Role
inv PSSOD_Constaint: STZone.allInstances->
forAll(z | not self.getAssignedPermissions(z)->
exists(p1,p2 | p1.getPSSoDPermissions(z)->
includes(p2)))

However, this constraint might be violated through I-Hierarchy in which a senior
role inherits some junior roles that have been mutually assigned conflicting permis-
sions. The following OCL invariant prevents the violation of PSSoD via I-Hierarchy.

context Role
inv PSSOD_RH_Constraint: STZone.allInstances->
forAll(z | not self.getAuthorizedPermissions(z)->
exists(p1,p2 | p1.getPSSoDPermissions(z)->
includes(p2)))

DSoD Two conflicting activation roles cannot be activated in some spatio-temporal
zones by the same user. For example, the simultaneous activation of cashier and cashier
supervisor is forbidden during the working hours in the same store to deter such user
from committing a fraud. The DSoD constraints are expressed in OCL invariants
in a similar manner to the RSSoD constraints. The only difference is that the OCL
invariants prevent the activations of conflicting roles that are connected by DSoD in
some zones through either the explicit role assignment or the implicit A-Hierarchy.

Spatio-temporal prerequisite constraints

In RBAC, the prerequisite constraints obligates that some actions to be taken prior to
performing an operation [16].

Prerequisite constraints on user-role assignment The prerequisite constraint on roles
assignments imposes that a user must be assigned to some less critical roles in a
given spatio-temporal zone before being assigned more critical roles in specific zones.
For example, the role of emergency-nurse can be assigned to John in the urgent care

123

Enforcing spatio-temporal access control in mobile applications 351

unit from 12:00 to 5:00 am if he is assigned the role of nurse-on-night-duty at the
hospital during those hours. The following OCL invariant expresses the prerequisite
constraints on user-role assignment. The query operation getPreqAssRoles() returns
all the assignment prerequisite roles needed for assigning a certain role.

context User
inv Prerequiste_URAssign: STZone.allInstances->
forAll(z | Role.allInstances->
forAll(r1 | (self.getAssignedRoles(z)->
includes(r1)) implies (self.getAssignedRoles(z)->
includesAll(r1.getPreqAssRoles()))))

Prerequisite constraints on permission-role assignment The prerequisite constraints
on permissions assignments indicates that a role can be assigned a permission in a
specific zone if some prerequisite permissions are already assigned to that role in the
same zone. For example, a bank teller must have the permission of reading an account
during working hours before he can be given the permission to update that account.
The prerequisite constraint on permission-role assignment can be specified using OCL
expression as follows.

context Role
inv Prerequist_PRAssign: STZone.allInstances->
forAll(z | Permission.allInstances->
forAll(p1 | (self.getAssignedPermissions(z)->
includes(p1)) implies
(self.getAssignedPermissions(z) ->
includesAll(p1.getPrerequisitePermissions()))))

Prerequisite user-role activation A role can be activated if some prerequisite roles are
already activated in specific zones. For example, in a university the teaching assistant
role can be activated during a semester in a department if the student role can be
activated during the same time. This requirement is specified in our model in the
same way of the prerequisite user-role assignment constraint except that the OCL
query getPreqAssRoles() is substituted with getPreqActRole(). The query operation
getPreqActRole() returns all activation prerequisite roles needed to activate a role.

References

1. Schaad A, Moffett J (2002) A lightweight approach to specification and analysis of role-based access
control extensions. In: Proceedings of the symposium on access control models and technologies
(SACMAT), pp 13–22

2. Anne A (2004) XACML profile for role-based access control (RBAC). OASIS Access Control TC
Comm Draft 1:13

3. Samuel A, Ghafoor A, Bertino E (2007) A framework for specification and verification of generalized
spatio-temporal role based access control model. Technical report CERIAS TR 2007–08, Purdue
University, West Lafayette

4. Chaudhuri A (2009) Language-based security on Android. In: Proceedings of the ACM workshop on
programming languages and analysis for security (PLAS), pp 1–7

123

352 R. Abdunabi et al.

5. Shafiq B, Masood A, Joshi J, Ghafoor A (2005) A role-based access control policy verification frame-
work for real-time systems. In: Proceedings of the workshop on object-oriented real-time dependable
systems (WORDS), pp 13–20

6. Bose B, Sane S (2010) DTCOT: distributed timeout based transaction commit protocol for mobile
database systems. In: Proceedings of the international conference and workshop on emerging trends
in technology (ICWET), Mumbai, India, pp 518–523

7. Kim D-K, Ray I, France RB, Li N (2004) Modeling role-based access control using parameterized
UML models. In: Proceedings of the 7th international conference FASE’2004, pp 180–193

8. Daniel J (2002) Alloy: a lightweight object modelling notation. ACM Trans Softw Eng Methodol
11(2):256–290

9. Daniel M, Gerald P, Richard M (1980) A locking protocol for resource coordination in distributed
databases. ACM Trans Database Syst 5(2):103–138

10. Technische Universität Darmstadt. FlexiProvider. http://www.flexiprovider.de/overview.html/.
Accessed on 30 Nov 2012

11. Bertino E, Catania B, Damiani ML, Perlasca P (2005) GEO-RBAC: a spatially aware RBAC. In:
Proceedings of the ACM symposium on access control models and technologies (SACMAT), pp 29–
37

12. Bertino E, Piero B, Elena F (2001) TRBAC: a temporal role-based access control model. ACM Trans
Inf Syst Secur 4(3):191–233

13. Sposaro F, Tyson G (2009) iFall: an Android application for fall monitoring and response. In: Pro-
ceedings of the annual international conference of the IEEE at Engineering in Medicine and Biology
Society (EMBC), 3–6 Sept 2009, pp 6119–6122

14. Frank S, Window S (2004) Threat modeling (Microsoft professional). Microsoft Press, Redmond
(ISBN: 0735619913)

15. Hansen F, Oleshchuk V (2003) SRBAC: a spatial role-based access control model for mobile systems.
In: Proceedings of the 8th Nordic workshop secure IT systems (NORDSEC), pp 129–141

16. Ahn G, Shin M (2001) Role-based authorization constraints specification using object constraint lan-
guage. In: Proceedings of the IEEE international workshops on enabling technologies: infrastructure
for collaborative enterprises (WETICE), pp 157–162

17. Gail-Joon A, Ravi S (2000) Role-based authorization constraints specification. ACM Trans Inf Syst
Secur 3(4):207–226

18. US Government (2012) Global positioning system. http://www.gps.gov/. Accessed on 30 Nov
2012

19. Booch G, James R, Ivar J (2005) The unified modeling language user guide, 2nd edn. Addison-Wesley
Professional, Boston

20. Grisham P, Chen C, Khurshid S, Perry D (2006) Design and validation of a security model with the
Alloy analyzer. In: Proceedings of the workshop at ACM SIGSOFT first Alloy, 6th Nov 2006, Portland,
OR, USA

21. Google Inc. (2012) Android SDK. http://developer.android.com/sdk/index.html. Accessed on 30 Nov
2012

22. Google Inc. (2012) The Android mobile (OS). http://www.android.com/. Accessed on 30 Nov
2012

23. Ray I, Kumar M, Yu L (2006) LRBAC: a location-aware role-based access control model. In: Proceedins
of the 2nd international conference on information systems security (ICISS 2006), 17–21 Dec 2006,
Indian Statistical institute, Kolkata, India, pp 147–161

24. Ray I, Toahchoodee M (2007) A spatio-temporal role-based access control model. In: Proceedings of
the DBSec, pp 211–226

25. Jaehong P, Ravi S (2004) The UCONABC usage control model. ACM Trans Inf Syst Secur 7(1):128–
174

26. James J, Elisa B, Usman L, Arif G (2005) A generalized temporal role-based access control model.
IEEE Trans Knowl Data Eng 17(1):4–23

27. James J, Elisa B, Usman L, Arif G (2005) A generalized temporal role-based access control model.
IEEE Trans Knowl Data Eng 17(1):4–23

28. Larman C (2004) Applying UML and patterns: an introduction to object-oriented analysis and design
and iterative development, 3rd edn. Prentice Hall, Englewood Cliffs

123

http://www.flexiprovider.de/overview.html/
http://www.gps.gov/
http://developer.android.com/sdk/index.html
http://www.android.com/

Enforcing spatio-temporal access control in mobile applications 353

29. Chen L, Crampton J (2008) On spatio-temporal constraints and inheritance in role-based access control.
In: Proceedings of the ACM symposium on information, computer and communications security
(ASIACCS), Mar 2008, pp 205–216

30. Lin A, Bond M, Clulow J (2007) Modeling partial attacks with Alloy. In: Proceedings of the workshop
on security protocols, pp 20–33

31. Lockhart H, Parducci B, Levinson R (2012) OASIS eXtensible access control markup language
(XACML) TC. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml/. Accessed
on 30 Nov 2012

32. Tamer Özsu M, Valduriez P (1999) Principles of distributed database systems, 2nd edn. Prentice-Hall,
Englewood cliffs (ISBN-10: 1441988335)

33. Toahchoodee M, Ray I (2011) On the formalization and analysis of a spatio-temporal role-based access
control model. J Comput Secur 19(3):399–452

34. Toahchoodee M, Ray I, Anastasakis K, Georg G, Bordbar B (2009) Ensuring spatio-temporal access
control for real-world applications. In: Proceedings of the 13th ACM symposium on access control
models and technologies (SACMAT), Estes Park, CO, USA, 11–13 June 2008 pp 13–22

35. Manuel K, Francesco P-P (2006) UML specification of access control policies and their formal veri-
fication. Softw Syst Modell 5(4):429–447

36. Michael H, David L (2002) Writing secure code, 2nd edn. Microsoft Press, Redmond (ISBN:
0735617228)

37. Kirkpatrick M, Bertino E (2010) Enforcing spatial constraints for mobile RBAC systems. In: Proceed-
ings of the 15th ACM symposium on access control models and technologies (SACMAT), Pittsburgh,
pp 99–108

38. Xu M, Wijesekera D (2009) A role-based XACML administration and delegation profile and its enforce-
ment architecture. In: Proceedings of the 6th ACM workshop on secure web services (SWS), 13 Nov
2009, Chicago, IL, USA, pp 53–60

39. MySQL (2012) The world’s most popular open source database. http://www.mysql.com/. Accessed
on 30 Nov 2012

40. Abdunabi R, Al-Lail M, Ray I, Robert B (2013) Specification, validation, and enforcement of a gen-
eralized spatio-temporal role-based access control model. IEEE Syst J (to be appear)

41. Ravi S, Edward C, Hal F, Charles Y (1996) Role-based access control models. IEEE Comput 29(2):38–
47

42. Ravi S, Kumar R, Xinwen Z (2006) Secure information sharing enabled by trusted computing and
PEI models. In: Proceedings of the ACM symposium on information, computer and communications
security (ASIACCS’06), 21–24 Mar 2006, Taipei, Taiwan

43. Mondal S, Sural S (2008) Security analysis of temporal-RBAC using timed automata. In: Proceedings
of the 4th international symposium on information assurance and security (IAS), 8–10 Sept 2008, pp
37–40

44. Ravi S (1995) Rationale for the RBAC96 family of access control models. In: Proceedings of the 1st
ACM workshop on role-based access control

45. Subhendu A, Samrat M, Shamik S, Arun M (2009) Role based access control with spatiotemporal
context for mobile applications. Trans Comput Sci 4:177–199

46. Subhendu A, Shamik S, Arun M (2007) STARBAC: spatio temporal role based access control. In:
Proceedings of the OTM, pp 1567–1582

47. Syed A, Mohammad I (2011) Location-based services handbook: applications, technologies, and secu-
rity. CRC Press, Boca Raton (ISBN: 1420071963)

48. Taghdiri M, Jackson D (2003) A lightweight formal analysis of a multicast key management scheme.
In: Proceedings of the FORTE, pp 240–256

49. Arensman W, Whipple J, Boler M (2009) A public safety application of GPS-enabled smartphones
and the Android operating system. In: Proceedings of the systems, man and cybernetics (SMC), pp
2059–2061

50. Sun W, France R, Ray I (2011) Rigorous analysis of UML access control policy models. In: Proceedings
of the POLICY, pp 9–16

51. Yu L, France RB, Ray I (2008) Scenario-based static analysis of UML class models. In: Proceedings
of the ACM/IEEE 11th international conference on model driven engineering languages and systems
(MoDELS), Toulouse, France, pp 234–248

52. Yu L, France RB, Ray I, Sun W (2012) Systematic scenario-based analysis of UML design class
models. In: Proceedings of a ICECCS meeting held 18–20 July 2012, Paris, France, pp 86–95

123

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml/
http://www.mysql.com/

Copyright of Computing is the property of Springer Science & Business Media B.V. and its
content may not be copied or emailed to multiple sites or posted to a listserv without the
copyright holder's express written permission. However, users may print, download, or email
articles for individual use.

	Enforcing spatio-temporal access control in mobile applications
	Abstract
	1 Introduction
	2 Related work
	3 Spatio-temporal access control model
	4 Software architecture model
	4.1 Architectural considerations
	4.2 Assumptions
	4.3 Architecture modules
	4.4 Computational capabilities and storage space

	5 Resource access protocols
	5.1 Protocols prelude
	5.2 Initial access protocol
	5.3 Ongoing access protocol
	5.4 Access suspension protocol

	6 Securing against some common attacks
	7 Formal analysis
	8 Prototype implementation
	9 Conclusion and future work
	Appendix A
	Appendix A
	Alloy specification of the access control protocol
	Alloy specification of the access control protocol

	Appendix B
	Appendix B
	Alloy specification of successful MITM attack
	Alloy specification of successful MITM attack

	Appendix C
	Appendix C
	Spatio-temporal access control model specification
	Spatio-temporal access control model specification
	Effect of spatio-temporal constraints on RBAC entities
	Effect of spatio-temporal constraints on RBAC entities
	Effect of spatio-temporal constraints on RBAC operations
	Effect of spatio-temporal constraints on RBAC operations
	Spatio-temporal role hierarchy
	Spatio-temporal role hierarchy
	Spatio-temporal separation of duty
	Spatio-temporal separation of duty
	Spatio-temporal prerequisite constraints
	Spatio-temporal prerequisite constraints

	References

