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Abstract: The multiple-access wiretap channel (MAC-WTC) with common channel state information (CSI) at the
encoders is studied, where two transmitters wish to send their confidential messages (no common message) to a legitimate
receiver, while keeping a wiretapper as ignorant of the confidential messages as possible. Meanwhile, the channel is
controlled by CSI, and it is available at the transmitters in a non-causal manner or causal manner. This model can be viewed
as a MAC extension of the WTC with CSI. Both the situation that the encoders can cooperate with each other and
the situation that cooperation is not allowed between the encoders are investigated. More specifically, first, the
cooperative MAC-WTC with common CSI at the encoders is investigated, inner bounds on the secrecy capacity regions are
provided for both non-causal and causal manners. Secondly, the non-cooperative MAC-WTC with common CSI at the
encoders is investigated, and also provide inner bounds on the secrecy capacity regions for both non-causal and
causal manners. Finally, by calculating the binary examples, the authors find that the cooperation between the encoders helps
to obtain a larger secrecy rate region, that is, cooperation enhances the security of the MAC-WTC with common CSI at the
encoders.

1 Introduction

The coding for channels with channel state information (CSI)
at the transmitter was first investigated by Shannon [1] in
1958, where the CSI is available to the transmitter in a
causal manner. The capacity of this model was totally
determined by Shannon [1]. After that, in order to solve the
problem of coding for a computer memory with defective
cells, Kuznetsov and Tsybakov [2] considered a channel in
the presence of non-causal CSI at the transmitter. They
provided some coding techniques without determination of
the capacity. The capacity was found in 1980 by Gelfand
and Pinsker [3]. Based on Gelfand and Pinsker’s work,
Costa [4] investigated a power constrained additive noise
channel, where part of the noise is known at the transmitter
as side information. This channel is also called dirty paper
channel. By using the capacity formula of Gelfand–
Pinsker’s channel [3], Costa showed that the capacity of the
dirty paper channel is the same as that of the standard
Gaussian channel (no side information to the transmitter).
In addition, based on Shannon’s model [1], Salehi [5]
investigated the situation that the channel encoder and
decoder have access to noisy versions of the CSI, and
the channel capacity of this model was determined.
However, Caire and Shamai [6] showed that the capacity

formula given by Salehi [5] can be obtained from
Shannon’s result [1].
Recently, a few works on multiple user communication

systems with CSI have been studied. Das and Narayan [7]
characterised the capacity region of time-varying
multiple-access channel (MAC) with causal CSI at the
encoders. After that, Cemal and Steinberg [8] investigated
the MAC with full CSI at the decoder, and partial,
rate-limited CSI at the encoders. Inner and outer bounds
were derived on the capacity region of this new model. In
addition, the capacity region was determined for a special
case, where the CSI available at one of the encoders is a
subset of the CSI available at the other encoder. Moreover,
Jafar [9] studied the MAC with CSI in a manner that there
are three different kinds of CSI, and they are available to
the two encoders and the decoder, respectively. An
achievable region was provided in [9]. In 2013, Lapidoth
and Steinberg [10, 11] studied the MAC with causal CSI,
where both the case where two independent states are
respectively available to the corresponding encoders and the
case where a common state is available to the encoders are
considered. Inner and outer bounds on the capacity regions
are provided for these models. Note that in [10, 11], both
the causal CSI and strictly causal CSI are studied, and the
strictly causal CSI is a special case of the causal CSI. Other
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related works are in [12–15]. Besides these works on the
MAC with CSI, Steinberg investigated the degraded
broadcast channel with CSI [16], where both causal and
non-causal manners were considered in his paper.
Specifically, inner and outer bounds on capacity region
were provided for the degraded broadcast channel with
non-causal CSI [16], meanwhile, the capacity region of the
degraded broadcast channel with causal CSI was totally
determined [16].
Transmission of confidential messages has been studied in

the literature of several classes of channels. Wyner, in his
well-known paper on the wiretap channel (WTC) [17],
studied the problem that how to transmit the confidential
messages to the legitimate receiver via a degraded broadcast
channel, while keeping the wiretapper as ignorant of the
messages as possible. Measuring the uncertainty of the
wiretapper by equivocation, the capacity-equivocation
region was established. Furthermore, the secrecy capacity
was also established, which provided the maximum
transmission rate with perfect secrecy. After the publication
of Wyner’s work, Csiszár and Körner [18] investigated a
more general situation: the broadcast channels with
confidential messages (BCC). In this model, a common
message and a confidential message were sent through a
general broadcast channel. The common message was
assumed to be decoded correctly by the legitimate receiver
and the wiretapper, whereas the confidential message was
only allowed to be obtained by the legitimate receiver. This
model is also a generalisation of [19], where no
confidentiality condition is imposed. The capacity-
equivocation region and the secrecy capacity region of BCC
[18] were totally determined, and the results were also a
generalisation of those in [17]. Based on Wyner’s work,
Leung-Yan-Cheong and Hellman studied the Gaussian
wiretap channel (GWC) [20], and showed that its secrecy
capacity was the difference between the main channel
capacity and the overall WTC capacity (the cascade of main
channel and WTC).
Inspired by the works of [3, 4, 17], Mitrpant et al. [21]

studied transmission of confidential messages in the
channels with CSI. In [21], an inner bound on the
capacity-equivocation region was provided for the GWC
with CSI. Furthermore, Chen et al. [22] investigated the
discrete memoryless WTC with non-causal CSI (see Fig. 1),
and also provided an inner bound on the capacity-
equivocation region. Note that the coding scheme of [22] is
a combination of those in [3, 17]. Based on the work of
[22], Dai [23] provided an outer bound on the WTC with
non-causal CSI, and determined the capacity-equivocation
region for the model of WTC with memoryless CSI, where
the memoryless means that at the ith time, the output of the
channel encoder depends only on the ith time CSI. Some

other related works on the WTC (including feedback and
secret key) can be found in [24–31].
Recently, the information-theoretical security for other

multi-user communication systems has been investigated.
The relay channel with confidential messages was studied
in [32], and the interference channel with confidential
messages was studied in [33]. The multiple-access channel
with confidential messages was studied in [34–38].
In this paper, first, we study the cooperative MAC-WTC

with common CSI at the encoders, see Fig. 2. For the
cooperative case, both the messages W1 and W2 are known
by Encoder 1 and Encoder 2. The transition probability of
the channel depends on the CSI SN, and SN is available to
the channel encoders in a causal or non-causal manner. The
wiretapper wishes to obtain the confidential messages. Inner
bounds (achievable regions) on the secrecy capacity regions
of Fig. 2 are provided for both causal and non-causal
manners.
Second, the non-cooperative MAC-WTC with common

CSI at the encoders is investigated, see Fig. 3. The only
difference between Figs. 2 and 3 is that the messages W1

and W2 of Fig. 3 are known by Encoder 1 and Encoder 2,
respectively. In other words, W1 is not known by Encoder 2,
and W2 is not known by Encoder 1. Inner bounds on the
secrecy capacity regions of Fig. 3 are also provided for both
causal and non-causal manners.

Fig. 1 Wiretap channel with non-causal CSI

Fig. 2 Cooperative MAC-WTC with common CSI at the encoders

Fig. 3 Non-cooperative MAC-WTC with common CSI at the
encoders

www.ietdl.org

598
& The Institution of Engineering and Technology 2014

IET Commun., 2014, Vol. 8, Iss. 5, pp. 597–606
doi: 10.1049/iet-com.2013.0630



Finally, the results of this paper are further explained via
binary examples. The main contribution of this paper is as
follows:

† Several encoding–decoding schemes for the models of
Figs. 2 and 3 are constructed.
† The gap between the cooperative encoders and the
non-cooperative encoders is shown by the binary examples
of Figs. 2 and 3.

In this paper, random variables, sample values and
alphabets are denoted by capital letters, lower case letters
and calligraphic letters, respectively. A similar convention
is applied to the random vectors and their sample values.
For example, UN denotes a random N-vector (U1, …,
UN), and uN = (u1, …, uN) is a specific vector value in
UN that is the Nth Cartesian power of U. UN

i denotes a
random N−i + 1-vector (Ui, …, UN), and
uN
i = (ui, . . . , uN ) is a specific vector value in UN

i . Let
pV (v) denotes the probability mass function Pr{V = v}.
Throughout the paper, the logarithmic function is to
the base 2.
The organisation of this paper is as follows: In Section 2,

the inner bounds on the secrecy capacity regions of the
model of Fig. 2 for both causal and non-causal manners are
provided. In Section 3, the inner bounds on the secrecy
capacity regions of the model of Fig. 3 are provided. In
Section 4, we will show the binary examples about the
models of Figs. 2 and 3. Final conclusions are provided in
Section 5.

2 Cooperative MAC-WTC with common CSI
at the encoders

2.1 Model of Fig. 2 with non-causal CSI

In this subsection, a description of the model of Fig. 2 with
non-causal CSI is given by Definitions 1–3. The inner
bound on the secrecy capacity region Ccns , which is
composed of all achievable secrecy pairs (R1, R2) in the
model of Fig. 2 with non-causal CSI, is characterised in
Theorem 1, where the achievable secrecy pair (R1, R2) is
defined in Definition 4.

Definition 1: (Encoder 1 and Encoder 2): Encoder 1 and
Encoder 2 of the model of Fig. 2 with non-causal CSI are
stochastic encoders. The inputs of the two encoders are W1,
W2 and SN, while the outputs are XN

1 and XN
2 , respectively.

The message W1 takes the value in W1, and the message
W2 takes value in W2. W1 and W2 are independent and
uniformly distributed over their ranges W1 and W2. S

N is the
CSI sequence, and it is the output of a discrete memoryless
source pS(s).

Definition 2: (channels): The channel is a DMC with finite
input alphabet X1 ×X2 × S, finite output alphabet Y × Z
and transition probability QM(y, z|x1, x2, s), where x1 [ X1,
x2 [ X2, s [ S, y [ Y and z [ Z. The inputs of the
channel are XN

1 , XN
2 and SN, while the outputs are YN and

ZN. Note that (W1, W2) � (XN
1 , XN

2 , SN ) � (YN , ZN ) is a
Markov chain. The equivocation rate to the wiretapper is
defined as

D = H(W1, W2|ZN )

N
(1)

Note that Δ = ((H(W1, W2))/N ) implies that the wiretapper has
no knowledge of the messages, that is, the perfect secrecy is
achieved.

Definition 3: (decoder): The decoder is a mapping
fD:YN � W1 ×W2, with input YN and output
( Ŵ 1 , Ŵ 2 ) = fD(Y

N ). Let Pe be the error probability, and it
is defined as Pr {(W1, W2) = ( Ŵ 1 , Ŵ 2 )}.

Definition 4: (achievable secrecy pair (R1, R2) in the model of
Fig. 2 with non-causal CSI): A pair (R1, R2) (where R1, R2 > 0)
is called an achievable secrecy pair if, for any given e . 0 and
sufficiently large N, there exists a code (N, Δ, Pe) with two
message sets W1 and W2, such that

log ‖ W1 ‖
N

≥ R1 − e,
log ‖ W2 ‖

N
≥ R2 − e,

D ≥ R1 + R2 − e, Pe ≤ e

(2)

The inner bound on the secrecy capacity region Ccns
(composed of all achievable secrecy pairs) of the model of
Fig. 2 with non-causal CSI is provided in Theorem 1.

Theorem 1: (Inner bound): A single-letter characterisation of
the region Ccnis is as follows

Ccnis =
⋃

pU S X1 X2 YZ

(R1, R2):
R1 + R2 ≤ I (U ; Y )− I (U ; S)
R1 + R2 ≤ I(U ; Y )− I(U ; Z)

⎧⎨
⎩

⎫⎬
⎭

Here, note that

pU X1 X2 SY Z(u, x1, x2, s, y, z)

= pY ,Z|X1X2S(y, z|x1, x2, s)pUX1X2S(u, x1, x2, s)

and Ccnis satisfies that Ccnis # Ccns .

Remark 1: Since the encoders can cooperate with each other,
the model of Fig. 2 reduces to the WTC with CSI [22] by
considering the two cooperative encoders into one new
encoder. From [22], we know that R =min{I(U;Y )−I(U;S),
I(U;Y )−I(U;Z )} is an achievable secrecy rate of the WTC
with CSI. Thus, replacing R byR1 + R2, we obtain the
achievable secrecy rate region Ccnis in Theorem 1.

2.2 Model of Fig. 2 with causal CSI

The model of Fig. 2 with causal CSI is similar to the
model with non-causal CSI in Section 2.1, except that
the SN in Definition 1 is known to be the encoders in a
causal manner, that is, at the ith time (1≤ i≤N ), the
outputs of Encoder 1 and Encoder 2 are x1, i = f1, i(w1, w2, s

i)
and x2, i = f2, i(w1, w2, s

i), respectively, where si = (s1, s2,
…, si), f1, i is denoted as Encoder 1 at time i and f2, i is
denoted as Encoder 2 at time i. Note that Si is independent
with W1, W2, Yi−1, Zi−1 and SNi+1, and f1, i, f2, i are
stochastic encoders.
The inner bound on the secrecy capacity region Cccs of the

model of Fig. 2 with causal CSI is provided in Theorem 2, and
it is directly obtained from Theorem 1 by using the fact that S
is independent of U. Thus the proof is omitted here.
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Theorem 2: (Inner bound): A single-letter characterisation of
the region Cccis is as follows

Cccis =
⋃

pU S X1 X2 YZ

R1, R2

( )
R1 + R2 ≤ I U ; Y( ) − I U ; Z( )

{ }

Here, note that

pUX1X2SYZ(u, x1, x2, s, y, z)

= pY ,Z|X1X2S(y, z|x1, x2, s) pUX1X2S(u, x1, x2, s)

and Cccis satisfies that Cccis # Cccs .

3 Non-cooperative MAC-WTC with common
CSI at the encoders

3.1 Model of Fig. 3 with non-causal CSI

The model of Fig. 3 with non-causal CSI is similar to Section
2.1, except the fact that the message W2 is not known by
Encoder 1, and the message W1 is not known by Encoder 2,
that is, the cooperation between the encoders is not allowed.
The inner bound on the secrecy capacity region Cnns of the
model of Fig. 3 with non-causal CSI is provided in
Theorem 3, and it is proved in Appendix 1.

Theorem 3: (Inner bound): A single-letter characterisation of
the region Cnnis is as follows

Cnnis = A< B

where

A =
⋃

pU1X1 |SpU2X2 |S

(R1, R2):
R1 ≤ I (U1; Y )− I(U1; S)
R1 ≤ I(U1; Y )− I (U1; Z)

R2 ≤ I(U2; Y |U1)− I (U2; S)
R2 ≤ I(U2; Y |U1)− I (U2; Z|U1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

and

B =
⋃

pU1X1 |SpU2X2 |S

(R1, R2):
R1 ≤ I(U1; Y |U2)− I (U1; S)

R1 ≤ I(U1; Y |U2)− I (U1; Z|U2)
R2 ≤ I (U2; Y )− I(U2; S)
R2 ≤ I(U2; Y )− I (U2; Z)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Here, note that

pU1X1U2X2SYZ
(u1, x1, u2, x2, s, y)

= pY ,Z|X1X2S(y, z|x1, x2, s)pU1X1|S

(u1, x1|s) pU2X2|S(u2, x2|s)pS(s)

U1 is independent of U2, and U1→ S→U2.Cnnis satisfies that
Cnnis # Cnns .

Remark 2: There are some notes on Theorem 3, which are as
follows:

† The ranges of the random variables U1 and U2 satisfy

‖ U1 ‖ ≤‖ X1 ‖ ‖ X2 ‖ ‖ S ‖ +2

‖ U2 ‖ ≤ ( ‖ X1 ‖ ‖ X2 ‖ ‖ S ‖ +2)2

† Without the secrecy constraint, an achievable region R∗ of
the MAC with non-causal CSI at the non-cooperative
encoders [12] is given by

R∗ =
⋃

pU1X1 |SpU2X2 |S

(R1, R2):
R1 ≤ I(U1; Y |U2)− I(U1; S)
R2 ≤ I(U2; Y |U1)− I(U2; S)

R1 + R2 ≤ I (U1, U2; Y )− I (U1, U2; S)

⎧⎪⎪⎨
⎪⎪⎩

⎫⎪⎪⎬
⎪⎪⎭

Note that the inequality R1 + R2≤ I(U1, U2;Y )−I(U1, U2;S)
can be obtained from R1≤ I(U1;Y |U2)−I(U1;S), R2 ≤ I(U2;Y )
−I(U2;S) and U1→ S→U2. Therefore, compared with
Theorem 3, it is easy to see that Cnnis # R∗, that is, the
secrecy constraint reduces the achievable region R∗.

3.2 Model of Fig. 3 with causal CSI

The model of Fig. 3 with causal CSI is similar to the model
with non-causal CSI in Section 3.1, except that the SN in
Definition 1 is known to be the encoders in a causal
manner, that is, at the ith time (1 ≤ i≤N ), the outputs of
Encoder 1 and Encoder 2 are x1, i = f1, i(w1, s

i) and x2, i

= f2, i(w2, s
i), respectively, where si = (s1, s2, …, si), f1,i is

denoted as Encoder 1 at time i and f2, i is denoted as
Encoder 2 at time i. Note that Si is independent with W1,
W2, Yi−1, Zi−1 and SNi+1, and f1, i, f2, i are stochastic
encoders.
The inner bound on the secrecy capacity region Cncs of the

model of Fig. 3 with causal CSI is provided in Theorem 4, and
it is directly obtained from Theorem 3 by using the fact that S
is independent of U1 and U2. Thus, the proof is omitted here.

Theorem 4: (Inner bound): A single-letter characterisation of
the region Cncis is as follows

Cncis = C<D
where

C =
⋃

pU1X1 |SpU2X2 |S

(R1, R2):
R1 ≤ I(U1; Y )− I (U1; Z)

R2 ≤ I(U2; Y |U1)− I (U2; Z|U1)

⎧⎨
⎩

⎫⎬
⎭

and

D =
⋃

pU1X1 |SpU2X2 |S

(R1, R2):
R1 ≤ I(U1; Y |U2)− I (U1; Z|U2)

R2 ≤ I (U2; Y )− I (U2; Z)

⎧⎨
⎩

⎫⎬
⎭

Here, note that

pU1X1U2X2SYZ
(u1, x1, u2, x2, s, y)

= pY ,Z|X1X2S(y, z|x1, x2, s)pU1X1|S(u1, x1|s)
pU2X2|S(u2, x2|s)pS(s)
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U1 is independent of U2, and U1→ S→U2.Cncis satisfies that
Cncis # Cncs .

4 Binary examples of MAC with causal CSI
and with or without secrecy

In this section, we will calculate binary cases of Theorems 2
and 4, see the followings.

4.1 Definition

Let X1 = X2 = Y = {0, 1}. Define S = {0, 1}, pS(0) =
pS(1) = (1/2). The transition probability of the channel is
defined as follows.
When s = 0

pY |X1,X2, S(y|x1, x2, s = 0) = 1, if y = x1
0, otherwise

{
(3)

When s = 1

pY |X1,X2, S(y|x1, x2, s = 1) = 1, if y = x2
0, otherwise

{
(4)

For convenience, we assume that the WTC is degraded, that

is, the transition probability of the channel is given by

pY ,Z|X1X2S(y, z|x1, x2, s)
= pZ|Y (z|y)pY |X1X2S(y|x1, x2, s)

The probability distribution pZ|Y(z|y) is defined as follows

pZ|Y (z|y) = 1− p, if y = z
p, otherwise

{
(5)

Here, 0≤ p≤ (1/2).

† For the cooperative case (Theorem 2), let U = {0, 1}. The
probability mass function of U is defined as: pU(0) = α, pU (1)
= 1− α, where 0≤ α≤ 1.

In addition, define the conditional probability mass
functions pX1|U ,S and pX2|U ,S as follows (see equation at the
bottom of the page)

By substituting the above definitions into R1 + R2≤ I(U;Y )−I
(U;Z ), we have R1 + R2≤ h(p), where h(p) =−plog(p)−
(1−p)log(1−p). Note that R1 + R2 = h(p) if α = 0.5, β1 = β4 = 1,
β2 = β3 = 0, γ1 = γ2 = γ3 = 1 and γ4 = 0.

† For the non-cooperative case (Theorem 4), let
U1 = U2 = {0, 1}. The probability mass function of U1 is
defined as: pU1

(0) = a, pU1
(1) = 1− a, pU2

(0) = b,
pU2

(1) = 1− b, where 0≤ α, β≤ 1. By calculating, the

Fig. 4 Binary case of the cooperative and non-cooperative encoders for p = 0.3

pX1|U ,S(0|0, 0) = b1, pX1|U ,S(1|0, 0) = 1− b1, pX1|U ,S(0|0, 1) = b2, pX1|U ,S(1|0, 1) = 1− b2

pX1|U ,S(0|1, 0) = b3, pX1|U ,S(1|1, 0) = 1− b3, pX1|U ,S(0|1, 1) = b4, pX1|U ,S(1|1, 1) = 1− b4

pX2|U ,S(0|0, 0) = g1, pX2|U ,S(1|0, 0) = 1− g1, pX2|U ,S(0|0, 1) = g2, pX2|U ,S(1|0, 1) = 1− g2

pX2|U ,S(0|1, 0) = g3, pX2|U ,S(1|1, 0) = 1− g3, pX2|U ,S(0|1, 1) = g4, pX2|U ,S(1|1, 1) = 1− g4
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secrecy rate region Cncis of this non-cooperative binary case is
given by

Cncis = C<D

where (see equation at the bottom of the page)

where α + β = 1.
The following Figs. 4 and 5 plot the binary cases of

Theorems 2 and 4 for several values of p. It is easy to see
that the cooperation between the encoders enhances the
secrecy rate region of the MAC-WTC with common CSI at
the encoders.

5 Conclusion

In this paper, first, we investigate the cooperative MAC-WTC
with common CSI at the encoders, inner bounds on the
secrecy capacity regions are provided both for the case
where the channel encoders are allowed to depend
non-causally on the channel state sequence and the case
where they are restricted to causal dependence. Second, we
investigate the non-cooperative MAC-WTC with common

CSI at the encoders, and also we provide inner bounds on
the secrecy capacity regions for both non-causal and causal
manners. Finally, by calculating the binary examples of the
cooperative MAC-WTC with causal CSI and the
non-cooperative MAC-WTC with causal CSI, we find that
the cooperation between the encoders helps to obtain a
larger secrecy rate region, that is, cooperation between the
encoders enhances the security of the MAC-WTC with
common CSI at the encoders.
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8 Appendix: Proof of Theorem 3

In this section, we prove Theorem 3. Suppose (R1, R2) [ Cnnis ,
then we will show that (R1, R2) is achievable, that is, for any
given e . 0 and sufficiently largeN, there exists a code (N, Δ, Pe)
with two message sets W1 and W2, such that

log ‖ W1 ‖
N

≥ R1 − e,
log ‖ W2 ‖

N
≥ R2 − e,

D ≥ R1 + R2 − e, Pe ≤ e

8.1.1 Code construction: Without loss of generality, we
only prove that the region A is achievable.
Given a pair (R1, R2) [ A, choose a joint probability mass

function

pU1X1U2X2SY Z(u1, x1, u2, x2, s, y)

= pZ|Y (z|y)pY |X1X2S(y|x1, x2, s)pU1X1|S(u1, x1|s)
× pU2X2|S(u2, x2|s)pS(s)

such that

R1 = I (U1; Y )−max {I (U1; S), I(U1; Z)} (6)

and

R2 = I (U2; Y |U1)−max {I (U2; S), I(U2; Z|U1)} (7)

Let W1 and W2 satisfy

‖ W1 ‖= 2N R1 (8)

‖ W2 ‖= 2N R2 (9)

The following paragraphs are organised as follows. Step (i)
and Step (ii) are about the realisations of the auxiliary
random vectors UN

1 and UN
2 according to the probability

mass functions of U1 and U2, respectively. Step (iii) is the
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determination of the outputs xN1 and xN2 of the channel
encoders according to uN1 , u

N
2 and sN . Step (iv) is to decode

the received vector yN.

† (Step i) (A realisation of UN
1 )

Generate 2N (I(U1;Y )−e1,N )(e1,N � 0 as N � 1) i.i.d.
sequences uN1 , according to the probability mass function
pU1

(u1). Distribute these sequences at random into

2NR1 = 2N (I(U1;Y )−max (I(U1;S),I(U1;Z))) bins such that each bin
contains 2N ( max (I(U1;S),I(U1;Z))−e1,N ) sequences. Index each bin
by i [ {1, 2, . . . , 2N R1}. Then place the
2N ( max (I (U1;S),I(U1;Z))−e1,N ) sequences in every bin randomly
into 2N ( max (I (U1;S),I(U1;Z))−I(U1;Z)+e2,N )(e2,N � 0 as N � 1)
sub-bins such that every sub-bin contains
2N ( max (I (U1;Z)−e1,N−e2,N ) sequences. Let J be the random
variable to represent the index of the sub-bin. Index each
sub-bin by

j [ {1, 2, . . . , 2N ( max (I(U1;S),I (U1;Z))−I (U1;Z)+e2,N )}, that is

log ‖ J ‖
= N ( max (I (U1; S), I(U1; Z))− I(U1; Z)+ e2,N ) (10)

Here, note that the number of sequences in every sub-bin is
2N ( max (I (U1;Z)−e1,N−e2,N ). This implies that

1

N
H(UN

1 |W1, J , Z
N ) ≤ d(e) (11)

where d(e) � 0 as e � 0. Note that (11) can be proved by
using Fano’s inequality.
For a given message w1 w1 [ W1

( )
and channel state sN,

try to find a sequence uN1 (w1, i
∗) in bin w1 such that

(uN1 (w1, i
∗), sN ) [ TN

U1S
(e2). If such multiple sequences in

bin w1 exist, choose the one with the smallest index in the
bin. If no such sequence exists, declare an encoding error.
Fig. 6 shows the code-book construction of UN

1 for
Theorem 1.

† (Step ii) (A realisation of UN
2 )

Generate 2N (I(U2;Y |U1)−e3,N )(e3,N � 0 as N � 1) i.i.d.
sequences uN2 , according to the probability mass function
pU2

(u2). Distribute these sequences at random into

2NR2 = 2N (I(U2;Y |U1)−max (I(U2;S),I(U2;Z|U1))) bins such that each

bin contains 2N ( max (I (U2;S),I(U2;Z|U1))−e3,N ) sequences. Index
each bin by i [ {1, 2, . . . , 2NR2}. Then place the
2N ( max (I (U2;S),I(U2;Z|U1))−e3,N ) sequences in every bin randomly
into 2N ( max (I(U2;S),I(U2;Z|U1))−I(U2;Z|U1)+e4,N ) (e4,N � 0 as N �
1) sub-bins such that every sub-bin contains
2N ( max (I (U2;Z|U1)−e3,N−e4,N ) sequences. Let K be a random
variable to represent the index of the sub-bin. Index
each sub-bin by k [ {1, 2, . . . , 2N ( max (I(U2;S),I (U2;Z|U1))−

I(U2;Z|U1)+ e4,N )}, that is

log ‖ K ‖= N ( max (I (U2; S),

I(U2; Z|U1))− I (U2; Z|U1)+ e4,N )
(12)

Here, note that the number of sequences in every sub-bin is
2N ( max (I (U2;Z|U1)−e3,N−e4,N ). This implies that

1

N
H(UN

2 |W2, K, U
N
1 , Z

N ) ≤ d1(e) (13)

where d1(e) � 0 as e � 0. Note that (13) can be proved by
using Fano’s inequality.
For a given message w2(w2 [ W2) and channel state sN,

try to find a sequence uN2 (w2, i
∗∗) in bin w2 such that

(uN2 (w2, i
∗∗), sN ) [ TN

U2S
(e3). If such multiple sequences in

bin w2 exist, choose the one with the smallest index in the
bin. If no such sequence exists, declare an encoding error.
Fig. 7 shows the code-book construction of UN

2 for
Theorem 1.

† (Step iii) (A realisation of XN
1 and XN

2 )

The xN1 is generated according to a new discrete
memoryless channel (DMC) with inputs uN1 , s

N, and output
xN1 . The transition probability of this new DMC is
pX1|U1,S

(x1|u1, s), which is obtained from the joint
probability mass function pU1X1U2X2SY

(u1, x1, u2, x2, s, y).

The probability pXN
1 |UN

1 ,SN (x
N
1 |uN1 , sN ) is calculated as follows

pXN
1 |UN

1 ,SN (x
N
1 |uN1 , sN ) =

∏N
i=1

pX1|U1,S
(x1,i|u1,i, si) (14)

Analogously, the xN2 is generated according to a new DMC
with inputs uN2 , s

N, and output xN2 . The transition probability
of this new DMC is pX2|U2,S

(x2|u2, s), which is obtained
from the joint probability mass function pU1X1U2X2SY

(u1,

Fig. 6 Code-book construction of UN
1 for Theorem 3
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x1, u2, x2, s, y). The probability pXN
2 |UN

2 ,SN (x
N
2 |uN2 , sN ) is

calculated as follows

pXN
2 |UN

2 ,SN (x
N
2 |uN2 , sN )

=
∏N
i=1

pX2|U2,S
(x2,i|u2,i, si)

(15)

† (Step iv) (Decoding scheme of receiver): The inputs of the
MAC are xN1 , xN2 and sN, while the output is yN. In the
decoding scheme, for given yN, try to find a pair of
sequences uN1 ( ŵ1, î) and uN2 ( ŵ2, ĵ) such that
(uN1 ( ŵ1, î), u

N
2 ( ŵ2, ĵ), y

N ) [ TN
U1U2Y

(e). If there exists a pair
of such sequences, put out the corresponding ŵ1 and ŵ2 as
the outputs of the decoder, else declare a decoding error.

8.1.2 Proof of achievability: By using the above
definitions, it is easy to verify that (log ‖ W1 ‖ /N ) ≥
R1 − e and (log ‖ W2 ‖/N ) ≥ R2 − e.
Then, note that Pe ≤ e holds if

R1 ≤ I(U1; Y |U2)− I (U1; S) (16)

R2 ≤ I(U2; Y |U1)− I (U2; S) (17)

and

R1 + R2 ≤ I(U1, U2; Y )− I(U1; S)− I (U2; S) (18)

Observing that R1 = I(U1;Y )−maxI(U1;S), I(U1;Z ) and R2 = I
(U2;Y |U1)−maxI(U2;S), I(U2;Z |U1), then it is easy to see
that (16), (17) and (18) are satisfied. Thus, Pe ≤ e is
proved, and the details are omitted here.
It remains to show that D ≥ R1 + R2 − e, see the

following.
The equivocation Δ can be rewritten as

D = 1

N
H(W1, W2|ZN )

= 1

N
(H(W1|ZN )+ H(W2|ZN , W1))

(19)

Then, the conditional entropies H(W1|Z
N) and H(W2|Z

N, W1)
are bounded as follows

1

N
H(W1|ZN ) = 1

N
(H(W1, Z

N )− H(ZN ))

= 1

N
(H(W1, Z

N , J , UN
1 )− H

× (J , UN
1 |W1, Z

N )− H(ZN ))

=(1) 1

N
(H(ZN |UN

1 )+ H(W1, J , U
N
1 )

− H(J |W1, Z
N )− H(UN

1 |W1, Z
N , J )

− H(ZN ))

=(2) 1

N
(H(ZN |UN

1 )+ H(UN
1 )− H(J |W1, Z

N )

− H(UN
1 |W1, Z

N , J )− H(ZN ))

≥(3) 1

N
(H(ZN |UN

1 )+ H(UN
1 )− log|J |

− H(UN
1 |W1, Z

N , J )− H(ZN ))

≥(4) 1

N
(H(ZN |UN

1 )+ H(UN
1 )− log|J |

− H(ZN ))− d(e)

≥ 1

N
(H(ZN |UN

1 )+ H(UN
1 )− H(UN

1 |YN )

− log|J | − H(ZN ))− d(e)

=(5) 1

N
(NI(U1; Y )− NI(U1; Z)− N

× ( max (I (U1; S), I (U1; Z))

− I(U1; Z)+ e2,N ))− d(e)

= I(U1; Y )−max (I (U1; S),

× I(U1; Z))− e2,N − d(e)

=(6) R1 − e2,N − d(e)

(20)

where (1) is from the Markov chain (J , W1) � UN
1 � ZN ,

(2) is from the fact that H(W1, J |UN
1 ) = 0, (3) is from

H(J )≤ log|J|, (4) is from (11), (5) is from (10) and the fact
that SN, UN

1 , XN
1 and XN

2 are i.i.d. generated random
vectors, and the channels are discrete memoryless, and (6)
is from R1 = I(U1;Y )−max(I(U1;S), I(U1;Z )).

Fig. 7 Code-book construction of UN
2 for Theorem 3
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where (a) is from H(W1|UN
1 ) = 0, (b) is from the Markov

chain (K, W2) � (UN
1 , U

N
2 ) � ZN , (c) is from the fact that

H(W2, K|UN
1 , U

N
2 ) = 0, (d) is from (13), (e) is from (12)

and the fact that SN, UN
1 , UN

2 , XN
1 and XN

2 are i.i.d.
generated random vectors, and the channels are discrete

memoryless, and (f) is from R2 = I(U2;Y |U1)−max(I(U2;S),
I(U2;Z |U1)).
Substituting (20) and (21) into (19), and choosing

sufficiently large N, D ≥ R1 + R2 − e is proved.
The proof of Theorem 3 is completed.

1

N
H(W2|ZN , W1) ≥ H(W2|ZN , W1, U

N
1 )

=(a) H(W2|ZN , UN
1 )

= 1

N
(H (W2, Z

N , UN
1 )− H(ZN , UN

1 ))

= 1

N
(H (W2, Z

N , K, UN
2 , U

N
1 )− H(K, UN

2 |W2, Z
N , UN

1 )− H(ZN , UN
1 ))

=(b) 1

N
(H(ZN |UN

1 , U
N
2 )+ H(W2, K, U

N
1 , U

N
2 )− H (K|W2, Z

N , UN
1 )− H(UN

2 |W2, Z
N , K, UN

1 )− H(ZN , UN
1 ))

≥(c) 1

N
(H(ZN |UN

1 , U
N
2 )+ H(UN

1 , U
N
2 )− log|K| − H (UN

2 |W2, Z
N , K , UN

1 )− H(ZN , UN
1 ))

≥(d) 1

N
(H (ZN |UN

1 , U
N
2 )+ H(UN

2 |UN
1 )+ H(UN

1 )− log|K| − H(ZN , UN
1 ))− d1(e)

≥ 1

N
(H(ZN |UN

1 , U
N
2 )+ H(UN

2 |UN
1 )− H(UN

2 |UN
1 , Y

N )+ H(UN
1 )− log|K| − H(ZN , UN

1 ))− d1(e)

=(e) I(U2; Y |U1)− I (U2; Z|U1)− ( max (I (U2; S), I(U2; Z|U1))− I(U2; Z|U1)+ e4,N )− d1(e)

= I (U2; Y |U1)−max (I(U2; S), I(U2; Z|U1))− e4,N − d1(e)

=(f ) R2 − e4,N − d1(e)

(21)
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